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Abstract

This letter is devoted to results on intermediate asymgdtr the heat equation. We study the convergence towards
a stationary solution in self-similar variables. By assogrithe equality of some moments of the initial data and of the
stationary solution, we get improved convergence rategjuetropy entropy-production methods. We establish the
equivalence of the exponential decay of the entropies vath, improved functional inequalities in restricted classe
of functions. This letter is the counterpart in a linear feamork of a recent work on fastftlision equations, seE [8].
Results extend to the case of a Fokker-Planck equation vgénaral confining potential.
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Consider théneat equatiorin the euclidean space,

N _ pu t>0, xeR? 1)

ot

with an initial conditionuy € LY(RY). By writing u = u, — u_ whereu, andu_ are respectively the positive and
negative parts ofi and solving [JL) with initial dataup), and (i)-, we may reduce the problem to the case of a
nonnegative function, corresponding to a nonnegativélniondition up, without restriction. The heat equation
being linear, we can assume without loss of generalityufiag a probability measure so that in the sequel of this note
f Updx=1-= f u(t,x) dx for anyt > 0. Getting decay rates and even an asymptotic expansioarfye values
of t is completely standard, see for instancd [13]. Howevemedetails and some notations will be useful for later
purpose.

First of all, as a straightforward consequence of the esima®f the Green functio(t, X, y) := (4nt) 9% e e

any solutionu of (ﬂ) can be written asi(t, X) = fRd uo(y) G(t, x,y) dy and therefore uniformly decays like(t~ d/2)
since, ag — oo, U(t, X) ~ G(t, x,0). It is also classical to estimate the decayif-) — G(t, -, 0) in variousLP(RY)
norms. Such estimates are calietermediate asymptotiosstimates. The point is to determine the first term of
an asymptotic expansion of the solutiontas»> co. For instance, as we shall see below, it can be proved that
lu(t, ) — G(t, -, O)llL1rey = O(t™?) ast — oo.

The entropy methodtan be used among various other approaches to obtain sucitiarate. It relies on the
logarithmic Sobolev inequality and goes as follows. Fistgider the time-dependent rescaling

ut,x) = R (logR x/R) with R=R(t):= V1+2t, t>0, xeRY, (2)
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If uis a solution of |Z|1), then solves thd=okker-Planck equation
%:Av+v-(xv) 3)

with same initial condition/(t = 0,-) = Up. Let V. (X) := (2r)%2eX*/2 be the unique stationary solution df (3)
with mass 1, and defindu := v., dx as the Gaussian measure. We denotéiRY) and LP(RY, du) the Lebesgue
spaces corresponding respectively to Lebesgue’s measdn® ¢he Gaussian measure. Understanding the interme-
diate asymptotics fou amounts to study the convergencevab v,,, ast — . Define theentropyby &i[w] :=
fRdwlogwd;z. Let v be a solution of|]3) and defina(t,-) = V(t,-)/Veo, Wo = W(t = 0,-). Thend%Sl[w(t, )] =
—I[w(t, -)] where 1; is theFisher informationdefined by7;[w] = fRd w|V logwf? du. Gross'logarithmic Sobolev
inequalityexactly amounts t&;[v/v.] < %Il[v/vm] and so, it follows that

Ex[w(t, -)] < E1[wo] e vt>0.

By the Csiszar-Kullback inequalitysee for instancd [1.7], we gii(t, -) — lelfl(Rd) < 2&[w(t, -)] and deduce that

1
IME ) = Veolluesy < 5 VEr[wol et V2 0.

Undoing the change of variable§ (2) and observingtht, X) := R(t) % v, (X/R(t)) = G(t + 1/2, -, 0), we finally get

1 [&E[we]
) - . < — —_— >
”u(t» ) uoc(t9 )”Ll(]Rd) = 2 1 n 2t V t = 0 .

which establishes the claimed estimate, namglyt, -) — G(t, X, O)lL1ge) < O(t*l/z) ast — co. Such an estimate
is quite classical. The above method is known asBhkry-Emery methodr entropy/ entropy-production method
and also provides a proof of the logarithmic Sobolev ineityabee [B] for some references on this topic, in the
context of partial dterential equations.

By combiningL}(RY) andL>(RY) estimates using Holder’s inequality, we get that
[lu(t, -) = G(t, -, O)llLoqrey < ()('[72_1!J (1+(p—1)d)) as t— oo.

In a L?(RY) framework, a much more detailed description can be actiigsing a spectral decomposition.vifs a
solution of [13), therw = v/v,, is a solution of thedrnstein-Uhlenbeck equation

ow

i Aw — X - Vw (4)
with initial datawp = Up/V... Notice thatfIRd Wodu = 1and, as a consequengfﬁd w(t,-)du = 1 for allt > 0. Define
by (Hikene the sequence of Hermite type polynomials (see for instafi§B pcting onx = (Xq, X2...%g) € RY,
such thatHy(x) := ]’ch’:l he (xj) wherehn(y) = (-1)" (n!)*l/zeyz/z%(e* 2),y € R andk = (ki,....kg) € Nd.
These functions provide an orthonormal family of eigenfiors in L2(RY, du) which spans the eigenspaces of the
Ornstein-Uhlenbeck operator, thati§AHyx — x - VHy) = |k| Hk, wherelk| := 2?:1 k;. Up to a scaling, tfy)nen is the
usual family of Hermite polynomials oR.

If wp satisfies the orthogonality condition

fonkdﬂzo Vk e N such that O< k| < n, (5)
Rd

then an improved rate of convergence follows, in the serede th
IW(E, ) = Ulieme, gy < € " IWo — Ul zgra,gy Y2 0.

If (E) initially holds, we indeed hav%{d w(t, ) Hedu = 0 for anyt > 0 and anyk € NYsuch that 0< |k| < n. Then,

sinceg(w(t, -) — 1| =2 [L4 IVW(t, -)* du, the conclusion holds using the following result.

2 —
LR, dy)
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Proposition 1 (Improved Poincaré inequality). Assume thatw L2(RY) is such thatf]Rd wdu = 1 and the condition
fRd w Hy du = 0 holds for any ke N9 such thaD < |k| < n. Then the following inequality holds, with optimal comsta

1
W = Uz, gy < 7 VW2 g -
The proof is no more than a straightforward rewriting of theeyRigh quotienthwaz(Rd’dﬂ)/||w— 1”52(]1@, ) under

the appropriate orthogonality condition. Notice that palgnialsHy are of degre¢k| so that the Conditior](5) can be
rephrased in terms of moment conditions. e [13, 14] fah&uresults in this direction.

Itis natural to search for improved estimates of convergeaian inLP(R%) with p € [1, 2) by looking for improved
functional inequalities whenever conditicﬁ|| (5) is fulfdlewe may for instance quotﬁ [2] in which improvements on
the constant, but not on the rates, have been achiever-at.

For anyp € (1, 2], consider th@eneralized entropy

wP -1
sSp[W]:zf]Rd D=1 du .

This definition is consistent with the definition®f because, under the conditigggwdy =1,8pW] = Jpo ‘“gjr’ du —
&i[w] asp — 1. The functional, controls the convergence IP(RY, du) using a generalized Csiszar-Kullback
in_equality. In Eﬂ}l] it has been proved that — 1||fp(Rd,dﬂ) < %22/p max{ ||w||f;ng’dﬂ), 1} Ep[w], for any p € [1, 2].
Since|Wl 1 (ra, ¢y = 1, We have I< ||W||Ep(Rd’dﬂ) =1+(p-1)&p[w], and so
_ 21/p 1-p/2
W = LllLe(ra,ay) < Ap (‘Sp[W]) with  Ap(s) = NG [1 +(p-1) 5] Vs. (6)

Next, assume tha&dWHk du = 0 for anyk € NY such that O< |k| < n and consider thgeneralized Poincaré
inequalitieswith p € [1, 2], namely

EplW < Bnp f |ywP’2 |2dﬂ v we HYRY, dy). (7)
Rd

Such inequalities have been establishedrfer 1 by W. Beckner in[[5] with optimal constai}; , = 2/p for the
Gaussian measure. By the same method, it has been shoﬂntlira{lbr a larger class of measuids if (ﬂ) holds
for p =1 andp = 2, for some positive constant, ; and B, respectively, then it also holds for apye (1, 2) with

Bup =54 [1-(2- p)/p) /@52 | Byp . ®)

By the logarithmic Sobolev inequality and the improved Rai@ inequality, see Propositiﬂn 1, we know tBa§ < 2
ant(jgz%n,2 = 1/n. Hence it follows thaB, , < ﬁ [1-(2-p)/p)"] % On the other hand, as if [3], ¥ is a solution
of ), then

d 4 212
G et ) = =2 fR | VwP2 P . )
If (§) is satisfied, we conclude using (7) arffl (6) that any tioiuof () with initial dataw, satisfies
Eplw(t, )] < Eplwo] €21t and (. -) — Llliogre, g < Ap (EplWo]) Pt v 20,
with A(n, p) := gp n(p-1)[1-((2- p)/p)"" . The last estimate holds because, for amy0,
It ) = Uliogre, gy < Ap (EplW(L. )]) < Ap (Ep[wo] €21 < A (Eg[we] ) &P
Notice thati(1, p) = 1 andi(n, 2) = n. Nothing is gained ap — 1, since lim_,1 A(n, p) = 1 is independent ai.
On the other hand, by Holder’s inequality, we have for fite@t tw — 1|l p(re ¢,y < W= Llli2(re qu). HENCE, ifW

is a solution of |§|4) with initial datavp, we know thafw(t, -) — Ll e, gy < e "wg — 1l 2ra,qu) @St — oo, for any
3



pell,2],if (E) is satisfied. By interpolation, we recover the satd [@,]. However, this is not satisfactory since
neither||wo— 1| ore, ¢u) NOr Ep[Wo] are involved in the right hand side of the above estimate.

Consider first the casp = 1. An alternative approach is suggested by the methoﬂ cﬂ][?(/y}ﬁch applies to
the fast dffusion equatio% = Au™ for m < 1. By assuming some uniform bound on the initial data, whgh i
preserved along the evolution, it is possible to relate Hyemptotic rate for intermediate asymptotics with the spec-
trum of the linearized operator. We can indeed observe|that 1||L2(]Rd 4y S < lwo = lagre, gy [IWo — Ui re, gy <

5 1 \E1Two] IIwp — 1| ~(re, gy USING HOlder’s inequality and the Csiszar-Kullback inality. This proves that

It ) = LUl g gy < 3 W0 — Lliqe ay VELIWO] €' @St — 00

if (E) is satisfied initially. Still, this provides neithenastimate mfRd w(t, -) logw(t, -) du nor a functional inequality
which improves upon the logarithmic Sobolev inequality.pfove such an inequality, we keep following the strategy
of [E]. A simple but key idea is to observe that the functiosfimed for anyp € [1, 2] by hy(0) = 1, hy(1) = p/2 and,
foranyse (0,1)U(L, o) by hp(s) :=[sP — 1 - p(s— 1)/[(p—1)Is— 1/ if p> 1,hy(s) :=[slogs— (s—1)]/Is— 1%,

are continuous, nonnegative, decreasin@orand achieve their maximum at 0. Define loh(RY) the functional

Hw] 1= W SUDPA) = WD hp  inf, w(x)

Theorem 2 (Improved logarithmic Sobolev inequality). Assume that we LP(RY) is such thatf]Rd wdu = 1and

satisfies the conditioﬁ{d w Hy du = 0 for any ke N9 such thai0 < |kl < n. Then the following inequality holds, with
optimal constant:

2
f w logw du < Halw] ALl du
Rd n
Proof. We may indeed observe that by the Poincaré inequality aing tise definition ofH1, we get
Vw2 ) n . n f
du > W dy > —— w—1“dy > —— wlogwdu.
o W g Jao T il ST H G S, OO

The optimality of the constant can be checked by a lengthyelmentary computation using the functioss :=
Hk(X) x(x&¥@M) + CK for some smooth truncation functignsuch that 0< y < 1, y =1 onB(0,1) andy = 0 in
R\ B(0,2). Here fork € N% is such thatk| = nand the constar@¥ is chosen so thaf,, W& du = 1. O

As a consequence of the Maximum Principle applied to the égaation [Il) and the fact that tg = v, corre-
sponds a self-similar solution oﬁ(l), nameift, x) = G(t + % X, 0), we have the estimate

Hi[w(t, )] < Ha[we] VY t=>0.

By applying Theoretﬂz, we obtain a new result of decay&fgw(t, -)] with a constant which is exact§;[wo], to the
price of a rate which is less tham?2

Corollary 3 (Improved decay rate of the entropy). Let w be a solution 0@) with a nonnegative bounded initial
data w € L*(R?, du) such that[,, wo du = 1 and (§) is satisfied. Then

EiW(t, )] < Ea[wg] e "V 7wl > 0.
This result is actually equivalent to Theorﬂ’n 2,as followsjbferentlatmg the above inequalitytat O (for which
equality is trivially satisfied) and using the fact thaff,, [Vwol?/Wo du = § E1[W(t, )0 < Exlwo] & e/ Halvel o,
What we have achieved is a global, improved exponentialydetdhe entropy&; in a restrlcted class of func-
tions. To simplify even further, for any € (0,1) andn € N*, consider the seX” = {w € LY(RY, du)

4



l-e<w< 1l+¢ ae. andthe conditiof]f{d w Hy du = 0 holds for anyk € N9 such thab < |k| < n}, which is ap-
propriate to handle the optimality case corresponding te 0,. The best constant in Theoreﬂn 2 is indeed asymp-
totically equivalent to the sharp rate of convergence inoGary B in the sense that limo, infyexn n/Hi[w] =
lim.5o0, n/[(L+&)h(1-¢)] =2n.

For simplicity, we have considered only the cgse= 1, but the method also applies to apye (1,2). We
obtain an improved version (ﬂ(?) under the restriction that L1(RY, du) is bounded nonnegative and the condition
fRdek du = 0 holds for anyk € NY such that 0< |k| < n. With Bn1 = 4Hi[w]/nand B2 = 1/n, we get
Bnp < K[n, p,w] := (n(p- 1)) [1 —((2- p)/p)z'Hﬂ""]] by (B). Using the entropyentropy-production identity[{9),
the fact thatK[n, p, w(t, -)] < K[n, p, wo] and the generalized Csiszar-Kullback inequalﬂy (6),0kéain

Ep[w(t, )] < Ep[wo] e 7o and [IW = Llipre, duy < Ap (sSp[Wo]) e TR Yt 0. (20)

Alternatively, an elementary computation as in the prooTIméorenﬂZ gives a similar result:

4 f 2 . 1 n n
— vWP2 | du =f wP=21ywi? du > 7f VW d > 7f W—12du > ——— Ep[w]
2 Jusl T o [T Iy 2 Holw]

if fRd wdu =1 and the conditiorf]Rd w Hy du = 0 holds for anyk € N9 such that O< |k| < n. This proves that
4 Holw] 212
EplW] < 2 TfRd'VWp/ |” d.

Using {9) and[§6), this proves that any solution[df (4) withia data inwy € L1 n L*(RY, dy) satisfies
EplW(t, )] < Eplwo] e "PYHell and  (jw - 1| pa, gy < Ap (ap[wo]) e NPYRHMD vyt > Q. (11)

Comparing the rates of (10) a{d|11) is a natural questiothdtimit s — 0, infyexn Hp[W] ~ SURexn Hp[W] — p/2
and it follows that im0 szmswr = 3n(P - 1)/[1 - (2= p)/P)P] < 2n = liM.0 ;TBV‘O] Hence, at least in the
regimes — 0, (13) is a better estimate in terms of rates tHah (10). Urgltie change of variablef] (2), we have
achieved a detailed result on improued

Corollary 4 (Improved intermediate asymptotics for the hea equation). Let p € [1,2] and assume thatguis a
probability measure such thatyw ug/v., is bounded and satisfies the conditi&@ Up Hx dx = Ofor any ke N9 such
thatO < |k < n. If u is the solution o’() with initial condition w, then

np d

Iu(t, ) = Ut Mooy < (1) 209 A (Eplwol) (L+ 28) 7 2079 v > 0.

The proof relies on the remark tha(t, -) — Us(t, -)llLe@ey < [Us(t, -)||i;(?’Rd) IW(t, <) = Ll p(ra, gy WHETE Uso(t, ) 1=
G(t + 1/2,-,0). The conclusion holds usifig (t, Il ~ge) = (2r R?)~92with R= V1 + 2t.

Up to now, we have considered the simple case of the harmoténpal,V(X) = %|x|2. As in ], the previous

results can be extended to more general potentials as &lidansidel € W ZNnWi2(RY) such thatf,, e™V®¥dx = 1,
and define the probability measuig(x) := e"V®dxin RY, which generalizes the Gaussian measure. Under the above
conditions or\, the logarithmic Sobolev inequality holds (resf]. (7) for 1) for some positive constant (resp. for
B11 > 0). The Ornstein-Uhlenbeck operatdr:= —A + VV - V is essentially self-adjoint oh?(du), has a non-
degenerate eigenvalug = 0 and a spectral gap > 0. According to EB Theorem 2.1{ has a pure point spectrum
without accumulation points. Since lim., Ak = oo, then by , Theorem XI11.64], the eigenfunctionsiform a
complete basis df?(RY, du). We shall denote the eigenvalueshyk € N, and byEy the corresponding eigenspaces.
Theoren{P adapts without changes. Assumeithat_>(R9) is such thatf,,wdu = 1. Then

2
Rd 5/ln R W



under the orthogonality conditionv € (Uﬂj Ek)l, that iszd w fydu = 0 for anyfy € E, k=1, 2,.. n— 1. Next,
consider the solutiow of the Ornstein-Uhlenbeck equation

%:—NW:AW—VV-VW, (12)

with initial conditionwg € Uﬂj Ek)L N L*(RY) is such thatfRd Wo du = 1. With the same definition as above &y,
for any solution of [IR) with initial datavo, [L3) is now replaced by

Ep[W(t, )] < Ep[Wo] g W PYHIW]  gnd |lw— Ulioge. g < ﬂp(Sp[Wo]) e PU@RH W) vt Q.

Let us conclude this letter by some comments and open quasstibis standard in entropyentropy-production
methods that determining sharp rates of convergence in@nt@n equation is equivalentto finding sharp constantsin
functional inequalities, as we have seen in the case of thiedugiation: the rate of convergenc&#fRY, du) is given
by the Poincaré inequality, while the rate of convergenceritropy, which controls the'(R¢, du) norm, is related
with the logarithmic Sobolev inequality. This is also trwe honlinear difusion equations, see for instan@[lZ]. In
this case, a breakthrough came from the observation thfstremhorms can also be used, sed [14] 7, 6], to the price of
a restricted functional framework. This allows to relatalivear quantities of entropy type with spectral properté
the linearized problem, in an appropriate functional spgak again, to relate sharp rates with best constantsﬂ}see [8
As long as nonlinear evolution problems are concerned, ®fdyv invariant quantities are usually available: the mass
and the position of the center of mass of the solution, falaimse. In linear evolution problems, we can impose an
arbitrary number of orthogonality conditions, which areg®rved along the evolution. Improved rates of convergence
are then expected, even when measured with nonlinear ¢jaaritie the entropy. Various attempts have been done,
see for instance[[Z], but the question has been left open &myrgears. Such ideas have been partially explored by
R.J. McCann, including in the linear case (deq [11]), basedomsiderations on an appropriate Hessian matrix. Our
approach provides a simpler and elementary answer undgctiesis which are natural in view oﬂ[6]. It also raises a
number of questions concerning the optimality of the nevcfiomal inequalities from a variational point of view, the
convergence of minimizing sequences and the symmetry atlietual minimizers.
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