Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, Epiciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

A Batalin-Vilkovisky algebra morphism from double loop spaces to free loops

Abstract : Let $M$ be a compact oriented $d$-dimensional smooth manifold and $X$ a topological space. Chas and Sullivan~\cite{Chas-Sullivan:stringtop} have defined a structure of Batalin-Vilkovisky algebra on $\mathbb{H}_*(LM):=H_{*+d}(LM)$. Getzler~\cite{Getzler:BVAlg} has defined a structure of Batalin-Vilkovisky algebra on the homology of the pointed double loop space of $X$, $H_*(\Omega^2 X)$. Let $G$ be a topological monoid with a homotopy inverse. We define a structure of Batalin-Vilkovisky algebra on $H_*(\Omega^2BG)\otimes\mathbb{H}_*(M)$ extending the Batalin-Vilkovisky algebra of Getzler on $H_*(\Omega^2BG)$. We prove that the morphism of graded algebras $$H_*(\Omega^2BG)\otimes\mathbb{H}_*(M)\rightarrow\mathbb{H}_*(LM)$$ defined by Felix and Thomas~\cite{Felix-Thomas:monsefls}, is in fact a morphism of Batalin-Vilkovisky algebras. In particular, if $G=M$ is a connected Lie group, $H_*(\Omega^2 BG)$ is a trivial sub Batalin-Vilkovisky algebra of $\mathbb{H}_*(LG)$.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-00409680
Contributor : Luc Menichi Connect in order to contact the contributor
Submitted on : Tuesday, August 11, 2009 - 10:14:14 PM
Last modification on : Wednesday, October 20, 2021 - 3:18:40 AM

Links full text

Identifiers

  • HAL Id : hal-00409680, version 1
  • ARXIV : 0908.1883

Collections

Citation

Luc Menichi. A Batalin-Vilkovisky algebra morphism from double loop spaces to free loops. 2009. ⟨hal-00409680⟩

Share

Metrics

Record views

62