A probabilistic study of neural complexity

Abstract : G. Edelman, O. Sporns, and G. Tononi have introduced the neural complexity of a family of random variables, defining it as a specific average of mutual information over subfamilies. We show that their choice of weights satisfies two natural properties, namely exchangeability and additivity, and we call any functional satisfying these two properties an intricacy. We classify all intricacies in terms of probability laws on the unit interval and study the growth rate of maximal intricacies when the size of the system goes to infinity. For systems of a fixed size, we show that maximizers have small support and exchangeable systems have small intricacy. In particular, maximizing intricacy leads to spontaneous symmetry breaking and failure of uniqueness.
Type de document :
Pré-publication, Document de travail
minor edits. 2009
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

Contributeur : Jerome Buzzi <>
Soumis le : vendredi 18 décembre 2009 - 22:19:03
Dernière modification le : mercredi 21 mars 2018 - 18:56:48
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 18:14:55


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00409143, version 3
  • ARXIV : 0908.1006



Jerome Buzzi, Lorenzo Zambotti. A probabilistic study of neural complexity. minor edits. 2009. 〈hal-00409143v3〉



Consultations de la notice


Téléchargements de fichiers