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Neutral modelling of agricultural landscapes by

tessellation methods – Application for gene flow

simulation

Texte paru dans Ecological Modelling, doi:10.1016/j.ecolmodel.2009.06.019

F. Le Ber∗, C. Lavigne†, K. Adamczyk‡, F. Angevin§,

N. Colbach¶, J.-F. Mari‖, and H. Monod∗∗

Abstract. Neutral landscape models are not frequently used in the agro-
nomical domain, whereas they would be very useful for studying given
agro-ecological or physical processes. Contrary to ecological neutral land-
scape models, agricultural models have to represent and manage geometrical
patches and thus should rely on tessellation methods. We present a three
steps approach that aimed at simulating such landscapes. Firstly, we char-
acterized the geometry of three real field patterns; secondly, we generated
simulated field patterns with two tessellation methods attempting to control
the value of some of the observed characteristics and, thirdly, we evaluated
the simulated field patterns. For this evaluation, we considered that good
simulated field patterns should capture characteristics of real landscapes
that are important for the targeted agro-ecological process. Real landscapes
and landscapes simulated using either a Voronoi or a rectangular tessella-
tion were thus compared when used as input data within a gene flow model.
The results showed that neither tessellation method captured field shapes
correctly, thus leading to over or (small) under estimation of gene flow. The
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Voronoi tessellation, though, performed better than the rectangular tessel-
lation. Possible research directions are proposed to improve the simulated
patterns, including the use of post-processing, the control of cell orientation
or the implementation of other tessellation techniques.

Keyword. Neutral landscape models, agricultural landscapes, gene flow,
spatial point process, Voronoi diagrams, rectangular tessellation, field pat-
tern, GenExP-LandSiTes.

1 Introduction

Landscape simulation has been a major line of investigation in the fields of
ecology and agronomy over the last few years. In landscape ecology, land-
scape simulation is used for studying the influence of landscape patterns on
ecological phenomena [44]. Simulation methods fall into three groups: geo-
statistical models, neutral models, and process-explicit models [42]. Geosta-
tistical models focus on interpolation methods of spatial data [21]. Process-
explicit models include the description of spatial processes and related eco-
logical phenomena which underlie the landscape dynamics (e.g., [48, 33]). In
contrast, neutral landscape models (NLM, sensu [17]) provide random land-
scape structures as a baseline for comparison with real landscape patterns,
or for an evaluation of landscape structure effects on ecological processes
[17, 16, 47]. Such models are termed neutral as they model no explicit pro-
cess giving rise to the landscape pattern, they do model totally random or
somewhat constrained covering of the area. Neutral models are mainly based
on raster approaches, land-use being allocated randomly to pixels and then
clustered by various methods (e.g., [42]). Fractal models have also been used
[22]. More recently, polygonal approaches, using geometrical tessellations,
have been proposed to simulate patchy landscapes [19, 18].

Landscape models have been widely used in forest management (e.g.,
[33, 26]). In land-use planning and agronomy, such models are less frequent.
Spatial models have been used for the simulation of crop allocations on a
farm or over a regional territory (e.g., [28, 8]), in order to understand or to
plan the organisation of agricultural landscapes according to environmen-
tal problems (e.g., water pollution). Closer to ecological approaches, other
studies have focused on the links between farming practices and ecological
processes with process-explicit models [20, 3]. In both cases, the models rely
on real spatial data, such as field patterns, landscape characteristics (i.e.,
soil, slope) or the current agricultural mosaic of a region. As far as we know,
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there are almost no neutral models, such as those developed in landscape
ecology, though these models would be very useful when dealing with models
of agro-ecological processes. Several reasons for using neutral models can be
cited. First, real data are not always available or are too specific and thus
reduce the scope of application of the model results. Second, in the case of
anthropogenic landscapes, it is necessary to prospect new configurations in
order to forecast their effects or to find the best configuration with respect to
the given agro-ecological process. Finally, neutral landscapes can be used to
test the sensitivity of process models to the spatial variability of agricultural
landscapes.

We propose to simulate agricultural landscapes, including both their
configuration (the field pattern) and their composition (occurrence of cate-
gories of land-use) [32]. However, as mentioned by [20], agricultural land-
scapes cannot be easily simulated with traditional ecological neutral land-
scape models for two reasons: (1) they are mainly geometrical, contrarily
to less anthropogenic landscapes, and (2) in traditional landscape models,
the basic unit is the pixel, and the land-use mosaic (i.e., both the configu-
ration and the composition) only emerges as a result of the simulation (e.g.,
[48]), whereas in agricultural landscapes, the field pattern is generally stable
and “precedes” the land-use. For handling geometric patches as basic units,
a straightforward way is to use tessellation methods, such as proposed by
[6] or [19]. However, various tessellation methods are available, that result
in somewhat different geometries. Good tessellation methods should have
the ability to correctly simulate characteristics of real landscapes that are
of importance for the targeted agro-ecological process. In the following,
we simulate agricultural landscapes using two different tesselation methods.
These landscapes are used as input for a gene flow model that handles pollen
dispersal as an agro-ecological process. More precisely, we investigate how
the values of simulated cross-pollination rates from GM to non-GM fields
depend on the tessellation method used to simulate the landscapes, with
the rationale that if cross-pollination rates are similar between real and
simulated landscapes, this would mean that simulated landscapes capture
essential features of real landscapes. To measure and compare these features
is necessary to interpret safely the results of gene flow models on simulated
landscapes. Whereas various tessellation methods have been used as a basis
for landscape generation (e.g., [6, 18]), as far as we know, very few studies
focused on their evaluation via their impact on the outcome of ecological
processes (e.g., [23]).

To this end, we followed a two-step procedure: we first generated sim-
ulated landscapes with basic properties of actual landscapes; then, we as-
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sessed the impact of the tessellation methods on gene flow. In Section 2, we
describe tessellation methods and an innovative point-process model which
can be used for generating tessellation seeds. Section 3 focuses on the com-
bination of tessellation methods and the gene flow model. Results are given
in Section 4 and they are discussed in Section 5. The conclusion proposes
some promising leads for improving the realism of tessellation-based simu-
lated landscapes.

2 Neutral models of agricultural landscapes

In this section, we focus on the simulation of agricultural landscapes in
terms of configuration (field shape, size, and location) and composition (the
land-use mosaic). The configuration has been designed with the help of
tessellation methods. The composition can be obtained in a purely random
manner, or on the basis of expert knowledge or real data. Furthermore,
our objective was to explore the variability of landscape patterns on the
basis of some given, controlable parameters describing the basic properties
of actual agricultural landscapes. We therefore sought a correspondence
between geometrical tessellations and spatial patterns of existing landscapes.

2.1 Simulating the geometry of agricultural landscapes

Tessellation entails filling a defined area with geometrical figures (hereafter
refered to as cells) without any overlapping and leaving no holes. Tessellation
methods are based on spatial statistics and computational geometry [38].
They are used in several fields of study, as in image recognition or geography
for example, but more for spatial analysis than for simulation (e.g., [15]).
Purely random or regular tessellations were not taken into consideration,
and we have focused on approaches that allow the handling of tessellation
in terms of given characteristics of real landscapes. These approaches are
based on a tessellation algorithm and a given set of points or segments,
called the tessellation seeds.

The ability of a tessellation method to preserve the features observed
in a real landscape can be evaluated, on the one hand, on the basis of
the geometry of the tessellation cells (size, shape, orientation), and, on the
other hand, on the basis of their spatial distribution (clustered or regular
patterns). In both tessellation methods investigated here, the geometry of
the cells is completely determined by the tessellation algorithm. In contrast,
the spatial distribution of tessellation cells depends on the distribution of
the tessellation seeds. Consequently, a tessellation which is based on the
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“seeds” of a real landscape will preserve the spatial configuration of the
fields in that landscape.

2.1.1 Simulation of tessellation seeds

If tessellation seeds are to be generated in a stochastic manner, they can be
considered as a realisation of a spatial (2D) point-process, within a bounded
window. Furthermore, if the seeds correspond to specific points of a land-
scape pattern, then the point-process should fit the spatial distribution of
these specific points. Eventually, if examples of such specific points are
available, it is possible to estimate the point-process parameters in order to
simulate similar configurations of seeds.

We describe here an example of a point-process fitted to centroid patterns
(see [1] for more details). We chose a point-process that could yield an
aggregated or regular centroid pattern and account for the fact that the
distance between a pair of real centroids is greater than a certain threshold,
proportional to the minimal field area. The Poisson process, commonly
used as the reference point-process, is not appropriate for modelling centroid
distribution. The pairwise-interaction process (see for example [45]) is more
suitable for our purposes. The model controls both the mean number of
points per unit area (intensity) and the distribution of pairwise distances
between the points. It is defined by the following density function:

f(x; λ, θ) ∝ λn
∏

i<j

γθ(‖xi − xj‖) (1)

where x1, . . . , xn are the coordinates of n centroids, λ is the intensity of
the process and γθ(·) is the interaction function depending on the Euclidean
distance between the pairs of points and the interaction parameter θ. For
γθ ≡ 1 the model is reduced to a homogeneous Poisson process with intensity
λ: no interaction between the points is observed. The values of γθ > 1
introduce an aggregated point pattern and the values of γθ < 1 introduce a
regular point pattern at a given distance.

2.1.2 Two tessellation methods

The Voronoi tessellation Given a set of points in the Euclidean plan,
the set of seeds, a Voronoi tessellation –or Voronoi diagram– is a covering of
the Euclidean plan with non-overlapping convex polygons, each surrounding
a seed. The points in a polygon are closer to its seed than to any other seed
located in any other polygon. The edges therefore consist in the points
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located at an equal distance from two seeds (Figure 1(a)). The Delaunay
triangulation [38] can be used to determine the polygons.
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(a) Voronoi tessellation
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(b) rectangular tessellation

Figure 1: Two different tessellations based on sets of seeds (region A1, scale
1/5): the Voronoi tessellation (a) and the rectangular tessellation with only
T-vertices (b). Infinite Voronoi cells were eliminated.

The major advantage of this tessellation is the correspondence between
the pair polygon/seed and the pair field/centroid. For example, equally
distanced seeds yield regular pattern of cells, aggregated seeds yield clusters
of small cells and aligned seeds result in range-structured cells. Similarly,
the configuration of field centroids characterises the spatial distribution of
the fields: for instance, an aggregated pattern of centroids reveals clusters
of small fields. Therefore, a simulation based on statistic parameters that
are estimated on centroids of real landscapes is possible. The drawbacks of
this tessellation are related to the shape of the polygons which are convex
and often have a higher number of vertices than actual fields.

A rectangular tessellation In a rectangular tessellation, the area is filled
in with non-overlapping rectangles. We eliminated the simple case when the
rectangles are defined by two orthogonal sets of parallel lines and considered
only those rectangles sharing T-vertices (Figure 1(b)). In such tessellations,
a vertex of a rectangle cannot belong to more than three rectangles (no
X-vertex). A method for building such tessellations has been described
in [34]. The basic principles of the algorithm is to generate the edges of the
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rectangles by crossing two-directional rays starting from a set of points.
In this case, there is no obvious correspondence between the rectangles

and the fields, since the basic geometric unit is a segment rather than a
polygon and a seed is located anywhere along an edge. We found no specific
points representative of a real landscape to be used as seeds for the rectan-
gular tessellation. Nevertheless, the geometry of the rectangular cells yields
a priori more realistic field shapes (for at least some regions, see figure 3(b))
than the Voronoi cells, and certain overall characteristics of a landscape pat-
tern can be conserved: for example, the number of the polygons is equal to
the number of seeds plus one.

2.2 Simulating the land-use mosaic of agricultural landscapes

The simulation of the land-use mosaic can be handled in several ways. Ba-
sically, in most landscape models, crops are randomly allocated according
to a probability distribution: e.g., in binary patchy landscapes, each plot is
grown with a crop according to a probability p (vs. 1−p) and its own surface
area. When several crops are under consideration, each crop is associated
with a probability value pc, so that

∑
c pc = 1.

Methods have been proposed to improve the purely random approach. In
[19], a Gibbs process is introduced to model the interactions between pairs of
neighbouring patches. According to the parameter values of this model, the
landscape mosaic can be more or less heterogeneous. Other processes could
be used, based on the statistical study of spatial and temporal patterns of
real field mosaics [9, 10]. Furthermore, stochastic neighbourhood rules can
be learnt from a real dataset, as proposed in [35], where Hidden Markov
Models are applied on land-use temporal and spatial data.

2.3 The GenExP-LandSiTes software

GenExP-LandSiTes 1 is a software simulating two-dimensional agricul-
tural landscapes. It is written in Java, and it is freely accessible through
a Gnu Public Licence [30]. Its main features fall into three categories: the
generation of the field patterns based on the simulation of spatial point-
processes and on tessellation methods; the post-processing that improves
the realistic aspect of the simulated landscape; and the computation of land-
scape statistics.

The two tessellation methods described above have been implemented:
the Voronoi tessellation, using the “3D Hull” algorithm for Delaunay tri-

1LANDscape SImulation based on TESsellation.
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angulation [39] and the rectangular tessellation, using the Mackisack algo-
rithm [34]. The land-use mosaic is built randomly according to a chosen
distribution of land-uses. GenExP-LandSiTes was also coupled with the
statistics R software to have high-level tools for the spatial point-process
simulation [5]. Finally, GenExP-LandSiTes provides a library to calcu-
late basic landscape descriptors (field area, perimeter, number of vertices,
centroid and shape).

3 Application to the study of gene flow

In the case of coexisting GM, conventional and organic crops, two agronomic
aspects have to be taken into account. The first aspect concerns the cropping
of several agricultural species bearing the same transgene (for instance a
tolerance to the same herbicide). Interactions between these different crops
in a cropping system must be studied to define the best management of
volunteers and avoid selection or breakdown of this particular gene.

The second aspect concerns the cultivation of GM and non-GM varieties
of the same species for which, in Europe, coexistence rules between GM and
non-GM crops (e.g., minimum distances between crops) have to be imple-
mented to respect harvest impurity thresholds of non-GM crops, e.g., less
than 0.9% of GM seeds in non-GM harvests (2003/556/EC, 1830/2003/EC).
Several coexistence studies have been carried out to address this issue (see
for instance: [7, 43, 41, 36]). Few of them have dealt with the impact of the
distribution of GM and non-GM crops in the landscape [36, 31]. Moreover,
they were based on real agricultural landscape which limits the number of
studied cases (due to the accessibility of spatialised data). Only a few recent
studies were based on simulated landscapes [11, 27, 13].

3.1 Combining landscape models with gene flow models

The GenExP-LandSiTes software was combined with Mapod-maize–a
spatially explicit pollen dispersal model [2]– and we assessed the influence
of landscape structures on maize gene flow. The investigation entailed the
following four-step process (figure 2).

3.1.1 Generation of field patterns

Three French landscapes were chosen for this study (Figure 3). The land-
scapes, restricted to a 1.5 km×1.5 km window, differed mainly in mean
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Figure 2: Combination process of the GenExP-LandSiTes and Mapod-
maize softwares: (1) generation of field patterns, (2) crop allocation, (3)
pollen dispersal, and (4) GM impurity rates.

plot area : small irregular plots (1 ha) in region P1 (French region Midi-
Pyrénées), medium and (rather) elongated plots (2 ha) in region A1 (French
region Alsace), and large and (rather) compact plots (3.5 ha) in region S4
(French region Centre).

(a) P1 (b) A1 (c) S4

Figure 3: Three agricultural landscapes with plot centroids.

For each region, the pairwise-interaction model (section 2.1.1) was fit-
ted to the pattern of field centroids (see [1] for details). The parameters
of the pairwise-interaction model were estimated using the maximum pseu-
dolikelihood method proposed by [4]. The seeds of Voronoi tessellations
were generated according to the fitted pairwise-interaction process2 whereas
the seeds of rectangular tessellations were generated as independent unifor-

2We used the Metropolis–Hasting algorithm, implemented in the R-spatstat library [5].
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mally distributed random points.3 From each original landscape, ten virtual
field patterns were designed using the GenExP-LandSiTes software, five
based on the Voronoi tessellation and five based on the rectangular tessel-
lation. Overall, thirty virtual field patterns were generated.4 Taking into
account the original patterns, there were 33 field patterns. Landscapes were
simulated within a 1.5 km×1.5 km window without any predefined hole (no
non-agricultural zone, see Figure 1).

3.1.2 Crop allocation to fields

The total proportion of field area allocated to maize was set at 70%, thus
simulating French production areas where maize is a major crop. The pro-
portion of GM maize within this area was set to either 10% or 50%, simulat-
ing low and high acceptance of GM maize, respectively. GM and non-GM
maize were randomly attributed to the fields in each of the 1.5 x 1.5 maps
until the desired proportions were met. Three replicated allocations of crops
were performed per map. Overall, we thus produced 198 crop allocations
(33 field patterns x 2 proportions of GM maize x 3 replicates).

3.1.3 Pollen dispersal

Mapod-maize simulates pollen dispersal through a quasi-mechanistic ap-
proach that takes into account crop phenology and various agronomic and
climatic conditions [2]. The sub-model for pollen dispersal was adapted
from [25] and it accounts for distance between source and receptor plants
as well as wind direction and intensity, and as plant height. To focus on
the impact of spatial characteristics of landscapes, we kept agronomic and
climatic inputs constant and identical for the GM and the conventional vari-
eties. In particular, both varieties were assumed homozygous with the same
pollen production and synchronous flowering. Wind was supposed moder-
ate (3m/s) and orientated from west to east to simulate common French
situations.

3.1.4 GM impurity rates

GM impurity rates were calculated in each non-GM field as the proportion
of seeds containing at least one copy of the transgene at harvest. For each
simulated crop allocation, we also calculated the proportion of fields with
impurity rates exceeding either 0.1% or 1%.

3Number of seeds = number of fields in the original pattern minus 1.
43 original patterns × 5 simulations × 2 tessellation methods.
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3.2 Statistical analyses

3.2.1 Assessing the impact of the tessellation method on land-

scapes characteristics

[40] showed that six indices are sufficient to characterize landscape patterns.
Since we were not interested in fractal landscapes, land-use or scaling, only
two remained: the average patch compaction (i.e., perimeter/area), and the
average patch shape (perimeter/

√
area). In the case of simple convex shapes,

as produced by the Voronoi and rectangular tessellations, the average patch
compaction is highly correlated to the average patch area. The areas (in
hectares) and the shapes (IS = perimeter/4

√
area) of fields were thus cal-

culated over each of the 33 field patterns. To assess the within-landscape
variability of field areas and shapes, we also calculated the standard devia-
tion of these measurements within field patterns. Although statistical tests
on simulated data should be carefully considered, means and standard de-
viations of area and shape index at the field pattern level were submitted
to analyses of variance using original landscape (qualitative, three levels),
tessellation method (three levels: none=original landscapes, Voronoi, and
rectangular) and their interaction as factors. Field areas and standard de-
viations of the shape index within field patterns were log-transformed to
improve normality of residuals.

Besides the geometry of the simulated fields, we were also interested
in their spatial distribution. We evaluated this distribution by examining
the distances between field centroids, using the nearest neighbour distance
distribution function G. For a given distance r the value G(r) gives the
probability that the nearest-neighbour of an arbitrary centroid lies within
this distance.

3.2.2 Assessing the impact of tessellation method on GM impu-

rity rates

Impacts on GM impurity rates for landscape type and tessellation method
were assessed through analyses of variance and comparisons of least-squares
means. Fixed effect used in the model were original landscape, tessellation
method, proportion of GM crop (qualitative, two levels) and their two-way
interactions. To account for correlations among the five simulations per-
formed with each tessellation for each original landscape, a repet factor was
declared as random and nested in (region, tessellation, GM proportion).
Similarly, to account for correlations among fields within a single crop pat-
tern, allocation nested in (repet , region, tessellation, GM proportion) was
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also declared as random. All GM impurity rates were log-transformed prior
to analyses to improve the normality of residuals. The same model was
applied to the proportions of fields exceeding the 0.1% and 1% threshold
except that the allocation term was not needed because proportions are re-
sponse variables defined at the landscape level. Prior to analyses, square
roots of proportions were arcsine-transformed to homogenise variances.

4 Results

4.1 Comparison of original and simulated field patterns

The number of fields (Table 1) was fixed for the rectangular tessellation,
since we used a fixed number of seeds. On the contrary, for the Voronoi tes-
sellation, the number of seeds is a random variable whose mean value should
be close to the number of observed centroids: in our case it appeared to be
slightly lower. One explanation is that the Voronoi tessellation produced
infinite cells on the landscape borders that were eliminated (cf. Figure 1).

Field areas and shapes were not affected by the same factors: whereas
field areas and their within-landscape variability were mostly explained by
the original landscape, field shapes and their variability were mostly ex-
plained by the tessellation method. Variability due to small random vari-
ations of seed distribution among replicate patterns was small (variance
estimates in Table 2). Average field areas (Table 1) with the rectangular
tessellations were close to the ratio landscape area/number of original fields.
Actually, the rectangular tessellation is a total covering of the initial win-
dow. For the same number of fields, the original landscapes had a lower
average field area since they contained non-agricultural areas. The results
of the Voronoi tessellations were slightly more variable. In contrast, the vari-
ability of field areas was lower for the Voronoi tessellations than for both
real landscapes and rectangular tessellations. Rectangular tessellations had
the highest variability. Regarding field shapes (Table 1), as expected, each
tessellation gave homogeneous results with respect to the three original land-
scapes, but somewhat different from the the original field shapes. Indeed, the
shape index of rectangular fields was too high (elongated shapes) while the
Voronoi fields were too compact. Furthermore, the within-landscape vari-
ability of shapes was very high for the rectangular tessellation and somewhat
low for the Voronoi tessellation.

Regarding the spatial distribution of fields, results for region A1 are given
in Figure 4. The estimates of the G function for the Voronoi simulations
were close to the original pattern. Indeed, the seed generation in Voronoi
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P1 A1 S4

Average number of fields

Voronoi 150.4±8.7 96.4±12.8 45.8±4.9
Rectang. 175 100 63
Original 175 100 63

Average field area (ha)

Voronoi 1.28±0.08 2.00±0.23 4.08±0.40
Rectang. 1.3±0.04 2.24±0.07 3.68±0.12
Original 1.09 2.05 3.55

Standard deviation of field area (ha)

Voronoi 0.51±0.02 1.08±0.2 1.65±0.36
Rectang. 1.15±0.09 1.99±0.11 3.17±0.32
Original 0.91 1.84 2.79

Average shape index

Voronoi 1.32±1.8 10−3 1.34±0.6 10−3 1.32±3.3 10−3

Rectang. 1.70±0.12 1.75±0.11 1.73±0.19
Original 1.50 1.53 1.48

Standard deviation of shape index

Voronoi 0.10±1.2 10−2 0.13±1.4 10−2 0.11±2.7 10−2

Rectang. 0.91±0.12 0.97±0.15 0.98±0.18
Original 0.31 0.28 0.19

Table 1: For each original landscape (P1, A1, S4) and each tessellation
method: average number of fields, field areas, and field shapes (mean ±
standard error); variabilities of field areas and field shapes measured as
within-landscape standard deviation (mean ± standard error).

simulations was based on a pairwise-interaction process fitted to the real
centroids, and thanks to the tessellation method, the centroids of tessellation
cells are close to the seeds. On the contrary, the estimates of the G function
for rectangular tessellation differed from the original pattern. Indeed, the
rectangular tessellation did not allow us to link the centroids of the simulated
rectangles to the centroids of the actual landscapes.

4.2 Impact of the tessellation method on GM impurity rates

As expected, the proportions of GM maize over the landscape had the high-
est effect on impurity rates (Tables 3 and 4). The impact of the tessellation
method was comparable to that of the original landscape (close F-values)
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Source DF Type 3 Sum Sq (F) Type 3 Sum Sq (F)
Area St dev Area

Region 2 4.129 (90.79***) 8.91 (92.69***)
Tessellation 2 0.028 (2.67ns) 7.95 ( 82.67***)
Tess. x Region 4 0.072 (3.40*) 1.05 (5.45**)
error 24 0.983 1.154

Shape St dev Shape
Region 2 4.77 10−3 (0.21ns) 0.11 (2.03ns)
Tessellation 2 1.20 (53.27***) 33.99 (642.6***)
Tess. x region 4 2.38 10−3 (0.05ns) 0.21 (1.96ns)
error 24 0.272 0.635

Table 2: Analysis of variance on characteristics of original and simulated
field patterns (DF: degrees of freedom; Sum Sq: sum of squares; F: Fisher
statistics; St dev: standard deviation; ns: P > 0.05; *: P > 0.01; **:
P > 0.001; ***: P < 0.001). The F tests were performed assuming the
mixed model described in the main text.

Figure 4: Estimate of G function
for the field centroids of pattern
A1. Red line: original pattern.
Gray lines: five Voronoi simula-
tions. Blue lines: five rectangular
simulations. X-axis: distance (m)
between two nearest neighbours.

when either individual field cross-pollination rate or proportion of fields
above the 0.1% threshold were considered. Differences between the tessella-
tion methods decreased largely when the 1% threshold value was considered
and became much smaller than differences between original landscapes (Ta-
ble 4). The impact of the tessellation method did not differ much between
regions (small F-value for the Tessellation x Region interactions).

The large effect of the tessellation method was mainly due to differ-
ences between Voronoi and rectangular simulated landscapes. Values for
real landscapes were generally close to those on simulated Voronoi land-
scapes: pairwise comparisons of least-squares means indicate that Voronoi
tessellations resulted in impurity rates closer to those simulated on original
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Effect DF F
Tessellation 2 7.20
Region 2 8.53
GM proportion 1 319.46
Tessellation x region 4 1.54
Tessellation x GM prop. 2 2.30
Region x GM prop. 2 0.47

Error variances Estimation St dev
repet in (tess. x region x GM prop.) 0.01 0.04
alloc in (repet. x tess. x region x GM prop.) 0.38 0.06
Residual 4.20 0.06

Table 3: Analysis of variance with fixed and random effects (Proc Mixed
in SAS 8.01, SAS Institute, Cary, NC, USA) on individual field (log10) GM
impurity rates (DF: degrees of freedom; F: Fisher statistics; St dev: standard
deviation). All Fisher statistics are calculated using the repet in (tess. x
region x GM prop.) variance as error variance (52 degrees of freedom).

landscapes than rectangular tessellations.5 The same result was observed
in terms of the proportions of fields exceeding the 0.1% threshold.6 As ex-
pected from the small F-value, outputs of simulations were very close for the
two tessellation methods and the original landscape when the 1% threshold
was considered.7

5 Discussion

Methods have been investigated for modelling 2D-geometrical landscapes,
such as a distribution of fields over an area, maintaining certain character-
istics of the original landscapes. The rationale for doing so lies in the recent
increasing interest in spatially explicit modelling that, to some extent, is
due to the increased availability of land-use maps through aerial or satel-
lite pictures. Relating landscape characteristics (e.g., hedgerow density) to
ecological (e.g., spread of an invasive species) or physical (e.g., water pollu-
tion) processes has been increasingly frequent. However, understanding how
landscape structures influence the observed spatial patterns requires more

5LS mean± sd log10(impurity rate): original = −3.55 ± 0.14; Voronoi = −3.51 ± 0.06;
rectangular = −3.18 ± 0.06

6LS mean± sd of arc sinus(proportion above 0.1%)1/2: original = 0.88± 0.04; Voronoi
= 0.90 ± 0.017; rectangular = 0.98 ± 0.017

7LSmean± sd arc sinus (proportion above 1%)1/2: original = 0.52 ± 0.02; Voronoi
= 0.49 ± 0.01; rectangular = 0.51 ± 0.01
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Threshold 1% 0.1%
Effect DF F F
Tessellation 2 1.52 6.64
Region 2 9.01 6.95
GM proportion 1 567.02 445.43
Tessellation x region 4 1.40 0.58
Tessellation x GM proportion 2 0.73 0.00
Region x GM proportion 2 4.83 1.57

Threshold 1% 0.1%
Error variances Estimation St dev Estimation St dev
repet in (tess. x region x GM prop.) 2.36 10−4 7.80 10−4 3.39 10−3 1.76 10−3

Residual 95.99 10−4 11.82 10−4 15.09 10−3 1.86 10−3

Table 4: Analysis of variance with fixed and random effects (Proc Mixed in
SAS 8.01, SAS Institute, Cary, NC, USA) on proportions of fields above a
given threshold of impurity rate (DF: degrees of freedom; F: Fisher statistics;
St dev: standard deviation). All Fisher statistics are calculated using the
repet in (tess. x region x GM prop.) variance as error variance (52 degrees
of freedom).

than data from a few maps, because each map is unique and differs from
others in many ways. Coupling landscape models to process-explicit models
(such as the here-used model for pollen dispersal) provides a means to ex-
plore the impact on a given process of small random variations in landscape
characteristics (replication) as well as large systematic differences of these
characteristics.

Whereas neutral landscape models are frequent in ecology [44, 47], tes-
sellation methods have been rarely used. Furthermore, we know of no other
landscape model exploring variation in the geometry of fields except that of
[18]. Such an approach means that the impact of the geometry of agricultural
landscapes on agro-ecological processes can be investigated. It also allows
crop allocations over similar (but not identical) geometrical field patterns
to be varied. The difficulty is in controlling important landscape charac-
teristics, here for example field areas and shapes or distances among field
centroids, while allowing other characteristics to vary.

5.1 Comparing tessellation methods w.r.t. original land-

scapes

Neither simulation method really succeeded in providing replicates of real
landscapes that would allow studying the impact of small random variations
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in landscape geometry. While both tessellation methods allowed simulation
of landscapes with numbers of fields and average field areas that resembled
those of the original landscapes, neither correctly reflected the shape and
most of all the within-landscape variability of this shape: the Voronoi tessel-
lation produced somewhat too compact fields with low variability while the
rectangular tessellation produced overly elongated fields with an overly high
variability. Systematic post-processing, e.g., deleting too small/elongated
cells (in the case of the rectangular tessellation) or deleting vertices in order
to deform shapes (in the case of the Voronoi tessellation) could be a solution
to improve suitability of tessellation results with the original landscapes.

As mentioned in Section 2.1, the a priori major advantage of the Voronoi
tessellation over the rectangular tessellation for simulating agricultural land-
scapes is that a correspondence can be established between the pair poly-
gon/seed and the pair field/centroid. This property is not exact, especially
for concave fields, but it proved efficient to simulate patterns where field
centroids respect certain constraints, e.g., a minimum distance between two
centroids. Indeed, using the pairwise-interaction point-process (see Sec-
tion 2.1.1) we produced Voronoi tessellations with similar distributions of
nearest-neighbour distances between centroids as the original landscapes.
Other characteristics of landscapes have to be investigated. For example,
in the rectangular tessellation, we could take advantage of the growing di-
rections of the segments in order to simulate the average orientations of
fields.

However, both the Voronoi and the rectangular tessellations start with
the distribution of a set of points. This step is completely artificial in the con-
text of real landscape formation and makes a model fit rather difficult. One
possible improvement consists on studying the tessellation models based on
the geometrical units naturally present in an agricultural landscape: poly-
gons or lines. In a recent work, [18] proposed to use the Delaunay triangles
(rather than the Voronoi polygons) and to aggregate them according to lin-
ear networks. Furthermore, line-based tessellations, such as proposed by
[37], can also be explored to simulate the geometry of agricultural land-
scapes.

5.2 Comparing pollen flows w.r.t the characteristics of land-

scapes

A recent spatial sensitivity of GM impurity rates that also used the Ma-

pod-maize software has concluded that field geometry was a minor factor
affecting impurity rates in comparison to maize frequency and spatial ar-
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rangement [46]. Our results confirm this: GM maize proportion was the
main factor explaining impurity rates. However, our simulations highlighted
some influence of field geometry: GM impurity rates obtained using the
Voronoi tessellations tended to be a little under-estimated, while those from
the rectangular tessellation tended to be over-estimated, in particular more
fields exhibited impurity rates that exceeded 0.1%. This difference might
be explained both by the larger variability in field area as well as by the
elongated field shapes in the rectangular tessellation. Indeed, in simulations
that only took into account one source and one recipient field, large com-
pact recipient fields such as those simulated by the Voronoi tessellation have
been shown to be the least susceptible to incoming gene flow [14, 24]. This
property is likely due to a larger average distance of points to field edges,
this distance being maximum within Voronoi polygons.

In general, impurity rates obtained with Voronoi tessellations were close
to those simulated on real landscapes. This is to some extent due to the
choice of real landscapes, two of them being covered by regular and mostly
large fields, but it is also likely to be a general result as small elongated
fields are less and less frequent in current landscapes due to mechanisation
and land consolidation. On the contrary, landscapes with regular compact
fields are more and more the case. As a first step, Voronoi tessellation
thus appears a good basis for simulating landscapes for empirical gene flow
models such as Mapod-maize.

5.3 Simulating land-use

In this paper, we only simulated three land-uses (conventional maize, GM
maize, others) that were allocated randomly within the landscapes. Charac-
teristics of the fields, such as the area or the neighbourood, were not taken
into account. Furthermore, we only needed a 1-year crop simulation, since
maize pollen or seeds do not persist under European climatic conditions.

To investigate the effect of landscape structure and land-use on other
crops such as rapeseed [12], temporal (succession of land-uses) and spatial
(surface or neighbouring crops) constraints should be taken into account.
This is possible thanks to the underway coupling of GenExP-LandSiTes

with the data-mining software CarrotAge [29].

6 Conclusion

When studying agro-ecological or physical processes such as gene flow, ero-
sion, and spore dispersal, in an agricultural landscape, a large number of
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fields and their spatial organisation must be considered, and therefore, ex-
perimentation under field conditions is complicated and expensive, if not
impossible. Computer simulations are less costly and dramatically increase
the number of configurations that can be investigated. Furthermore, there
is still little landscape data available, and the extrapolation of the results
obtained in a few specific contexts is not easy. Thus, it is necessary to sim-
ulate neutral agricultural landscapes in order to explore the variability of
landscape characteristics from which more general conclusions can be drawn.
In this paper, we tested two tessellation methods with respect to gene flow.
Granted, neither of the methods fully captured field shapes of real land-
scapes and therefore they only partly reached the given objectives. Indeed,
the two methods either over-estimated (for the rectangular tessellation) or
under-estimated (slightly) gene flow (for the Voronoi tessellation). However,
the results have provided promising leads for further developments. We shall
have to experiment other process models and improve tessellation methods
for a better control of their behaviour with respect to the characteristics
of actual landscapes. Possible research directions should include the use of
post-processes (i.e., deletion of small cells, fusion of vertices), the control of
cell orientations (rectangular tessellation), or the implementation of other
tessellation techniques (e.g., line-based tessellations).
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