Universal Gaussian fluctuations of non-Hermitian matrix ensembles

Abstract : We prove multi-dimensional central limit theorems for the spectral moments (of arbitrary degrees) associated with random matrices with real-valued i.i.d. entries, satisfying some appropriate moment conditions. Our techniques rely on a universality principle for the Gaussian Wiener chaos, recently proved by the authors together with Gesine Reinert, as well as on some combinatorial estimates. Unlike other related results in the probabilistic literature, we do not require that the law of the entries has a density with respect to the Lebesgue measure. In particular, our results apply to the ensemble of Bernoulli random matrices.
Type de document :
Pré-publication, Document de travail
33 pages. New Introduction. New upper bounds computed. 2009
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00408877
Contributeur : Ivan Nourdin <>
Soumis le : mercredi 30 septembre 2009 - 12:46:57
Dernière modification le : jeudi 27 avril 2017 - 09:45:53
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 18:20:33

Fichiers

NonHclt.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00408877, version 3
  • ARXIV : 0908.0391

Collections

Citation

Ivan Nourdin, Giovanni Peccati. Universal Gaussian fluctuations of non-Hermitian matrix ensembles. 33 pages. New Introduction. New upper bounds computed. 2009. 〈hal-00408877v3〉

Partager

Métriques

Consultations de
la notice

179

Téléchargements du document

62