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Abstract Video coding technology in the last 20 years
has evolved producing a variety of different and com-
plex algorithms and coding standards. So far the spec-
ification of such standards, and of the algorithms that
build them, has been done case by case providing mono-
lithic textual and reference software specifications in
different forms and programming languages. However,
very little attention has been given to provide a specifi-
cation formalism that explicitly presents common com-
ponents between standards, and the incremental modi-
fications of such monolithic standards. The MPEG Re-
configurable Video Coding (RVC) framework is a new
ISO standard currently under its final stage of stan-
dardization, aiming at providing video codec specifica-
tions at the level of library components instead of mono-
lithic algorithms. The new concept is to be able to spec-
ify a decoder of an existing standard or a completely
new configuration that may better satisfy application-
specific constraints by selecting standard components
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from a library of standard coding algorithms. The pos-
sibility of dynamic configuration and reconfiguration
of codecs also requires new methodologies and new
tools for describing the new bitstream syntaxes and
the parsers of such new codecs. The RVC framework
is based on the usage of a new actor/dataflow ori-
ented language called Cal for the specification of the
standard library and instantiation of the RVC decoder
model. This language has been specifically designed
for modeling complex signal processing systems. Cal

dataflow models expose the intrinsic concurrency of the
algorithms by employing the notions of actor program-
ming and dataflow. The paper gives an overview of the
concepts and technologies building the standard RVC
framework and the non standard tools supporting the
RVC model from the instantiation and simulation of the
Cal model to software and/or hardware code synthesis.

Keywords Reconfigurable Video Coding · Cal actor
language · dataflow programming · code synthesis

1 Introduction

A large number of successful MPEG (Motion Picture
Expert Group) video coding standards have been de-
veloped since the first MPEG-1 standard in 1988. The
standardization efforts in the field, beside having as first
objective to guarantee the interoperability of compres-
sion systems, has also aimed at providing appropriate
forms of specifications for wide and easy deployment.
While at the beginning MPEG-1 and MPEG-2 were
only specified by textual descriptions, with the increas-
ing complexity of algorithms, starting with the MPEG-
4 set of standards, C or C++ specifications, called also
reference software, have became the formal specification
of the standards. However, such descriptions composed
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of non-optimized non-modular software packages have
started to show many limits. If we consider that they are
in practice the starting point of any implementation,
system designers have to rewrite these software pack-
ages not only to try optimize performances, but also
to transform these descriptions into appropriate forms
adapted to the current system design methodologies.
Such monolithic specifications hide the inherent paral-
lelism and the dataflow structure of the video coding al-
gorithms, features that are necessary to be exploited for
efficient implementations. In the meanwhile the evolu-
tion of video coding technologies, leads to solutions that
are increasingly complex to be designed and present
significant overlap between successive versions of the
standards. Consequently, adding new coding tools to a
standard involves a new specification for which all its
components are modified whereas only a few tools and
interfaces are changed. Another problem raised by the
wide variety of video coding tools is the selection of
the subsets of coding tools used by a specific applica-
tion. These (sub-)sets are also known as “profiles” in
MPEG. The “a priori” specification of a small number
of such profiles has become very problematic. Such “av-
erage” subsets prevent the possibility of optimally sat-
isfy a variety of specific applications, whereas the spec-
ification of too many profiles would result in an obsta-
cle for guaranteeing interoperability. The observation of
these drawbacks of current video standard specification
formalism led to the development of the Reconfigurable
Video Coding (RVC) standard. The key concept behind
the project is to be able to design a decoder at a higher
level of abstraction than the one provided by current
generic monolithic C based specifications. Instead of
low level C/C++ code, an “abstract” model based on
modular components taken from the standard library,
is the reference specification. Functionality of the cod-
ing tools and their potential concurrency are explicitly
exposed to implementers by the specification formalism
chosen. This solution is by far a better starting point
for any design and implementation methodology and
process. Conversely the old C/C++ source code specifi-
cation had to include by its nature of being a sequential
formalism a specific scheduling of operation without ex-
plicitly providing what scheduling are needed for the in-
trinsic algorithm data dependencies and which one are
arbitrary defined in the reference specification. Indeed
RVC provides a high-level description of the MPEG
standard using as new expressive and compact form of
reference SW, for each module of the standard library
and for each instantiation of a new decoder configura-
tion. A specific language called Cal [7] is the core of
the RVC dataflow model that expose the intrinsic con-
currency of the algorithms by employing the notions

of actor programming and dataflow. Concurrency and
parallelism are fundamental aspects of embedded sys-
tem design as we enter in the multicore era. Moreover,
the standard ISO/IEC MPEG RVC framework is also
supported by a non normative design framework com-
posed by a simulation platform and by synthesis tools,
Cal2C [27,31] and Cal2HDL [16,15], providing direct
conversions to C and HDL implementations.

The paper also provides an overview on such code
generator tools and on the principles on which they
are based. Results on a real design case of a MPEG-
4 Simple Profile decoder show that systems obtained
with the hardware code synthesis from a Cal model
outperform the hand written VHDL version both in
terms of performance, resource usage and design efforts.

2 Reconfigurable Video Coding: ISO-MPEG
standardization

MPEG has produced several video coding standards
such as MPEG-1, MPEG-2, MPEG-4 Video, AVC (Ad-
vanced Video Coding) and recently SVC (Scalable
Video Coding). However, the past monolithic specifica-
tion of such standards (usually in the form of C/C++
programs) lacks flexibility and does not allow to use the
combination of coding algorithms from different stan-
dards enabling to achieve specific design or performance
trade-offs and thus fill, case by case, the requirements
of specific applications. Indeed, not all coding tools de-
fined in a profile@level of a specific standard are re-
quired in all application scenarios. For a given applica-
tion, codecs are either not exploited at their full poten-
tial or require unnecessarily complex implementations.
However, a decoder conformant to a standard has to
support all of them and may results in non-efficient im-
plementations.

So as to overcome the limitations intrinsic of spec-
ifying codecs algorithms by using monolithic impera-
tive code, a profiled version of Cal language has been
selected by the ISO/IEC standardization organization
in the new MPEG standard called RVC which stays
for Reconfigurable Video Coding. RVC is composed of
two ISO/IEC standard specifications: [13] and [14]. The
data-driven programming paradigm of Cal dataflow
language that lends itself naturally to describing the
processing of media streams that pervade the world of
media coding, has been restricted and simplified from
its original formulation so as to provide description that
can be synthesized to software and hardware implemen-
tation by already existing tools. However, the original
expressivity of the language and the strong encapsula-
tion features offered by the actor programming model
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have been preserved and provide a solid foundation for
the compact and modular specification of media codecs.

MPEG RVC is a framework allowing users to de-
fine a multitude of different codecs, by combining to-
gether Functional Units (FUs) (i.e. actors in program-
ming language) modeling video coding tools, from the
MPEG standard library written in Cal, that contains
video technology from all existing MPEG standards
(i.e. MPEG-2, MPEG-4, MPEG-4 AVC , etc. . . ). The
reader can also refer to [19] for more information and
details about RVC. RVC-Cal is used to provide the ref-
erence software for all coding tools (FUs) of the entire
library. The essential elements of the RVC framework
(Fig. 1) include:

– the standard Video Tool Library (VTL) [14] which
contains the video coding tools. RVC-Cal is used
to describe the algorithmic behaviour of the FUs
that end to be video coding algorithmic components
self contained and communicating with the external
world only by means of input and output ports.

– a language called Functional unit Network Lan-
guage (FNL) [13], an XML dialect, used to specify
a decoder configuration made up of FUs taken from
the VTL and the connections between the FUs. Also
this language is specified and standardized in [13].

– a MPEG-21 Bitstream Syntax Description Lan-
guage (BSDL) [12] schema which describes the syn-
tax of the bitstream that a RVC decoder has to de-
code. In [26,20], tools and methodologies for the
validation of BSDL syntaxes are described in full
details as well as some examples of systematic pro-
cedures for the direct synthesis of parsers in the
Cal dataflow specification formalism. Such BSDL
to Cal translator is in its final stage of develop-
ment as part of the Open Dataflow effort [30,3] (see
sect. 6).

In summary the components and processes that
lead to the specification and implementation of a new
MPEG RVC decoder are based on the Cal dataflow
model of computation and are:

– a Decoder Description (DD) written in FNL describ-
ing the architecture of the decoder, in terms of FUs
and their connections.

– an Abstract Decoder Model (ADM), a behavioral
(Cal) model of the decoder composed of the syntax
parser specified by the BSDL schema, FUs from the
VTL and their connections.

– the final decoder implementation that is either gen-
erated by instantiating any proprietary implemen-
tation, conformant in terms of I/O behavior, of the
standard RVC FUs, or obtained directly from the
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Fig. 1 Illustration of the standard components of Reconfigurable

Video Coding framework.

ADM by generating SW and/or HW implementa-
tions by means of appropriate synthesis tools.

Thus, based on Cal dataflow formalism, designers
can build video coding algorithm with a set of self-
contained modular elements coming from the MPEG
RVC standard library (VTL). However, the new Cal

based specification formalism, not only provide the flex-
ibility required by the process itself of specifying a stan-
dard video codec, but also yields a specification of such
standard that is the appropriate starting point for the
implementation of the codec on the new generations
of multicore platforms. In fact the RVC ADM is noth-
ing else that a Cal dataflow specification that implic-
itly exposes all concurrency and parallelism intrinsic to
the model, features that classical generic specifications
based on imperative languages have not provided so far.

MPEG RVC toolbox includes about 150 Functional
units that can be configured to specify the MPEG-2
MP, MPEG-4 SP and ASP, AVCBP, AVCHP and SVC.
Some FU can already be used to generate new extended
profiles, for instance supporting 422 and 444 chromi-
nance patterns if not available in the original profile.
Conformance testing of the RVC toolbox for single FUs
and entire decoders are currently on going.

As illustrated in picture 1 the MPEG RVC standard
does not specify anything concerning the implementa-
tion methodology and technology of a RVC decoder.
The upper part of the picture illustrates the process
that, starting from a normative description of a decoder
composed by a bitstream syntax description (expressed
in RVC-BSDL in a XML schema), by a FU network
description (expressed in FNL) and by the knowledge
of the I/O behavior of the FU specified in the RVC
toolbox, provide a normative (executable) description
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of the RVC decoder. Indeed what is called an abstract
decoder description is a Cal dataflow program that
constitutes the conformance point between the norma-
tive RVC specification and all possible proprietary im-
plementations that be generated to decode the incom-
ing bitstreams. Thus the MPEG RVC standard leaves
open the platforms and the implementation method-
ologies that can be used to generate any RVC propri-
etary implementation. This provides all possibility of
generating parallel and concurrent implementations for
a wide variety of existing and emerging implementation
platforms. An important consequence of the fact that
no specific implementation technology is specified by
the MPEG RVC standard is that it is not limited to
applications that require direct download and on the
fly instantiation of proprietary implementations. Sev-
eral application scenarios and transport mechanism of
the RVC decoder description are under development
and will be included in appropriate amendment of the
MPEG Systems standard. Thus, indirect generations
of implementations, such as the one available via web
download and other form of deployment, will be possi-
ble together with the direct synthesis of SW and HW
from the ADM. All these possibilities enable, for each
application scenario, the users to select the most ap-
propriate implementation methodology.

More details on different implementation ap-
proaches, on the methodologies for generating parsers
from bitstream syntax descriptions are available on pa-
pers published in this special issue. Detailed examples
on new decoder configurations optimizing different im-
plementation objectives such as concurrency and paral-
lelism or overall complexity cannot be provided here for
space reasons and only concept and principles behind
all RVC formalism are discussed in the follow of the pa-
per as well some the concept and examples of the tools
synthesizing Cal to SW and HW implementations.

3 Why C etc. Fail

Having introduced the main motivations that lead
MPEG to introduce Cal dataflow based specifications
as well as the elements that compose the RVC frame-
work, this section will briefly extend the discussion
adding other reasons for which a paradigm shift in sys-
tem specification and modeling has been necessary and
could be advantageous not only for the field of video
compression. The control over low-level detail, which
is considered a merit of C, tends to over-specify pro-
grams: not only the algorithms themselves are speci-
fied, but also how inherently parallel computations are
sequenced, how inputs and outputs are passed between
the algorithms and, at a higher level, how computations

are mapped to threads, processors and application-
specific hardware. It is not always possible to recover
the original knowledge about the program by means of
analysis and the opportunities for restructuring trans-
formations are limited.

Code generation is constrained by the requirement
of preserving the semantic effect of the original pro-
gram. What constitutes the semantic effect of a pro-
gram depends on the source language, but loosely
speaking some observable properties of the program’s
execution are required to be invariant. Program analy-
sis is employed to identify the set of admissible trans-
formations; a code generator is required to be conser-
vative in the sense that it can only perform a partic-
ular transformation when the analysis results can be
used to prove that the effect of the program is pre-
served. Dependence analysis is one of the most challeng-
ing tasks of high-quality code generation (for instance
see [32]). It determines a set of constraints on the or-
der, in which the computations of a program may be
performed. Efficient utilization of modern processor ar-
chitectures heavily depends on dependence analysis, for
instance:

– to determine efficient mappings of a program onto
multiple processor cores (parallelization),

– to utilize so called SIMD or “multimedia” instruc-
tions that operate on multiple scalar values simul-
taneously (vectorization), and

– to utilize multiple functional units and avoid
pipeline stalls (instruction scheduling).

Determining (a conservative approximation of) the
dependence relation of a C program involves pointer
analysis. Since the general problem is undecideable, a
trade-off will always have to be made between the pre-
cision of the analysis and its resource requirements [10].

4 Why dataflow might actually work

Scalable parallelism. In parallel programming, the
number of things that are happening at the same time
can scale in two ways: It can increase with the size of the
problem or with the size of the program. Scaling a regu-
lar algorithm over larger amounts of data is a relatively
well-understood problem, while building programs such
that their parts execute concurrently without much in-
terference is one of the key problems in scaling the von
Neumann model. The explicit concurrency of the ac-
tor model provides a straightforward parallel composi-
tion mechanism that tends to lead to more parallelism
as applications grow in size, and scheduling techniques
permit scaling concurrent descriptions onto platforms
with varying degrees of parallelism.
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Modularity, reuse. The ability to create new ab-
stractions by building reusable entities is a key element
in every programming language. For instance, object-
oriented programming has made huge contributions to
the construction of von Neumann programs, and the
strong encapsulation of actors along with their hierar-
chical composability offers an analog for parallel pro-
grams.

Scheduling. In contrast to procedural program-
ming languages, where control flow is made explicit, the
actor model emphasizes explicit specification of concur-
rency.

Portability. Rallying around the pivotal and uni-
fying von Neumann abstraction has resulted in a long
and very successful collaboration between processor ar-
chitects, compiler writers, and programmers. Yet, for
many highly concurrent programs, portability has re-
mained an elusive goal, often due to their sensitivity
to timing. The untimedness and asynchrony of stream-
based programming offers a solution to this problem.
The portability of stream-based programs is underlined
by the fact that programs of considerable complexity
and size can be compiled to competitive hardware [16,
15] as well as software [27], which suggests that stream-
based programming might even be a solution to the
old problem of flexibly co-synthesizing different mixes
of hardware/software implementations from a single
source.

Adaptivity. The success of a stream programming
model will in part depend on its ability to configure
dynamically and to virtualize, i.e. to map to collec-
tions of computing resources too small for the entire
program at once. The transactional execution of actors
generates points of quiescence, the moments between
transactions, when the actor is in a defined and known
state that can be safely transferred across computing
resources.

5 The Cal Actor Language

Cal [7] is a domain-specific language that provides use-
ful abstractions for dataflow programming with actors.
Cal has been used in a wide variety of applications and
has been compiled to hardware and software implemen-
tations, and work on mixed HW/SW implementations
is under way. The next section provides a brief intro-
duction to some key elements of the language.

5.1 Basic Constructs

The basic structure of a Cal actor is shown in the
Add actor (Fig. 2), which has two input ports A and

B, and one output port Out, all of type T. The actor
contains one action that consumes one token on each
input ports, and produces one token on the output port.
An action may fire if the availability of tokens on the
input ports matches the port patterns, which in this ex-
ample corresponds to one token on both ports A and
B.

actor Add( ) T A, T B ⇒ T Out :
action [ a ] , [ b ] ⇒ [ sum ]

do

sum := a + b ;
end

end

Fig. 2 Basic structure of a Cal actor.

An actor may have any number of actions. The un-
typed Select actor (Fig. 3) reads and forwards a token
from either port A or B, depending on the evaluation
of guard conditions. Note that each of the actions has
empty bodies.

actor S e l e c t ( ) S , A, B ⇒ Output :

action S : [ s e l ] , A: [ v ] ⇒ [ v ]

guard s e l end

action S : [ s e l ] , B: [ v ] ⇒ [ v ]

guard not s e l end
end

Fig. 3 Guard structure in a Cal actor.

5.2 Priorities and State Machines

An action may be labeled and it is possible to constrain
the legal firing sequence by expressions over labels. In
the PingPongMerge actor, reported in the Figure 4, a
finite state machine schedule is used to force the action
sequence to alternate between the two actions A and B.
The schedule statement introduces two states s1 and
s2.

The Route actor, in the Figure 5, forwards the token
on the input port A to one of the three output ports.
Upon instantiation it takes two parameters, the func-
tions P and Q, which are used as predicates in the guard
conditions. The selection of which action to fire is in this
example not only determined by the availability of to-
kens and the guards conditions, by also depends on the
priority statement.
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actor PingPongMerge ( ) Input1 , Input2 ⇒
Output :

A: action Input1 : [ x ] ⇒ [ x ] end

B: action Input2 : [ x ] ⇒ [ x ] end

schedule fsm s1 :

s1 (A) −−> s2 ;

s2 (B) −−> s1 ;
end

end

Fig. 4 FSM structure in a Cal actor.

actor Route (P, Q) A ⇒ X, Y, Z :

toX : action [ v ] ⇒ X: [ v ]
guard P( v ) end

toY : action [ v ] ⇒ Y: [ v ]
guard Q( v ) end

toZ : action [ v ] ⇒ Z : [ v ] end

priority

toX > toY > toZ ;
end

end

Fig. 5 Priority structure in a Cal actor.

5.3 Cal subset language for RVC

For an in-depth description of the language, the reader
is referred to the language report [7], for the specific
subset specified and standardized by ISO in the Annex
C of [13]. This subset only deals with fully typed actors
and some restrictions on the Cal language constructs
from [7] to have efficient hardware and software code
generations without changing the expressivity of the
algorithm. For instance, Figures 3, 4 and 5 are not RVC-
Cal compliant and must be changed as the Figures 6,
7 and 8 where T1, T2, T are the types and only typed
paramters can be passed to the actors not functions as
P, Q.

actor S e l e c t ( ) T1 S , T2 A, T3 B ⇒ T3 Output :

action S : [ s e l ] , A: [ v ] ⇒ [ v ]
guard s e l end

action S : [ s e l ] , B: [ v ] ⇒ [ v ]
guard not s e l end

end

Fig. 6 Guard structure in a RVC-Cal actor.

A large selection of example actors is available at the
OpenDF repository [30], among them can also be found

actor PingPongMerge ( ) T Input1 , T Input2 ⇒
T Output :

A: action Input1 : [ x ] ⇒ [ x ] end

B: action Input2 : [ x ] ⇒ [ x ] end

schedule fsm s1 :

s1 (A) −−> s2 ;

s2 (B) −−> s1 ;
end

end

Fig. 7 FSM structure in a RVC-Cal actor.

actor Route ( ) T A ⇒ T X, T Y, T Z :
funt i on P(T v in)−−> T:
\\ body o f the function P

P( v in )
end

f un t i on Q(T v in)−−> T:

\\ body o f the function P
Q( v in )

end

toX : action [ v ] ⇒ X: [ v ]
guard P( v ) end

toY : action [ v ] ⇒ Y: [ v ]
guard Q( v ) end

toZ : action [ v ] ⇒ Z : [ v ] end

priority
toX > toY > toZ ;

end

end

Fig. 8 Priority structure in a RVC-Cal actor.

the MPEG-4 decoder discussed below. Many other ac-
tors written in RVC-Cal will be soon be available as
standard MPEG RVC tool repository once the confor-
mance testing process will be completed.

5.4 Networks

A set of Cal actors are instantiated and connected to
form a Cal application, i.e. a Cal network. Figure 9
shows a simple Cal network Sum, which consists of the
previously defined RVC-Cal Add actor and the delay
actor shown in Figure 10.

The source/language that defined the network Sum
is found in Figure 11. Please, note that the network
itself has input and output ports and that the instan-
tiated entities may be either actors or other networks,
which allows for a hierarchical design.

Formerly, networks have been traditionally de-
scribed in a textual language, which can be automati-
cally converted to FNL and vice versa - the XML dialect



7

Z(v=0)
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Out Out

Out
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Fig. 9 A simple Cal network.

actor Z ( v ) T In ⇒ T Out :

A: action ⇒ [ v ] end
B: action [ x ] ⇒ [ x ] end

schedule fsm s0 :
s0 (A) −−> s1 ;
s1 (B) −−> s1 ;

end
end

Fig. 10 RVC-Cal Delay actor.

network Sum ( ) In ⇒ Out :

entit ies
add = Add ( ) ;

z = Z( v=0);

structure

In −−> add .A;
z . Out −−> add .B;
add . Out −−> z . In ;
add . Out −− > Out ;

end

Fig. 11 Textual representation of the Sum network.

standardized by ISO in Annex B of [13]. The XML rep-
resentation of the Sum network is found in Figure 12. A
graphical editing framework called Graphiti editor [8]
is available to create, edit, save and display a network.
The XML and textual format for the network descrip-
tion are supported by such editor.

6 Tools

6.1 Cal Simulators and Code generators

Cal is supported by a portable interpreter infrastruc-
ture that can simulate a hierarchical network of actors.
This interpreter was first used in the Moses [21] project.
Moses features a graphical network editor, and allows
the user to monitor actors execution (actor state and
token values). The project being no longer maintained,
it has been superseded by an Eclipse environment com-
posed of 2 tools/plugins—the Open Dataflow environ-

<?xml version=” 1.0 ” encoding=”UTF−8”?>
<XDF name=”Sum”>

<Port kind=” Input ” name=” In”/>
<Port kind=”Output” name=”Out”/>
<Ins tance id=”add”/>
<Ins tance id=”z”>

<Class name=”Z”/>
<Parameter name=”v”>

<Expr kind=” L i t e r a l ”
l i t e r a l −kind=” In t eg e r ” value=”0”/>

</Parameter>
</ Ins tance>
<Connection dst=”add” dst−port=”A”

s r c=”” src−port=” In”/>
<Connection dst=”add” dst−port=”B”

s r c=”z” src−port=”Out”/>
<Connection dst=”z” dst−port=” In”

s r c=”add” src−port=”Out”/>
<Connection dst=”” dst−port=”Out”

s r c=”add” src−port=”Out”/>
</XDF>

Fig. 12 XML representation of the Sum network.

ment for Cal editing (OpenDF [30] for short) and the
Graphiti editor for graphically editing the network.

OpenDF is also a compilation framework. To-
day there exists a backend for generation of HDL
(VHDL/Verilog) [16,15], and another backend that
generates C for integration with the SystemC tool
chain [27,31]. A third backend targeting ARM11 and
embedded C is under development [23] as part of the
EU project ACTORS [1]. It is also possible to simulate
Cal models in the Ptolemy II [25] environment.

6.2 Analysis Support

A major benefit of formulating RVC specifications in
terms of a formal dataflow modeling language (CAL) is
the potential for rigorous analysis and optimization of
specifications. This is of increasing importance as more
features are embedded and more demands are imposed
in terms of real-time performance.

To this end, CAL-based tools for RVC have been
integrated with the dataflow interchange format (DIF),
which is a textual language for specifying mixed-grain
dataflow representations of signal processing applica-
tions, and TDP [29] (the DIF package), which is a soft-
ware tool for analyzing DIF specifications. A major em-
phasis in DIF and TDP is support for working with and
integrating different kinds of specialized dataflow mod-
els of computation and their associated analysis tech-
niques. Such functionality is useful, for example, as a
follow-on step to the automated detection of specialized
dataflow regions in Cal networks. Once such regions
are detected, they can be annotated with corresponding
DIF keywords — e.g., CSDF (cyclo-static dataflow) and
SDF (synchronous dataflow) — and then scheduled and
integrated with appropriate TDP-based analysis meth-
ods. Such a linkage between Cal and TDP is under



8

Abstract
Decoder
Model

CAL FNL BSDL

Simulator

Ptolemy
II MosesOp enDF

Scheduling
Analysis

SDF,
CSDF,
BDF,
DDF

SW code
generator

HW code
generator

ARMC VHDL
Verilog

RVC Abstract Decoder Model

Non-normative tools and simulators for RVC

Fig. 13 OpenDF: tools

active development as a joint effort between the Cal

and DIF projects.
A particular area of emphasis in TDP is support

for developing efficient coarse-grain dataflow schedul-
ing techniques. For example, the generalized schedule
tree representation in TDP provides an efficient format
for storing, manipulating, and viewing schedules [17],
and the functional DIF dataflow model provides for
flexible prototyping of static, dynamic, and quasi-static
scheduling techniques [24]. Libraries of static schedul-
ing techniques and buffer management models for SDF
graphs, as well as an SDF-to-C translator are also
available in TDP [11]. The set of dataflow models
that are currently recognized and supported explic-
itly in the DIF language and TDP include Boolean
dataflow [6], enable-invoke dataflow [24], CSDF [4], ho-
mogeneous synchronous dataflow [18,28], multidimen-
sional synchronous dataflow [22], parameterized syn-
chronous dataflow [2], and SDF [18]. These alterna-
tive dataflow models have useful trade-offs in terms
of expressive power, and support for efficient static or
quasi-static scheduling, as well as efficient buffer man-
agement. The set of models that is supported in TDP,
as well as the library of associated analysis techniques
are expanding with successive versions of the TDP soft-
ware.

The initial focus in integrating TDP with Cal is to
automatically-detect regions [9] of Cal networks that
conform to SDF semantics, and can leverage the sig-
nificant body of SDF-oriented analysis techniques in
TDP. In the longer term, we plan to target a range

of different dataflow models in our automated “region
detection” phase of the design flow. This appears sig-
nificantly more challenging as most other models are
more complex in structure compared to SDF; however,
it can greatly increase the flexibility with which dif-
ferent kinds of specialized, streaming-oriented dataflow
analysis techniques can be leveraged when synthesizing
hardware and software from Cal networks.

7 An example of implementation of a MPEG-4
SP decoder by direct synthesis of a MPEG
RVC description

One interesting and very attracting implementation
methodology of MPEG RVC decoder descriptions is the
direct synthesis of the standard specification. It pro-
vides a source of relevant application of realistic sizes
and complexity and also enables meaningful experi-
ments and advances in dataflow programming. More
details on the software and hardware code generators
can be found in [15,31]. Some of the authors have
performed an implementation study [16,15], in which
the RVC MPEG-4 Simple Profile decoder specified in
Cal according to the MPEG RVC formalism has been
implemented on an FPGA using a Cal-to-RTL code
generator called Cal2HDL. The MPEG-4 Simple Pro-
file abstract decoder model that essentially results to
be a dataflow program (Figure 14, Table 3), is com-
posed of 27 atomic FUs (or actors in dataflow pro-
gramming) and 9 sub-networks (actor/network compo-
sition); atomic actors can be instantiated several times,
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Fig. 14 MPEG-4 Simple Profile RVC specification network.

for instance there are 42 actor instantiations in this
dataflow program. Figure 15 shows a top-level view of
the decoder. The main functional blocks include the
bitstream parser, the reconstruction block, the 2D in-
verse cosine transform, the frame buffer and the mo-
tion compensation module. These functional units are
themselves hierarchical compositions of actor networks.
The objective of the design was to support 30 frames
of 1080p in the YUV420 format per second, which
amounts to a production of 93.3 Mbyte of video out-
put per second. The given target clock rate of 120 MHz
implies 1.29 cycles of processing per output sample on
average.

The results of the implementation study were en-
couraging in that the code generated from the MPEG
RVC Cal specification did not only outperformed the
handwritten reference in VHDL, both in terms of
throughput and silicon area, but also allowed for a sig-
nificantly reduced development effort. Table 1 shows
the comparison between Cal specification and the
VHDL reference.

It should be emphasized that this counter-intuitive
result cannot be attributed to the sophistication of the
synthesis tool. On the contrary the tool does not per-
form a number of potential optimizations, such as for in-
stance optimizations involving more than one actor. In-
stead, the good results appear to be yield by the imple-
mentation and development process itself. The imple-
mentation approach was based generating a proprietary
implementation of the standard MPEG RVC toolbox
composed of FUs of lower level of granularity. Thus the
implementation methodology was to substitute the FU
of the standard abstract decoder model of the MPEG-
4 SP with an equivalent implementation, in terms of
behavior. Essentially standard toolbox FU were substi-
tuted with networks of FU described as actors of lower

granularity. A notable difference of such implementa-
tion approach when compared with the classical hand
writing of HDL code from a textual or sequential spec-
ification (i.e. a C/C++ program for instance) was that
the Cal specification of the proprietary implementa-
tion toolbox (that can be directly derived from the stan-
dard RVC toolbox) could go through significantly more
design iterations than the one applicable from a hand-
written VHDL reference —in spite of being developed
in approximately a quarter of the development time
(including the time of developing the standard MPEG
RVC toolbox from scratch). Whereas a dominant part
of the development of a classical VHDL reference de-
velopment need to be spent getting the system to work
correctly, the effort of the Cal specification could be
focused on optimizing system performance to meet the
design constraints.

Bitstream serialize parser acdc

idct2d

motionddr
Video

Fig. 15 Top-level dataflow graph of the proprietary implemen-
tation of the RVC MPEG-4 decoder.

The initial design cycle of the proprietary RVC li-
brary resulted in an implementation that was not only
inferior to the VHDL reference, but one that also failed
to meet the throughput and area constraints. Subse-
quent iterations explored several other points in the
design space until arriving at a solution that satisfied
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the constraints. At least for the considered implemen-
tation study, the benefit of short design cycles seem to
outweigh the inefficiencies that resulted from high-level
synthesis and the reduced control over implementation
details.

Size Speed Code size Dev. time
slices, BRAM kMB/s kSLOC MM

Cal 3872, 22 290 4 3
VHDL 4637, 26 180 15 12

Improv. 1.2 1.6 3.75 4
factor

kMB/s=kilo macroblocks per second
kSLOC=kilo source lines of code

Table 1 Hardware synthesis results for a proprietary implemen-

tation of a MPEG-4 Simple Profile decoder. The numbers are

compared with a reference hand written design in VHDL.

In particular, the asynchrony of the programming
model and its realization in hardware allowed for con-
venient experiments with design ideas. Local changes,
involving only one or a few actors, do not break the rest
of the system in spite of a significantly modified tem-
poral behavior. In contrast, any design methodology
that relies on precise specification of timing —such as
RTL, where designers specify behavior cycle-by-cycle—
would have resulted in changes that propagate through
the design.

Table 1 shows the quality of result produced by the
RTL synthesis engine of the MPEG-4 Simple Profile
video decoder. Note that the code generated from the
high-level dataflow RVC description and proprietary
implementation of the MPEG toolbox actually outper-
forms the hand-written VHDL design in terms of both
throughput and silicon area for a FPGA implementa-
tion.

Another synthesis tool called Cal2C [27,31] val-
idates another implementation methodology of the
MPEG-4 Simple Profile dataflow program provided by
the RVC standard (Figure 14). Table 2 shows that
synthesized C-software is faster than the simulated
Cal dataflow program (20 frames/s instead of 0.15
frames/s), and close to real-time decoding for a QCIF
format (25 frames/s). However it remains slower than
the automatically synthesized hardware description by
Cal2HDL [16,15].

MPEG4 SP Speed Clock speed Code size
decoder kMB/s GHz kSLOC

Cal simulator 0.015 2 3.4
Cal2C 2 2 10.4

Cal2HDL 290 0.12 4

Table 2 MPEG4SP decoder speed and SLOC.

As described above, the MPEG-4 Simple Profile
dataflow program is composed of 42 actor instantia-
tions in the flattened dataflow program. The flattened
network becomes a C++ file that currently contains
a systemC scheduler (sequential fashion scheduler) for
both actor scheduling and token consumptions/produc-
tions. Each actor becomes a C file containing all its
action/processing with its overall action scheduling/-
control. Its number of SLOC is shown in Table 3. All of
the generated files are successfully compiled by gcc. For
instance, the “ParserHeader” actor inside the “Parser”
network is the most complex actor with multiple ac-
tions. The translated C-file (with actions and state vari-
ables) includes 1043 SLOC for actions and 1895 for ac-
tion scheduling. The original Cal file contains 962 lines
of codes as a comparison.

MPEG-4 decoder CAL NL C C++
Number of files 27 9 42 1

Code Size (kSLOC) 2.9 0.5 9.5 0.9

Table 3 Code size and number of files automatically generated
for MPEG-4 Simple Profile decoder.

8 Conclusion

This paper describes the essential components of the
ISO/IEC MPEG Reconfigurable Video Coding frame-
work based on the dataflow concept and having as core
the new specification formalism called RVC-Cal a sub-
set of Cal dataflow language. The RVC MPEG tool
library, that covers in modular form all video algo-
rithms from the different MPEG video coding stan-
dards, shows that Cal is an appropriate language for
supporting design flows aiming at building complex het-
erogeneous systems from high level system specifica-
tions. The MPEG RVC framework is also supported
by a simulator, software and hardware code synthesis,
and the DIF/TDP analysis tools. Cal dataflow models
used by the MPEG RVC standard result also particu-
larly efficient for specifying signal processing systems in
a very synthetic form compared to classical imperative
languages. Moreover, Cal model libraries can be devel-
oped in the form of libraries of proprietary implementa-
tions of standard RVC components to describe architec-
tural features of the desired implementation platform,
thus enabling the RVC implementer/designer to work
at level of abstraction comparable to the one of the RVC
video coding algorithms. Hardware and software code
generators then provide the low level implementation
of the actors and associated network of actors for the
different target implementation platforms (multi-core
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processors or FPGA). Several works and extension of
the tools and implementation methodologies support-
ing the MPEG RVC framework are currently in de-
velopment. They include the evolution of the software
and hardware code generators in terms the extensions
specified by the standard RVC-Cal language, the de-
velopment of scheduling tools such as the quasi-static
scheduling [5] or the DIF/TDP analysis tools [9] for
the scheduling/mapping on multicore platforms of SW
synthesized from the RVC abstract decoder model and
the evolution of the current Open DataFlow environ-
ment including tools for more accurate and extended
profiling and debugging capabilities.
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