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Asymptotic Properties of Nonlinear Least
Squares Estimates in Stochastic Regression

Models Over a Finite Design Space.
Application to Self-Tuning Optimisation ?
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∗ Laboratoire I3S, CNRS/Université de Nice-Sophia Antipolis,
Bât Euclide, Les Algorithmes, 2000 route des lucioles, BP 121,

06903 Sophia Antipolis cedex, France (e-mail: pronzato@i3s.unice.fr)

Abstract: We present new conditions for the strong consistency and asymptotic normality of
the least squares estimator in nonlinear stochastic models when the design variables vary in a
finite set. The application to self-tuning optimisation is considered, with a simple adaptive
strategy that guarantees simultaneously the convergence to the optimum and the strong
consistency of the estimates of the model parameters. An illustrative example is presented.

Keywords: Optimal design of experiments; self-tuning optimisation; extremum seeking;
penalized optimal design; sequential design; consistency; asymptotic normality.

1. INTRODUCTION

Consider a stochastic regression model with observations

Yk = η(xk, θ̄) + εk , k = 1, 2 . . . (1)

where {εk} is a sequence of i.i.d. random variables with
IE(ε1) = 0 and IE(ε2

1) = σ2 < ∞, {xk} is a sequence
of design points in X ⊂ Rd and η(x, θ) is a known
function of x and parameter vector θ ∈ Θ, a compact
subset of Rp, with θ̄, the true unknown value of θ, such
that θ̄ ∈ int(Θ). We denote Fk the σ-field generated
by {Y1, . . . , Yk} and assume that xk is Fk−1 measurable.
This setup includes for instance the case of NARX models
(nonlinear autoregressive models with exogeneous inputs)
where Yk = η(Yk−1, . . . , Yk−a, uk−q, . . . , uk−q−b, θ̄) + εk

where a, b ∈ N, q is the delay and ui is the input at stage i.

The unknown θ̄ will be estimated by Least Squares (LS)
and we denote

Sn(θ) =
n∑

k=1

[Yk − η(xk, θ)]2

and θ̂n
LS = argminθ∈Θ Sn(θ). We shall suppose that η(x, θ)

is continuously differentiable with respect to θ ∈ int(Θ) for
all x ∈ X and denote fθ(x) = ∂η(x, θ)/∂θ and

M(ξ, θ) =
∫

X

fθ(x)f>θ (x) ξ(dx) ,

the information matrix for parameters θ and design mea-
sure ξ (a probability measure on X ). When ξ is the em-
pirical measure ξk for x1, . . . ,xk we get the information
matrix (normalized, per observation)
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M(ξk, θ) =
1
k

k∑

i=1

fθ(xi)f>θ (xi) .

In the case of a linear regression model where
η(x, θ) = f>(x)θ , ∀x ∈ X , θ ∈ Θ , (2)

(so that M(ξ, θ) does not depend on θ), Lai and Wei [1982]
show that the conditions

λmin[nM(ξn)] a.s.→ ∞ , n →∞ (3)

{log λmax[nM(ξn)]}ρ/λmin[nM(ξn)] a.s.→ 0 , n →∞ (4)
for some ρ > 1 are sufficient for the strong consistency
of the LS estimator θ̂n

LS when {εk} in (1) is a martingale
difference sequence and supn IE(ε2

n|Fn−1) < ∞ a.s. The
case of nonlinear stochastic regression models is considered
in [Lai, 1994], where sufficient conditions for strong consis-
tency are given, which reduce to (3) and the Christopeit
and Helmes [1980] condition,
λmax[nM(ξn)] = O{λρ

min[nM(ξn)]} for some ρ ∈ (1, 2),(5)

in the case of a linear model.

This paper gives new sufficient conditions for the strong
consistency of θ̂n

LS in nonlinear stochastic models. These
conditions, obtained under the assumption that {xk} lives
in a finite set, are much weaker than (3-4). The paper also
gives conditions under which

√
nM1/2(ξn, θ̂n

LS)(θ̂n
LS − θ̄)

converges in distribution to a normal random variable
N (0, σ2I), with 0 and I respectively the p-dimensional null
vector and identity matrix. This means that M(ξn, θ̂n

LS)
can be used to characterize the asymptotic precision of
the estimation of θ although the sequence of design points
is stochastic. Conditions for strong consistency with a
finite design space are given in Section 2 and conditions
for asymptotic normality in Section 3. The application of



these results to self-tuning optimisation is considered in
Section 4, where a comparison is made with the results in
[Pronzato, 2000, Pronzato and Thierry, 2003]. A simple
illustrative example is presented.

2. STRONG CONSISTENCY OF LS ESTIMATES
WITH A FINITE DESIGN SPACE

Define

Dn(θ, θ̄) =
n∑

k=1

[η(xk, θ)− η(xk, θ̄)]2 . (6)

Next theorem shows that the strong consistency of the LS
estimator is a consequence of Dn(θ, θ̄) tending to infinity
fast enough for θ 6= θ̄. The fact that the design space X
is finite makes the required rate of increase for Dn(θ, θ̄)
quite slow.
Theorem 1. Let {xi} be a design sequence on a finite set
X . If Dn(θ, θ̄) given by (6) satisfies

for all δ > 0 ,

[
inf

‖θ−θ̄‖≥δ
Dn(θ, θ̄)

]
/(log log n) a.s.→ ∞ , (7)

then θ̂n
LS

a.s.→ θ̄ as n →∞. If Dn(θ, θ̄) simply satisfies

for all δ > 0 , inf
‖θ−θ̄‖≥δ

Dn(θ, θ̄)
p→∞ , (8)

then θ̂n
LS

p→ θ̄ as n →∞.

The proof is given in [Pronzato, 2009] and is based on the
following lemma from Wu [1981].
Lemma 2. If for any δ > 0

lim inf
n→∞

inf
‖θ−θ̄‖≥δ

[Sn(θ)− Sn(θ̄)] > 0 almost surely , (9)

then θ̂n
LS

a.s.→ θ̄ as n →∞. If for any δ > 0

Prob
{

inf
‖θ−θ̄‖≥δ

[Sn(θ)− Sn(θ̄)] > 0
}
→ 1 , n →∞ , (10)

then θ̂n
LS

p→ θ̄ as n →∞.

The condition [for all θ 6= θ̄ , Dn(θ, θ̄) → ∞ as n → ∞]
is sufficient for the strong consistency of θ̂n

LS when the
parameter set Θ is finite, see Wu [1981]. From Theorem
1, when X is finite this condition is also sufficient for the
weak consistency of θ̂n

LS without restriction on Θ. It is
proved in [Wu, 1981] to be necessary for the existence of
a weakly consistent estimator of θ̄ in a regression model
when the errors εi are independent with a distribution
having a density ϕ(·) positive almost everywhere and ab-
solutely continuous with respect to the Lebesgue measure
and with finite Fisher information for location. Notice
that a classical condition for strong consistency of LS
estimates in nonlinear regression with non-random design
is Dn(θ, θ̄) = O(n) for θ 6= θ̄, see e.g. Jennrich [1969],
which is much stronger than (7). Also note that (7) is much
less restrictive than the conditions (3-4) for stochastic
designs in linear models and than the Christopeit and
Helmes [1980] condition (5).

3. ASYMPTOTIC NORMALITY OF LS ESTIMATES
WITH A FINITE DESIGN SPACE

Under a fixed design, the information matrix can be con-
sidered as a large sample approximation for the variance-
covariance matrix of the estimator, thus allowing straight-
forward statistical inference from the trial. The situation
is more complicated for adaptive designs and has been
intensively discussed in the literature. The property below
gives a simple sufficient condition in the situation where
the xk’s in (1) belong to a finite set. We use the following
regularity assumption for the model.

Hf : For all x in X , the components of fθ(x) are con-
tinuously differentiable with respect to θ in some open
neighborhood of θ̄.
Theorem 3. Assume that θ̂n

LS is strongly consistent, that
Hf is satisfied, that the design points belong to a finite set
X and that exists a sequence {Cn} of p× p deterministic
matrices such that C−1

n M1/2(ξn, θ̄)
p→ I, with ln =

λmin(Cn) satisfying n1/4ln → ∞ and ‖θ̂n
LS − θ̄‖/l2n

p→ 0
as n →∞. Then, θ̂n

LS satisfies
√

nM1/2(ξn, θ̂n
LS)(θ̂n

LS − θ̄) d→ ω ∼ N (0, σ2I) (11)

as n →∞.

One may notice that, compared to Wu [1981], we do not
require that (n/τn)M(ξn, θ̄) tends to a positive definite
matrix for some τn → ∞ and, compared to Lai and Wei
[1982], Lai [1994], we do not require the existence of high-
order derivatives of η(x, θ) w.r.t. θ. On the other hand, we
need that λmin(Cn) decreases more slowly than n−1/4.

4. APPLICATION TO SELF-TUNING
OPTIMISATION

4.1 Problem statement

We consider a self-tuning optimisation problem where one
wishes to minimize some function φ(x, θ̄) with respect to
x, the unknown parameters θ̄ being estimated from the
observations in the model (1). One may have φ(·, ·) = η(·, ·)
but this is not mandatory. In particular, less regularity is
required for φ(x, ·) than for η(x, ·) and we shall only use
the following assumptions on φ.

Hφ-(i): φ(x, θ) is bounded for below and above for any
x ∈ X and θ ∈ Θ.

Hφ-(ii): For all x ∈ X , φ(x, θ) is a continuous function of
θ in the interior of Θ.

Hφ-(iii): φ(x, θ̄) has a unique global minimizer x∗ = x∗(θ̄):
∀β > 0, ∃ε > 0 such that φ(x, θ̄) < φ(x∗, θ̄) + ε implies
‖x− x∗‖ < β.

Note that compared to methods based on local gradient
approximations, see, e.g. [Manzie and Krstić, 2007], the
method is not restricted to a neighborhood of a local
minimum of φ(x, θ̄). On the other hand, we shall assume
that x belongs to a finite space and φ(x, θ) must have a
known parametric form.

When the problem is to estimate x∗, one can resort to
optimal design theory and choose the sequence {xk} in



order to optimize a criterion that measures the precision
of the estimation of θ in (1). For instance, one may use
a nominal value θ0 for θ, construct a D-optimal design
measure ξ∗D(θ0) on X maximizing log detM(ξ, θ0) and
choose xk’s such that their empirical measure approaches
ξ∗D(θ0). Alternatively, one may relate the design criterion
to the estimation of x∗(θ), see, e.g., [Chaloner, 1989,
Pronzato and Walter, 1993].

In self-tuning optimisation, the design points form a se-
quence of control variables for the objective of minimizing∑

i φ(xi, θ̄). The trivial optimum solution xi = x∗(θ̄) for
all i is not feasible since θ̄ is unknown, hence the dual
aspect of the control: minimize the objective, help esti-
mate θ. A naive approach (Forced-Certainty-Equivalence
control) consists in replacing the unknown θ̄ by its current
estimated value at stage k, that is, xk+1 = x∗(θ̂k

LS). How-
ever, this does not provide enough excitation to estimate
θ consistently, see Bozin and Zarrop [1991] for a detailed
analysis of the special case φ(x, θ) = η(x, θ) = θ1x + θ2x

2.

Here we shall consider the same approach as in [Pronzato,
2000, Pronzato and Thierry, 2003] and use

xn+1 = arg min
x∈X

{
φ(x, θ̂n

LS)

−αnf>
θ̂n

LS

(x)M−1(ξn, θ̂n
LS)fθ̂n

LS
(x)

}
, (12)

with αn > 0; that is, to the current objective φ(x, θ̂n
LS),

to be minimized with respect to x, we add a penalty for
poor estimation, −αnf>

θ̂n
LS

(x)M−1(ξn, θ̂n
LS)fθ̂n

LS
(x) (note

that xn+1 is Fn-measurable). Iterations of the similar
type can be used to generate an optimal design under a
cost-constraint, the cost of an observation at the design
point x for parameters θ being measured by φ(x, θ), see
[Pronzato, 2008]. See also Åström and Wittenmark [1989].
The results in Section 4.2 indicate that when X is finite
and the sequence of penalty coefficients αn decreases
slowly enough, the LS estimator θ̂n

LS is strongly consistent.

When θ̂n
LS is frozen to a fixed value θ and αn ≡ α constant,

the iteration (12) corresponds to one step of a steepest
descent vertex-direction algorithm for the minimisation of∫
X φ(x, θ) ξ(dx) − α log detM(ξ, θ), with step-length 1/n

at stage n. Convergence of the empirical measure ξn to
an optimal design measure is proved in [Pronzato, 2000]
using an argument developed in [Wu and Wynn, 1978]. It is
also shown in the same reference that

∫
X φ(x, θ) ξn(dx) →

minx∈X φ(x, θ) as n → ∞ when αn decreases to zero and
the sequence {nαn} increases to infinity. If, moreover, Hφ-
(iii) is satisfied then ξn

w→ δx∗(θ) (weak convergence of
probability measures), with δx the delta measure at x.
Those results do not require X to be finite.

The fact that the parameters are estimated in (12) makes
the proof of convergence a much more complicated issue.
In the case of the linear regression model (2) it is shown
in [Pronzato, 2000] that if {αn} is such that αn log n
decreases to zero and nαn/(log n)1+δ increases to infinity
for some δ > 0, then

∫
X φ(x, θ̄) ξn(dx) a.s.→ minx∈X φ(x, θ̄)

(and ξn
w→ δx∗(θ̄) a.s. if Hφ-(iii) is satisfied). Using Bayesian

imbedding, the same properties are shown to hold in
[Pronzato and Thierry, 2003] under the weaker conditions

αn → 0 and nαn → ∞ (however, the almost sure
convergence then concerns the product measure µ×Q with
µ the prior measure for θ and Q the probability measure
induced by {εk}). To the best of our knowledge, no similar
result exists for nonlinear regression models.

When φ(x, θ) = 0 for all x the iteration (12) becomes

xn+1 = arg max
x∈X

f>
θ̂n

LS

(x)M−1(ξn, θ̂n
LS)fθ̂n

LS
(x) , (13)

which corresponds to one step in the sequential construc-
tion of a D-optimal design. Even for this particular situ-
ation, and although this method is widely used, very few
asymptotic results are available: the developments in [Ford
and Silvey, 1980, Wu, 1985, Müller and Pötscher, 1992]
only concern a particular example; [Hu, 1998] is specific of
Bayesian estimation by posterior mean and does not use
a fully sequential design of the form (13); Lai [1994] and
Chaudhuri and Mykland [1995] require the introduction
of a subsequence of non-adaptive design points to ensure
consistency of the estimator and Chaudhuri and Mykland
[1993] require that the size of the initial experiment (non-
adaptive) grows with the increase in size of the total
experiment. Intuitively, the almost sure convergence of θ̂n

LS

to some θ̂∞ would be enough to imply the convergence of
ξn to a D-optimal design measure for θ̂∞ and, conversely,
convergence of ξn to a design ξ∞ such that M(ξ∞, θ) is
non-singular for any θ would be enough in general to
make the estimator consistent. It is thus the interplay
between estimation and design iterations (which implies
that each design point depends on previous observations)
that creates difficulties. As the results below will show,
those difficulties disappear when X is a finite set. Notice
that the assumption that X is finite is seldom limitative
since practical considerations often impose such a restric-
tion on possible choices for the design points; this can be
contrasted with the much less natural assumption that
would consist in considering the feasible parameter set as
finite, see, e.g., Caines [1975].

The results below rely on simple arguments based on three
ideas. First, we consider iterations of the form

xn+1 = arg min
x∈X

{
φ(x, θ̂n)

−αnf>
θ̂n(x)M−1(ξn, θ̂n)fθ̂n(x)

}
, (14)

where {θ̂n} is taken as any sequence of vectors in Θ.
The asymptotic design properties obtained within this
framework thus also apply when θ̂n corresponds to θ̂n

LS .
Second, when X is finite we obtain a lower bound on
the sampling rate of a subset of points of X associated
with a nonsingular information matrix. Third, we can show
that this bound guarantees the strong consistency of θ̂n

LS .
With a few additional technicalities, this yields almost sure
convergence results for the adaptive designs constructed
via (12).

4.2 Asymptotic properties of LS estimates and designs

We shall use the following assumptions on X .
HX -(i): X is finite, X = {x(1),x(2), . . . ,x(K)}.
HX -(ii): infθ∈Θ λmin

[∑K
i=1 fθ(x(i))f>θ (x(i))

]
> γ > 0.



HX -(iii): For all δ > 0 there exists ε(δ) > 0 such that for
any subset {i1, . . . , ip} of distinct elements of {1, . . . ,K},

inf
‖θ−θ̄‖≥δ

p∑

j=1

[η(x(ij), θ)− η(x(ij), θ̄)]2 > ε(δ) .

HX -(iv): For any subset {i1, . . . , ip} of distinct elements
of {1, . . . , K},

λmin




p∑

j=1

fθ̄(x
(ij))f >̄θ (x(ij))


 ≥ γ̄ > 0 .

The case of sequential D-optimal design, correspond-
ing to the iterations (13), is considered in [Pronzato,
2009]. When αn → α > 0 (n → ∞) in (12), the
results are similar to those in [Pronzato, 2009] and
θ̂n

LS
a.s.→ θ̄, M(ξn, θ̂n

LS) a.s.→ M(ξ∗, θ̄) with ξ∗ minimizing∫
X φ(x, θ̄) ξ(dx) − α log detM(ξ, θ̄). One can take Cn =

M1/2(ξ∗, θ̄) for all n in Theorem 3 and θ̂n
LS is asymptoti-

cally normal.

The situation is more complicated when the sequence {αn}
in (12,14) satisfies the following:

Hα-(i): {αn} is a non-increasing positive sequence tending
to zero as n →∞,

the situation considered in the rest of the paper. We then
obtain the following lower bound on the sampling rate of
nonsingular designs.

Lemma 4. Let {θ̂n} be an arbitrary sequence in Θ used to
generate design points according to (14) in a design space
satisfying HX -(i), HX -(ii), with an initialisation such that
M(ξn, θ) is non-singular for all θ in Θ and all n ≥ p. Let
rn,i = rn(x(i)) denote the number of times x(i) appears
in the sequence x1, . . . ,xn, i = 1, . . . ,K, and consider the
associated order statistics rn,1:K ≥ rn,2:K ≥ · · · ≥ rn,K:K .
Define

q∗ = max{j : ∃β > 0| lim inf
n→∞

rn,j:K/(nαn) > β} .

Then, Hφ-(i) and Hα-(i) imply q∗ ≥ p with probability
one.

For any sequence {θ̂n} used in (14), the conditions of
Lemma 4 ensure the existence of N1 and β > 0 such that
rn,j:K > βnαn for all n > N1 and all j = 1, . . . , p. Under
the additional assumption HX -(iii) we thus obtain that
Dn(θ, θ̄) given by (6) satisfies

1
log log n

inf
‖θ−θ̄‖≥δ

Dn(θ, θ̄) >
βnαnε(δ)
log log n

, n > N1 .

Therefore, if nαn/ log log n → ∞ as n → ∞, θ̂n
LS

a.s.→ θ̄

from Theorem 1. Since this holds for any sequence {θ̂n} in
Θ, it is true in particular when θ̂n

LS is substituted for θ̂n

in (14). It thus holds for (12).

Using the following assumption

Hα-(ii): the sequence {αn} is such that nαn is non-
decreasing with nαn/ log log n →∞ as n →∞;

in complement of Hα-(i), one can show that the adaptive
design algorithm (12) is such that {xn} tends to accumu-
late at the point of minimum cost for θ̄.

Theorem 5. Suppose that in the regression model (1)
the design points for n > p are generated sequentially
according to (12), where αn satisfies Hα-(i) and Hα-(ii).
Suppose, moreover, that the first p design points are
such that the information matrix is nonsingular for any
θ ∈ Θ. Then, under HX -(i-iv), Hφ-(i) and Hφ-(ii) we have
θ̂n

LS
a.s.→ θ̄ and∫

X

φ(x, θ̄) ξn(dx) a.s.→ min
x∈X

φ(x, θ̄) , n →∞ . (15)

If, moreover, Hφ-(iii) is satisfied, then

ξn
w→ δx∗(θ̄) almost surely , n →∞ . (16)

Remark 6. Notice that the condition on the rate of de-
crease of {αn} in Theorem 5 is weaker than in [Pronzato,
2000] although the model is nonlinear. Also note that using
a penalty for poor estimation of the form

−C
det

[
fθ̂n

LS
(x)f>

θ̂n
LS

(x) +
∑n

k=1 fθ̂n
LS

(xk)f>
θ̂n

LS

(xk)
]

det
[∑n

k=1 fθ̂n
LS

(xk)f>
θ̂n

LS

(xk)
] , C > 0,

as suggested in [Åström and Wittenmark, 1989] is equiv-
alent to taking αn = C/n in (12), which does not satisfy
Hα-(ii) and therefore does not guarantee the strong con-
sistency of the LS estimates.
Remark 7. The property (16) does not imply that the
xk’s generated by (12) converge to x∗(θ̄). However, the
following property is proved in [Pronzato, 2008]. Suppose
that X is obtained by the discretization of a compact set
X ′ and define x = argminx∈X ′ φ(x, θ̄) and, for any design
measure ξ on X ′, ∆θ̄(ξ) =

∫
X ′ φ(x, θ̄) ξ(dx) − φ(x, θ̄).

Suppose that there exist designs measures ξα on X ′ such
that ∆θ̄(ξα) ≥ pα and for all ε > 0

lim sup
α→0+

sup
x∈X ′, ‖x−x‖>ε

2∆θ̄(ξα) [f >̄
θ

(x)M−1(ξα, θ̄)fθ̄(x)]
φ(x, θ̄)− φ(x, θ̄)

< 1.

Then the supporting points of an optimal design measure
minimizing

∫
X ′ φ(x, θ̄) ξ(dx) − α log detM(ξ, θ̄) converge

to x as α → 0+, and, under the conditions of Theorem
5, the design sequence {xn} on X will concentrate around
x∗(θ̄) as n →∞.
Remark 8. Under the conditions of Theorem 5, there exist
N0 and β > 0 such that, for all n > N0, λmin[M(ξn, θ̄)] >
βγ̄αn, with γ̄ as in HX -(iv). The asymptotic normality of
θ̂n

LS is ensured if one can exhibit a sequence {Cn} satis-
fying the conditions of Theorem 3. For λmin(Cn) ∼ α

1/2
n

we then obtain that imposing the condition n1/3αn → ∞
on the decrease rate of αn would be enough. A possible
construction is based on the matrix M1/2(νn, θ̄) obtained
when θ̄ is substituted for θ̂n

LS in the iterations (12). How-
ever, it remains to be proved that M−1(νn, θ̄)M(ξn, θ̄)

p→
I, which is not obvious (notice that the sequence {θ̂n

LS}
becomes highly correlated as n increases).
Remark 9. When the function to be minimized is the
model response itself and, moreover, is linear with respect
to θ, one can construct analytical approximate solutions
for the self-tuning optimizer over a finite horizon N when
using a Bayesian approach. In particular, one of the
constructions proposed in [Pronzato and Thierry, 2003]
is shown to be within O(σ4) of the optimal solution of
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Fig. 1. A typical sequence {xn}, αn = (log n)−4

the self-tuning optimizer problem (the latter being not
computable, it corresponds to the solution of a stochastic
dynamic programming problem).

4.3 Example

We take η(x, θ) = θ1θ2θ3 + θ2 x + θ3(1 + θ2
1) x2 + θ2

1 x3,
φ(x, θ) = θ2 + θ1 x2 + θ2θ3 x4, with x ∈ [−1, 1] and
θ = (θ1, θ2, θ3)> ∈ R. One can easily check that the model
is structurally globally identifiable so that, if the sequence
{xk} is rich enough, the LS estimator is unique and θ
can be estimated consistently. For the true value θ̄ of the
parameters we take θ̄ = (0, 1, 1)> which gives fθ̄(x) =
(1, x, x2)> and φ(x, θ̄) = 1 + x4. The optimal design
ξ∗(α) on X ′ = [−1, 1] that minimizes

∫
X ′ φ(x, θ̄) ξ(dx) −

α log detM(ξ, θ̄) can be constructed analytically for any
α, see [Pronzato, 2008]. For α < 2/9, the support points
are −√3(α/2)1/4, 0,

√
3(α/2)1/4, with respective weights

1/6, 2/3, 1/6, showing that ξ∗(α) concentrates around 0 =
argminx∈X ′ φ(x, θ̄) as α tends to zero.

Figure 1 shows a typical sequence {xn} generated by (12)
for n ≥ 3 when σ = 1, x1 = −1, x2 = 0, x3 = 1, αn =
(log n)−4 and X consists of 201 points regularly spaced
in [−1, 1]. The design points tend to concentrate around
x∗(θ̄) = 0 as n increases. This is due to the fact that
φ(x, θ̄) is sufficiently flat around x∗(θ̄). The situation can
be much different for other functions φ, see for instance the
examples in [Pronzato, 2000, Pronzato and Thierry, 2003]
where (16) is satisfied but design points are continuously
generated far from x∗(θ̄) (although less and less often as
n increases).

Figure 2 presents the corresponding sequence {φ(xn, θ̄)},
showing that convergence to the minimum value 1 is fast
despite the model is nonlinear and the observations are
very noisy, see Figure 3 for a plot of the sequence {Yn}.
The evolution of the parameter estimates θ̂n

LS is presented
in Figure 4.

4.4 A concluding remark on the difficulties raised by
dynamical systems

Compared to [Choi et al., 2002] where a periodic dis-
turbance of magnitude α plays the role of a persistently
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exciting input signal and the output converges to a neigh-
borhood O(α2) of the optimum, iterations of the form (12)
guarantee exact asymptotic convergence to the optimum
when the excitation provided by the penalty for poor esti-
mation vanishes slowly enough, see Theorem 5. However,
(12) assumes that xn+1 can be chosen freely in a given X
that does not depend on xn; that is, it implicitly assumes
that the system to be optimized is static (it is only the



fact that xn+1 depends on θ̂n
LS that introduces a dynamic

feedback), whereas Choi et al. [2002] consider self-tuning
optimisation of a dynamic discrete-time system. (See also
Krstić [2000], Krstić and Wang [2000] for continuous-time
dynamic systems). Within the setup of Choi et al. [2002],
it means that we need to observe the input of the static
nonlinearity. This is a rather severe limitation, but one
that seems difficult to overcome.

To illustrate the problem, consider the classical algorithm
for the sequential construction of a D-optimal design with
iterations of the form (13), see [Wynn, 1970]. Take the
linear model η(x, θ) = θ1 x + θ2 x2, so that fθ(x) = f(x) =
(x, x2)>, and suppose that xn may only vary within the
interval [−1, 1] by increments of ±δ in one iteration (so
that xn+1 = xn+1(un) = max{−1, min{1, xn + un}} with
un ∈ {−δ, 0, δ}), with 1/δ integer. Also suppose that
M(ξn0) is non singular for some n0 and that xn0 = mδ ∈
[0, 1] with m a strictly positive integer. One can easily
check that the iterations

un = arg max
u∈{−δ,0,δ}

f>(xn + un)M−1(ξn)f(xn + un)

for n ≥ n0 do not yield convergence to the D-optimal
design measure ξ∗D (which allocates weights 1/2 at the
extreme points ±1). Indeed, negative values for xn can
only be reached if xk = 0 is selected for some k ≥ n0, which
is impossible since f(0) = 0. Other types of iterations,
perhaps less myopic than (12) and (13) which only look one
step-ahead, should thus be considered for general dynamic
systems.

5. CONCLUSIONS

Self-tuning optimisation has been considered through an
approach based on sequential penalized optimal design.
Simple conditions have been given that guarantee the
strong consistency of the LS estimator in this context
of sequentially determined control variables, under the
assumption that they belong to a finite set and that the
penalty for poor estimation does not decrease too fast.
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