N

N
N

HAL

open science

Hamilton Cycle Decomposition of the Butterfly Network

Jean-Claude Bermond, Eric Darrot, Olivier Delmas, Stéphane Pérennes

» To cite this version:

Jean-Claude Bermond, Eric Darrot, Olivier Delmas, Stéphane Pérennes.
composition of the Butterfly Network. Parallel Processing Letters, 1998, 8 (3), pp.371-385.

10.1142/50129626498000389 . hal-00407366

HAL Id: hal-00407366
https://hal.science/hal-00407366

Submitted on 30 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Hamilton Cycle De-


https://hal.science/hal-00407366
https://hal.archives-ouvertes.fr

Parallel Processing Letters,
© World Scientific Publishing Company

HAMILTON CYCLE DECOMPOSITION
OF THE BUTTERFLY NETWORK*

J-C. BERMOND, E. DARROT, O. DELMAS and S. PERENNEST

SLOOP (join project 13S-CNRS/UNSA/INRIA)
INRTA Sophia Antipolis
2004, route des Lucioles, BP 93 06902 Sophia Antipolis Cedex (ance)')I

Received (received date)
Revised (revised date)
Communicated by (Name of Editor)

ABSTRACT
In this paper, we prove that the wrapped Butterfly graph WBF(d,n) of degree d
and dimension n is decomposable into Hamilton cycles. This answers a conjecture of
Barth and Raspaud who solved the case d = 2.
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1. Introduction and notations

The construction of one, and if possible many edge-disjoint Hamilton cycles in a
network can provide advantage for algorithms that make use of a ring structure. As
example, the existence of many edge-disjoint Hamilton cycles allows the message
traffic to be evenly distributed across the network. Furthermore, a partition of the
edges into Hamilton cycles can be used in various distributed algorithms (termi-
nation, garbage collector, ...). So, many authors have considered the problem of
finding how many edge-disjoint Hamilton cycles can be found in a given network.
The most significant results have been obtained for the class of Cayley graphs on
abelian groups, and for (underlying) line digraphs. Here we solve this problem for
the Butterfly networks. These networks have been proposed as suitable topologies
for parallel computers, due to their interesting structure (see [11,13]) because they
are, when properly defined, both Cayley digraphs (on a non-abelian group) and
iterated line digraphs.
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project HCM MAP.
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CNRS/University of Nice - Sophia Antipolis (I3S laboratory) and the INRIA.



2 J-C. Bermond, E. Darrot, O. Delmas € S. Perennes

1.1. Definitions

First, we have to warn the reader that under the name Butterfly and with the
same notation, different networks are described in the literature. Indeed, while
some authors consider the Butterfly networks to be multistage networks used to
route permutations, others consider them to be point-to-point networks. In what
follows, we will study the point-to-point version, and use Leighton’s terminology
[11], namely, wrapped Butterfly. Also, when we use the terms edge-disjoint or arc-
disjoint, it obviously means pairwise edge-disjoint or arc-disjoint.

In this article, we will use the following definitions and notation, where 7Z,
denotes the set of integers modulo ¢ - For definitions not given here see [13].

Definition 1 The wrapped Butterfly digraph of degree d and dimension n,
denoted WBF(d,n), has as vertices the ordered pairs (z,1) where @ is an element
of ), that is, @ word T,_1T,—o---T120 where the letters belong to Zg4, and | € Z,
(1 is called the level). For anyl, a verter (xn_1Tp—o -+ 2+ T1Xq,1) is joined by an
arc to the d vertices (xp,—1 - @141 T + @ x1—1 - - xg, | + 1) where « is any element
of Z.q. Fach one of these arcs is said to have the slope a.

ng(dm) is a d-regular digraph with nd™ vertices; its diameter is 2n — 1.
This network is sometimes considered as undirected, but its structure being indeed
directed, we will always consider the digraph.

For convenience, we repeat the level 0 when drawing the wrapped Butterfly
digraph. Hence, the reader has to remember that the two occurrences of level 0
have to be identified. Figure (1) displays WBF(3,2) with the arcs directed from
left, to right. Note that WBF(d,n) is often represented (for example in [11,13]) in
an opposite way to our drawing as the authors denote the nodes (zqz1 - - xp—1,1).

Levels

0 1 Duplicated level 0

o1

02
Vertex (10,0)

10

1

Linesor words ——m8m8 =
8

12

Figure 1: The digraph WE]-'(:%, 2), the arcs being directed from left to right.
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Now, we define two other useful digraphs.

. Ile' denotes the complete symmetric digraph with a loop on each vertex,

° Iad,d denotes the complete bipartite digraph where each set of the bipartition
has size d and with all the arcs directed from one part of the bipartition, called
left part, to the other, called right part.

Note that WBZF(d, 1) is nothing else than Kr.

In digraphs, the concept of dipaths and circuits (directed cycles) is well-known.
Here, we need to use more general concepts valid for digraphs of paths and cycles
(which are also called oriented elementary paths and oriented elementary cycles).

Definition 2 A path of a digraph is a sequence p = (vo, €0, V1, €1, Vg, €k, Vt1)
where the v;’s are vertices and the e;’s are arcs such that the end vertices of e; are
v; and viy1 and where the sequence p does not meet twice the same verter except
maybe vy and Vi1 .

Definition 3 A path such that vpy1 = vg in the sequence i is called a cycle.

Note that the arc e; can be either directed from v; to v;41 or from v; 41 to v;. If
all the arcs of the path (resp. cycle) are directed from v; to v;11 we have a dipath
(resp. circuit also called dicycle).

Definition 4 A vertex v; of a cycle is said to be of type + (resp. of type —) for
the cycle, if v; is the terminal vertex of e;—1 (resp. e;) and the initial vertex of e;

(resp. €;—1).

Note that the type is not necessarily defined for all the vertices of a cycle. In a
circuit, all vertices are of type +.

Definition 5 A vertex v is said to be crossed by a cycle, or a cycle crosses
the vertex v, if v is of type + or of type — for the cycle. When a vertez v is crossed
by a cycle, we will define its sign function € by e(v) = +1 (resp. e(v) = —1) if v
is of type + (resp. of type —).

Remark 1 We can also define the predecessor p(v) and the successor s(v) of the
vertex v in the order induced by the cycle. Then, the vertex v is of type + (or
has sign e(v) = +1) if (p(v),v) and (v, s(v)) are both arcs of the digraph, and is of
type — (or has sign ¢(v) = —1) if both (s(v),v) and (v, p(v)) are arcs of the digraph.
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Definition 6 A Hamilton cycle (resp. circuit) of a digraph is a cycle (resp.
circuit) which contains every vertex exactly once.

Definition 7 We say that a digraph is decomposable into Hamilton cycles
(resp. circuits) if its arcs can be partitioned into Hamilton cycles (resp. circuits).

Definition 8 A Hamilton cycle of WZS]:(dJL) is said to be I-crossing if the cycle
crosses all the vertices of level I and furthermore 3, _ , ) wezn e(v) =0 (mod d).

Figure (3) shows examples of 1-crossing Hamilton cycles in WBF(3,2) and
WBF(3,3). Note that a Hamilton circuit is I-crossing for all /.

1.2. Results

Various results have been obtained on the existence of Hamilton cycles in classi-
cal networks (see for example the surveys [2,9]). For example, it is well-known that
any Cayley graph on an abelian group is Hamiltonian. Furthermore, it has been
conjectured by Alspach [1] that:

Conjecture 1 (Alspach) Ewvery connected Cayley graph on an abelian group
has a Hamilton decomposition.

This conjecture has been verified for all connected 4-regular graphs on abelian
groups in [8]. This includes in particular the toroidal meshes (grids). It is also known
that H(2d), the hypercube of dimension 2d, is decomposable into d Hamilton cycles
(see [2,3]).

Concerning line digraphs, it has been shown in [10] that d-regular line digraphs
always admit Lg] Hamilton circuits. In the case of de Bruijn and Kautz digraphs
which are the simplest line digraphs, partial results have been obtained succes-
sively in [12] and [5] respectively, and near optimal results have been obtained for
undirected de Bruijn and Kautz graphs [4].

The wrapped Butterfly digraph is actually a Cayley graph (on a non-abelian
group) and a line digraph. So, the decomposition into Hamilton cycles (resp. cir-
cuits) of this digraph has received some attention. It is well-known that WBZF(d, n)
has one Hamilton circuit (see [11, page 465] for a proof in the case d = 2 or [15]).
In [6], Barth and Raspaud proved that the underlying multigraph associated with
WBF(Z,n) contains two arc-disjoint Hamilton cycles answering a conjecture of
Rowley and Sotteau (private communication). In our terminology, their result can
be stated as:
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Theorem 1 (Barth, Raspaud) WBF(2,n) is decomposable into 2 Hamilton
cycles.

They conjectured that this result can be generalized for any degree:

Conjecture 2 (Barth, Raspaud) Forn > 2, ng(dm) is decomposable into d
Hamilton cycles.

In this paper, we prove the conjecture (2). To do so, we use some techniques
introduced in [7] where we studied the decomposition of WBF(d, n) into Hamilton
circuits. In fact, we prove that Wfﬁf(d, n) is decomposable into d [-crossing Hamil-
ton cycles. Indeed, the [-crossing property, combined with the recursive structure
of WB’]-'(d, n), enables us to prove that the number of I-crossing arc-disjoint Hamil-
ton cycles that Wfﬁf(d,n) contains can only increase when n increases. Then, we
prove mainly that WB’]-'(d., 2) contains d arc-disjoint I-crossing Hamilton cycles, by
constructing two arc-disjoint I-crossing Hamilton cycles using only arcs of slopes 0
and 1 and d— 2 arc-disjoint Hamilton circuits using arcs of other slopes. The results
are summarized in the following theorem:

Theorem 2 Forn > 2,

o ford¢ {3,4,6}, WZS]:(d., n) is decomposable into d — 2 Hamilton circuits and
2 Hamilton cycles,

o ford e {4,6}, Wéf(d,n) is decomposable into d Hamilton circuits,

. WZS]:(?)JL) 1s decomposable into 1 Hamilton circuit and 2 Hamilton cycles.

2. The general construction

We give below some additional definitions and properties enabling us to establish
lemma (2) which is a strengthened version of the inductive lemma of [7]. This lemma
is then applied in section 3 to construct inductively the decomposition.

2.1. Cyclic-potent families of permutations

In this paper, M will always denote a permutation of Z,; which associates the
element a with the element M (a). To such a permutation, one can associate a
perfect matching (denoted also M) of K4 4 containing all the arcs (a, M(a)).

Let z € 7}, M, will denote a permutation; the label z will be useful in the proof
of lemma (2), as we will associate M, with a perfect matching of Ie,id(x) where
Ka.4(x) denote the bipartite subgraph of WBF(d, n + 1) with left part the vertices
(*z,n) and right part the vertices (xz,0). M, contains the arcs joining (ax,n) to
(M, (a)z,0). In [7], M, is said to be a permutation realizable in Ky 4(z).
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Definition 9 Let S be a set of slopes (that is a subset of Z4). Then, a permuta-
tion M of 7, uses the slopes in S if, for anya € Z4, M(a) € {a+s, s€ S}. A
family of d" permutations M = {M,, © € Z}}} of Z, uses the slopes in S if,
for any permutation M, of the family, M, uses the slopes in S.

Definition 10 A set of p permutations M;, with 1 < j < p, is said to be compat-
ible if, Va, M;(a) # M; (a) for j # j'.

In other words the perfect matchings associated with the M; are arc-disjoint.

Definition 11 For 1 < j < p, let M; = {M, ; |z € Z}} be p families, each
consisting of d"™ permutations. The families M are said to be compatible if, for

each x in Z7, the p permutations M, ; are compatible, i.e. Ya, M, j(a) # M, j(a)
for j #j'.

The composition M -M' of two permutations M and M’ is the permutation
which associates the element a with the element M (M'(a)).

Definition 12 A permutation M is cyclic if, for some x, all the elements M'(z)
are distinct for 0 <i < d".

Remark 2 Note that if M is cyclic, then for every x, the elements M'(x) are all
distinct. In fact, to verify that M is cyclic, it suffices to verify that for a given =z,
Mi(x) # x, for 1 <i < d". Indeed, if there exists j and k, with j > k, such that
M3 (x) = M*(z), then MI=*(z) = x.

For example, the permutation M which associates a with the element a + 6 is
clearly cyclic if and only if § is prime with d, as M'(a) = a + 6i.

Definition 13 A family M = {M,, x € Z}} of d" permutations of Z4 satisfies the
cyclic-potent property if, for any order of composition of the M, and any set
of sign {e, | v € Z7y e, € {—1,1}} such that )~ e, =0 (mod d), the permutation
I, Mg s cyclic.

Definition 14 A family of d” permutations M = {M,, z € Z"} is of type
(i,7) if for x #£0, M,(a) = a+i; and for x =0, My(a) = a+ j.

Lemma 1 A family of permutations of type (i,5), M = {M,, x € Z})} is cyclic-
potent if and only if j — i is relatively prime to d.

Proof. As the permutations of the family commute, the permutation II, M¢~
of definition (13) can be simply expressed as @ — a + é. So, this permutation will
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be cyclic if and only if ¢ is prime with d. Here 6 = (3, €x)i +€0j. As 30 €, =0,
we have § = (3°, €2)i +eo() — 1) = eo(j — ). So, 6 is clearly prime with d if and
only if 7 — ¢ is prime with d. O

We will represent a set of p families of permutations of type (i,7): {(i0,70)
(7:17.71)7 ey (7;17717.7'p71)} bY the array:

3

Families
ig 11 i2 13 ... ip_2  ip_1
Jo J1 J2 J3 Jp—2 Jp—1

In section 3, we will need some very simple cyclic-potent families of permutations
that we give as examples.

Families 1 There exist d compatible cyclic-potent families of permutations:

Families 1
0 1 2 3 4 5 ... d—2 d-1
1 2 3 4 5 6 ... d—1 0

These families are cyclic-potent as, applying lemma (1), 1 -0 =2-1= ... =
d—1—(d—-2)=0-(d—1) =1 which is prime with d. These families use all the
slopes.

Families 2 There exist 2 compatible cyclic-potent families using slopes {0,1}:

Families 2
1
1 0

According to lemma (1) they are two compatible cyclic-potent families and they
use the slopes {0, 1}.

Families 3 When d # 3, there exist d — 2 compatible cyclic-potent families of
permutations using the slopes {2,...,d — 1}. One possible solution is given below:

e when d is odd and d # 3, the following families can be used:

Families 3 (d odd and d # 3)
2 3 4 5 ... d—-3 d—2 d-1
4 5 6 7 ... d—-1 2 3

e when d is even, we use the following families:

Families 3 (d even)
2 3 4 5 .o d—=2 d—1
3 2 5 4 ... d-1 d-2
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These families are cyclic-potent as, applying lemma (1), we get:

e fordodd,4—-2=5-3=---=d-1—(d—3) = 2and 2—(d—2) = 3—(d—1) = 4,
as 2 and 4 are prime with d;

o fordeven,3—-2=5-4=-..=(d-1)—(d—2)=1and2-3=4-5=---
=(d—2)— (d—1) = —1, which are prime with d.

In both cases, the slopes used are in {2,...,d —1}.

2.2. Inductive construction

Lemma 2 If WB]—"(d.,n) admits p arc-disjoint l-crossing Hamilton cycles and if
there exist p compatible cyclic-potent families each of d™ permutations, then
WBF(d,n + 1) admits p arc-disjoint l-crossing Hamilton cycles.

Proof. Let H be an l-crossing Hamilton cycle of WBF(d,n). As all the levels
are equivalent, we can suppose without loss of generality and for simplicity in the
notations that | = 0. Let M = {M,, © € Z}} be a cyclic-potent family of d"
permutations. The vertices of WBF(d,n + 1) can be labeled (ax,l) with a € Zg,
x € Z%and | € Z,+1. Now, we associate H and M with a partial digraph H' in
WBF(d,n + 1) as follows (for an example of such a construction see figure (3)):

e for 0 <] < n —1 and for each a, if the arc (z,1)(2',1 + 1) belongs to H,
we put in H' the arc (ax,l)(az’,l + 1) where the indices are taken modulo
n 4 1, which means that to the arc (z,n — 1)(2’,0) of H is associated the arc
(ax,n — 1)(az’,n) in H';

e between levels n and 0 of Wf?}'(d,n + 1) we put the arcs joining (ax,n) to
(M. ()z,0).

With such a definition, each vertex of WZ?]-'((L n + 1) is incident to two arcs of
H'. Hence, we can define for each vertex a predecessor and a successor on H' that
enables us to prove that we can order H' in a cycle.

For1 <il<n-—1,let (2',1") (resp. (z",1")) be the predecessor (resp. successor)
of (z,1) in H, then the predecessor (resp. successor) of (ax,l) in H' will be (az’,1")
(resp. (az”,1")).

For [ = 0 and n, as H is a 0O-crossing Hamilton cycle, vertices (z,0) are either
of type + or — on H.

e When (z,0) is of type +, its predecessor (resp. successor) in the cycle H is
(¢',n — 1) (resp. (2",1)). Then, in H' the predecessor (resp. successor) of
(ax,n) will be (ax’',n — 1) (resp. (M(a)z,0)); the predecessor (resp. succes-
sor) of (ax,0) will be (M_(a)z,n) (resp. (az’,1)).
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e When (z,0) is of type —, its predecessor (resp. successor) in H is (x',1) (resp.
(z'",n —1)). Then, in H' the predecessor (resp. successor) of (az,0) will be
(ax',1) (resp. (M, '(a)x,n)); the predecessor (resp. successor) of (ax,n) will

be (M,(a)x,0) (resp. (ax”,n —1)) in H'.

Therefore, when (z,0) is of type + (resp. —), (ax,n) and (az,0) are vertices of
type + (resp. —) in H'. Hence, all the vertices of levels 0 and n are crossed by H';
furthermore, the sum of the signs of the vertices of H' of levels 0 or n will be d
times the sum of the signs of the vertices of H of level 0, that is, by hypothesis, 0.
Hence, H' is O-crossing (and also n-crossing).

Now, we have to prove that H' is effectively a Hamilton cycle. For this it suffices
to prove that if we start at some vertex (ax,0) and follow H', we meet successively
all the vertices of level 0 and n before coming back to (az,0). Indeed, suppose that
(y,1) was on the portion of cycle H between (x1,0) and (x2,0). Then, (ay,!) will
be on the portion of H' between (az1,a) and (axs, 3), where a = 0 (resp. a = n)
if (z1,0) is of type + (resp. —), and 3 = 0 (resp. B = n) if (22,0) is of type —
(resp. +). These cases are described on figure (2).

figure a figure & figure b figure b’
. ax)
+
+
n O
. lax)
+
Tlax,
n O
figure c figure ¢ figure d figure o’

Figure 2: This figure shows the four possible cases when we perform the inductive
construction of WB’]:(d,n +1) from WB]—"(d,n). In figure a and a’ (resp. b and
b') the vertices x1 and x2 are of type + (resp. —). Figure ¢ and ¢’ (resp. d and d')
displays the case where the verter xq is of type + (resp. —) and the vertex xo is of

type — (resp. +).

Now, let (zg,0), (x1,0),..., (x4 = x0,0) be the sequence of vertices of H at level
0 in the order we meet them on H. Starting from (agxg,0) we will meet successively
(a121,0), (a22,0), ..., (@gnxgn = agnxo,0) on H'. Following such a path, we can
meet either z; of type + by going from level n to level 0, in which case we will apply
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the permutation M., to some a, or z; of type — by going from level 0 to n, in which
case we will apply M;i] to a. So age = IIM," (a) where the product is taken in
an order depending on z. As all the z,; differ, we can meet again (apxg,0) only at
some aqq~ To, but M being cyclic-potent, the values agn,azdn, ..., aqdn, ..., a(4)dn
are all distinct. So, we meet again (agx,0) only after having encountered the d"*!
vertices of level 0.

Now, note that we can perform this construction with p arc-disjoint O-crossing
cycles and p compatible cyclic-potent families. From construction, the p 0-crossing
cycles that we will obtain, will be arc-disjoint. O

Remark 3 When the O-crossing Hamilton cycles used in the lemma above are
circuits of WBJF(d,n), all the vertices are of type +, and the construction leads to
circuits of WBF(d,n + 1), giving another proof of the inductive lemma of [7].

3. Decomposition of WBF(d,n)

We will use a decomposition of WBZF(d,n) into two partial digraphs.

Definition 15 The Butterfly digraph ng(dm) is the sum of two partial
digraphs WBF1(d,n) and WBF,, . 4_1(d,n) defined as follows:

. WZS]-'gJ(d,n) contains the arcs which slopes belong to {0,1},

° WZ'S}"QV___,L{,l(d,n) contains the arcs which slopes belong to {2,...,d — 1}.

3.1. Decomposition of WB’]:QP__,d,l(d.,n)

The proof is by induction on n. We start the induction for n = 1.

Lemma 3 Whend ¢ {4,6}, Wéfgﬁ___vd,l(d, 1) is decomposable into d—2 Hamilton
circuits.

Proof. As WBF(d,1) = K}, WBF,._4 1(d, 1) is obtained from K by re-
moving the loops and the arcs of slope 1. Following Tillson [14], we know that
ICI without the loops contains d — 1 arc-disjoint Hamilton circuits when d # 4, 6.
So, using Tillson’s decomposition, we can label the vertices of ICI such that one of
the circuits uses all the arcs of slope 1. By removing it, we get d — 2 arc-disjoint
Hamilton circuits in Wf?]:g,___,d,l(d, 1). |

Proposition 1 For d ¢ {3,4,6}, WB’]:QP__,d,l(d.,n) is decomposable into d — 2
Hamilton circuits.

Proof. As d ¢ {4,6}, the proposition is proved for n = 1 by lemma (3).
Then, as d # 3, the d — 2 compatible cyclic-potent families (3) use the slopes
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{2,...,d — 1} and satisfy the hypothesis of lemma (2). Hence, we can apply that
lemma inductively, in order to construct d — 2 arc-disjoint Hamilton circuits (see
remark (3)) in WB]-'Q —1(d,n). O

3.2. Decomposition of WZ%]-'OJ(dm)

Lemma 4 Wzgfgvl(d., 2) is decomposable into 2 l-crossing Hamilton cycles.
Proof. For this proof, the vertices of WB’]:(],l(d,Q) will be denoted by the

ordered pairs (zy,l) with @ € Zg4, y € Zq and | € Z,. We will show that we can

build two arc-disjoint 1-crossing Hamilton cycles in Wzgfm(d., 2) by using two sets
of arcs of WBFq 1(d,2) defined by the next two rules:

1 [Ares o

{ifx;éy, (x(y - 1),0) B (@y.1) 2 (a1,0), (1)

if =y, (zz,0) B @) B (@+Dz0. (2
2 (A o 1]

{ifx;éy, (y,0) 2@y B (@+1y.0), (1)

if =y, (z(z—1),0 B (2,1) B (22,0). (2)

It is easy to verify that Hy and H; are arc-disjoint. With the arcs (1) of Hy, we
can define for each x € Z, a dipath P, as follows:

(zx,0) — (z(x +1),1) — (z(x 4+ 1),0) —
P, — (z(x +2),1) — - (z(z+d-2),1) —
- (2(x+d-2),00) — (z(z+d-1),1) — (z(z+d-1),0)

The d dipaths P,, x € Zg4, are clearly vertex-disjoint. Only the vertices noted
(zz,1) are not in these d dipaths. The arcs (2) of Hy allows us to join the end
vertices of the d dipaths through the missing vertices (zz,1) as follows:

PT — ((33+d—1)(33+d—1), ) — Pm+ri7] —
— (z4+d—-2)(z+d—2),1) <« - —
= ((z+1)(=+1),1) — Py =
— ( ) — P,
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One can easily check that we have defined a Hamilton cycle. The d dipaths are
joined through their extremal vertices in a cyclic way, using only arcs (2) of Hj.

By construction, all the vertices at level 1 are crossed. In order to compute the
sign of the vertices at level 1, we can choose to walk along the cycle in the direction
(zx,0) — (z(x 4+ 1),1). Therefore, all the vertices (zy, 1) with x # y are of type +
and have +1 as sign, while the vertices (zx,1) are of type — and have —1 as sign.
So, the sum of the signs is (d> —d) — (d) =0 (mod d).

To prove that the second set of rules builds a second 1-crossing Hamilton cycle,
it suffices to notice that we can rewrite this rule up to a permutation of the letters
x and y as being:

. ‘Arcs of Hy (with permutation of x and y)‘

{ify;éz, (ye+1),0) £ (yr,1) 2 (ya,0),
if y=ux, (yy,0) £ ) T (v 1y.0).

Construction 2 is then clearly similar to construction 1; to be convinced, just
exchange = and y, and replace 1 by —1 in the proof for construction (1).

Hence, Hq and H; are two arc-disjoint 1-crossing Hamilton cycles. As the levels
are equivalent, the result holds also for level 0. |

Figure (3) gives a decomposition of WZS]:M (3,2) into two 1-crossing Hamilton
cycles.

Proposition 2 Forn > 2, WBFOJ (d,n) is decomposable into 2 l-crossing Hamil-
ton cycles.

Proof. The proposition is proved for n = 2 by the lemma (4). Then, we
use lemma (2) with the two compatible cyclic-potent families (2) which use the
slopes {0, 1} to construct inductively two arcs-disjoint [-crossing Hamilton cycles in
WBF1(d,n). O

Figure (3) gives the recursive construction of two 1-crossing arc-disjoint Hamil-
ton cycles in WBF 1(3,3) from two 1-crossing arc-disjoint cycles in WBF (3, 2).
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figure b figure d

figure a

figure c

s D

Figure 3: Figures a and ¢ show the two 1-crossing arc-disjoint Hamilton cycles of
WBFo.1(3.2). We display on figures b and d, two 1-crossing arc-disjoint Hamilton
cycles in WZS}"UJ(?),B) obtained by applying lemma (2) with the families (2).

3.8. Global decomposition

We are now ready to prove the main result:

Theorem 2 Forn > 2,

o ford¢ {3,4,6}, ng(d., n) is decomposable into d —2 Hamilton circuits and
2 Hamilton cycles,

e ford e {4,6}, Wéf(d,n) is decomposable into d Hamilton circuits,

. WZS]:(?)JL) is decomposable into 1 Hamilton circuit and 2 Hamilton cycles.

Proof. According to propositions (1) and (2) we have, when d ¢ {3,4,6},d—2
arc-disjoint circuits in WBFs . 4—1(d,n) and 2 arc-disjoint cycles in WBFq 1(d, n).
So, the result holds in these cases. For d € {4,6} and n = 2, an exhaustive computer
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search shows that ng(dm) is decomposable into Hamilton circuits, and so, for
n > 2, WBF(4,n) and WBF(6,n) are decomposable into Hamilton circuits. For
d = 3, we can construct two 1-crossing arc-disjoint Hamilton cycles and one arc-
disjoint Hamilton circuit in WBF(3,2) (see figure (4)). Then, we can apply lemma
(2) with families (1) and the result holds for WBF(3,n) with n > 2. O

Figure 4: The decomposition of WZ%]—"(B., 2) into two 1-crossing arc-disjoint Hamil-
ton cycles and one arc-disjoint Hamilton circuit.

The preceding result implies the conjecture of Barth and Raspaud:

Theorem 3 For any d and n > 2, WBF(d,n) is decomposable into d Hamilton
cycles.

Remark 4 We could also have derived theorem (3) by proving that, if WBF(d, n)
is decomposable into I-crossing Hamilton cycles, then WZS]:(d, n+1) is also decom-
posable into [-crossing Hamilton cycles. This can be done by applying lemma (2)
with the families (1). But to start the induction we needed to split the Butterfly
digraph into two partial digraphs in order to prove that WZ?]—"(d., 2) is decomposable
into [-crossing Hamilton cycles for n = 2 and d # 3.

4. Conclusion

In this paper we have proved that WBf(d,n) is always decomposable into
Hamilton cycles. In the paper [7], we considered the problem of decomposing
WBF(dJL) into Hamilton circuits and conjectured that such a decomposition into
d Hamilton circuits exists for n > 2, except for (d = 2 and (n = 2 or n = 3)) and
(d = 3 and n = 2). The difficulty in that case was to start the induction; indeed
in [7] we were able to reduce the problem to the case n = 2 and d prime and to
solve it in many cases. Consequently, we proposed as an open problem the following
conjecture:

Conjecture 3 ([7]) For any prime numberp > 3, WB’]:(p., 2) is decomposable into
Hamilton circuits.
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Note added in proof

Recently, Helen Verrall” has informed us that she has been able to prove con-
jecture (3), thus closing completely the problem of Hamilton decomposition of the
Butterfly network.
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