Covering the whole space with Poisson random balls

Abstract : We consider Poisson random balls, with the pair (center, radius) being given by a Poisson point process. According to the intensity measure of the Poisson process, we investigate the eventuality of covering the whole space with the union of the balls. We exhibit a disjunction phenomenon between the coverage with large balls (low frequency) and the coverage with small balls (high frequency). Concerning the second type of coverage, we prove the existence of a critical regime which separates the case where coverage occurs a.s. and the case where coverage does not occur a.s. We give an explicit value of the critical intensity and we prove that the Hausdorff measure of the set of points which are not covered by the union of balls is linked with this value. We also compare with other critical regimes appearing in continuum percolation.
Type de document :
Article dans une revue
ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2012, IX, pp.213--229
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00406965
Contributeur : Hermine Biermé <>
Soumis le : vendredi 16 juillet 2010 - 17:10:23
Dernière modification le : mardi 10 octobre 2017 - 11:22:05
Document(s) archivé(s) le : mardi 23 octobre 2012 - 10:30:43

Fichier

bierme_estrade_2010.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00406965, version 3

Collections

Citation

Hermine Biermé, Anne Estrade. Covering the whole space with Poisson random balls. ALEA : Latin American Journal of Probability and Mathematical Statistics, Instituto Nacional de Matemática Pura e Aplicada, 2012, IX, pp.213--229. 〈hal-00406965v3〉

Partager

Métriques

Consultations de la notice

276

Téléchargements de fichiers

140