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Abstract

We present an application for integrated visualization of

gene expression data from time series experiments in gene

regulation networks and metabolic networks. Such inte-

gration is necessary, since it provides the link between the

measurements at the transcriptional level and the observ-

able characteristics of an organism at the functional level.

Our application can (i) visualize the data from time series

experiments in the context of a regulatory network and a

metabolic network; (ii) identify and visualize active regula-

tory subnetworks from the gene expression data; (iii) per-

form a statistical test to identify and subsequently visualize

affected metabolic subnetworks. Initial results show that

our integrated approach speeds up data analysis, and that

it can reproduce results of a traditional approach that in-

volves many manual and time-consuming steps.

1. Introduction

Biologists face the difficult task of relating experimental

data to biological processes that take place at different lev-

els of organization. Improvements in acquisition techniques

have made this task even more challenging. For example,

microarrays are increasingly used to study dynamic behav-

ior of cellular processes by capturing multiple gene expres-

sion profiles at discrete time points. The problem now is to

understand the experimental data, relate it to the multiple

levels of organization, verify existing knowledge, and make

new discoveries.

In this paper, we focus on two particular levels of cel-

lular organization: gene regulation networks and metabolic

networks. In a gene regulatory network, the elements are

the genes of the organism. Two genes are linked if the

gene product of one of these genes regulates the other gene.

Metabolism is the set of biochemical reactions that are used

to perform vital biological functions such as energy genera-

tion. Each metabolic function is modelled by a set of inter-

connected biochemical reactions corresponding to a small

graph called a metabolic pathway [19]. Since the output of

a pathway is often the input of another pathway it is possi-

ble to merge all these pathways into a single network, called

a metabolic network [12, 13].

There exist many tools in bioinformatics for visualiza-

tion of these types of biological networks, see Saraiya et

al. [16] and Suderman & Hallett [18] for recent overviews.

Prominent tools are Cytoscape [17], VisANT [9], Biologi-

calNetworks [2], and VANTED [11], for general biological

network visualization. Some other tools specialize on path-

ways [3, 14, 20, 23]. Visualization of gene expression data

from time series in these tools has been mostly limited to

displaying either the whole time series in a node or coloring

a node based on a single time point. Since no information is

mapped to the edges, it is very difficult to understand which

substructures of the network are active at any point in time.

None of these tools map statistical properties of the expres-

sion data to a meaningful visual attribute. Statistical proper-

ties are very important in microarray data analysis, because

they provide a measure of confidence for replicated mea-

surements. Some tools allow varying attributes of a node

other than the fill color. However, browsing through time

points is then cumbersome, since two distinct attributes of a

node need to be changed (usually manually).

In this paper, we present an application for integrated vi-

sualization of gene expression data from time series experi-

ments in gene regulation networks and metabolic networks.

Such integration is necessary, since it provides the link be-

tween the measurements at the transcriptional level and the

observable characteristics of an organism at the functional

level. In previous work, we already made a first step to-

wards the integration of microarray data, regulatory net-

works, and metabolic pathways [21]. The main limitation of

this approach was that metabolic pathways are considered

as disjoint processes. Most metabolites (i.e. compounds

or reactions), however, are shared among several pathways.

Therefore, to investigate an organism’s metabolism, it is rel-

evant to study all the pathways simultaneously. This re-

quires visualization of the whole metabolic network, which

we have addressed previously [4]. We now step forward by

combining both approaches. Our application can (i) visual-

ize the data from time series experiments in the context of



a regulatory network and a metabolic network; (ii) identify

and visualize active regulatory subnetworks from the gene

expression data; (iii) perform a statistical test to identify and

subsequently visualize affected metabolic subnetworks.

The remainder of this paper is organized as follows. In

Section 2, we describe visualization of gene regulatory net-

works and expression data from time series experiments.

We also summarize a detection algorithm that identifies ac-

tive subnetworks in the transcription network based on time

series data. Visualization of metabolic networks, and the

extraction of active subnetworks is discussed in Section 3.

We introduce the new visualization tool in Section 4, and

we draw conclusions in Section 5.

2. Genomic level visualization

In previous work, we developed GENeVis, the first ap-

plication for visualization of networks that supports over-

laying time series data with associated statistical data on

the nodes [22]. This approach was extended to enable vi-

sualization of genome expression and network dynamics in

both regulatory networks and metabolic pathways [21]. We

will briefly summarize the key aspects of GENeVis below.

2.1. Regulatory network visualization

A gene regulatory network is represented by a graph, in

which nodes represent genes, and edges represent interac-

tions between a gene product (a regulator protein) and its

target genes. A regulator either inhibits or activates its tar-

get, which is represented by decorating the target end of an

edge by a bar or an arrow head, respectively. In addition,

edges are colored according to interaction type: green for

activation, red for inhibition, and grey for unknown interac-

tion. The unknown type is implemented, because biological

data are often incomplete. A node is drawn as a rectangu-

lar box annotated with the gene name. The layout of the

network is computed by a force-directed algorithm [8] im-

plemented in [6].

2.2. Gene expression from time series

DNA microarrays are used to measure the expression

levels of thousands of genes simultaneously. In a time series

experiment, the gene expressions are measured as a func-

tion of time. Gene expression values can either be absolute

levels of expression or ratios of expression levels between

a test and a reference condition. Ratios are usually log-

transformed to obtain comparable scales for ratios above

and below 1. To each expression value, a statistical value is

associated, which expresses the reliability of the measure-

ment.

As in GENeVis [22], we draw each time point as a col-

ored rectangular glyph. The expression value determines

the color, and the reliability value determines the height of

the glyph; taller means more reliable. From the perceptual

point of view, this mapping is effective, since the stronger

perceptual cue of size is used to give reliable data more em-

phasis than unreliable data. The entire time series for each

gene is drawn as a row of glyphs inside its gene box. In

addition, or alternatively, the gene expression value can be

used as a fill color for the gene box. Which mapping is most

effective depends on the analysis task.

To provide the user some insight in the distribution of

the expression data, we order the data, and split it into a

number of equally-sized subsets, i.e., quantiles. Each subset

is assigned a color from the color map. The actual colors

in the map depend on the type of expression data: a color

map ranging from white to black via yellow and red is used

for expression levels, and a bimodal colormap ranging from

green to red via black is used for expression ratios.

2.3. Network dynamics visualization

The algorithm to detect active subnetworks is described

in detail in [21]. We briefly summarize it in this section.

Denote by Lg,t and Rg,t the expression level and expres-

sion ratio (log-transformed) of the gene g at time point t,

respectively. The expression level Lg,t is low if Lg,t < Tm,

medium if Tm ≤ Lg,t < Th, and high if Lg,t ≥ Th, where

Tm and Th are thresholds so that 0 ≤ Tm < Th. A gene is

differentially expressed if |Rg,t| ≥ Tr, where Tr > 0 is a

threshold. The algorithm distinguishes regulator and non-

regulator genes. A regulator gene g is active at time point

t if its expression level is high; or if its expression level is

medium and Rg,t ≥ 0; or if its expression level is low and

Rg,t ≥ Tr. A nonregulator gene is active if it is differ-

entially expressed. After identifying the active genes, the

active edges are determined. An edge is marked active if

both the source node and target node are active.

The active network is drawn in the context of the com-

plete network. The active nodes and edges are highlighted,

and the inactive part of the network is rendered semi-

transparent.

3. Metabolic level visualization

3.1. Metabolic network visualization

The main problem when drawing the whole metabolic

network is to respect biological conventions for particular

topological features (cycle and cascade of reaction) but also

to preserve the metabolic pathway information (i.e. reac-

tions and compounds of a pathway have to be drawn in a

“small” region). As these pathways often share reactions



and compounds, it is not straightforward to respect the bi-

ological conventions, while preserving the metabolic path-

way information at the same time.

To overcome this problem, there exist two approaches:

with and without node duplication. In the node duplica-

tion approach [10, 15], each reaction or compound shared

by several pathways is duplicated. The pathways are drawn

separately, and they are all shown in a grid-like fashion.

By representing each pathway independently, this approach

offers only a set of local views (one for each pathway),

rather than a global view on the metabolic network as a

whole. Moreover, duplication produces drawings where the

depicted connectivity does not match the real topology of

the network, which may affect correct interpretation.

Because of these drawbacks, the metabolic network visu-

alization in our tool is based on the approach without node

duplication presented by Bourqui et al. [4]. This algorithm

has two main steps: a clustering step and a rendering step.

The clustering step computes a set of independent path-

ways, and it detects particular topological structures, such

as cycles and cascades of reactions. Two pathways are con-

sidered independent if they do not share any reaction and/or

compound. The clustering process can be constrained by

the user, who can provide a list of focus pathways. The

clustering algorithm then tries to respect the proximity con-

straint for these pathways, i.e., it will not split up the path-

way across multiple clusters if possible. The rendering step

draws the clustered graph and the clusters computed in the

previous step, while respecting as much as possible the bio-

logical drawing conventions. A detailed explanation of the

clustering algorithm and rendering procedure is given else-

where [4].

3.2. Computing the affected subnetwork

The active subnetwork in the regulatory network is com-

puted according to the algorithm described in Section 2.3.

This yields a set of genes that are considered active, which

we will now use to extract a corresponding affected subnet-

work from the whole metabolic network.

The subnetwork is constructed in two steps. The first

step identifies the pathways that are affected at each time

point. Consider a pathway P containing Na affected and

N i unaffected reactions (or genes) at a given time point.

From Na and N i, we compute the probability p that an en-

richment of active genes in that pathway can be attributed to

chance by Fisher’s exact test. A pathway is considered af-

fected if p ≤ Tp, for some threshold Tp. A low probability

p means that pathway P is more affected. Per time point,

this step yields a set of affected pathways.

The second step constructs a subnetwork by merging all

pathways obtained in the first step. The purpose of extract-

ing this subnetwork is to filter out parts of the metabolic

network that are not affected at all. This reduces the size of

the network considerably, and it simplifies the visualization.

3.3. Visualizing the affected metabolic subnetwork

To visualize the affected metabolic network, we use a

technique analogue to the one described for the active reg-

ulatory network visualization. The representation of the

metabolic network is somewhat more complex than for the

regulatory network, however, since it is a quotient graph

containing metanodes (see [4] for more details). A metan-

ode is a node representing a set of vertices of the original

network, and it is either a pathway, or a proper subpart of

a pathway (all compounds and reactions only belonging to

that pathway), or a particular topological structure (cycle or

cascade of reactions).

To emphasize affected pathways, we render unaffected

pathways at a given time point semi-transparent. A metan-

ode is made transparent if all nodes or metanodes it contains

are transparent. As there exists a correspondence between

the genes in the transcription network and the enzymes in

the metabolic network, we can additionally visualize the

gene boxes with expression glyphs in the context of the

metabolic network.

4. Integrative visualization

The application presented in this paper has been imple-

mented using Tulip graph drawing libraries [1]. It integrates

four different types of data: gene annotation, microarray

data, a gene regulatory network and a metabolic network,

which are all given in separate files. The gene annotation

file provides all information about the genes and is repre-

sented as a table. In that table, each row corresponds to a

single gene and the table columns contain for each gene the

locus tag, common gene name, start and end position on

the genome and a data field to store additional information,

such as the function of a gene. To be able to relate the genes

between the data sources, the annotation file should contain

appropriate identifiers, which makes this mapping possible.

For the microarray data and transcription network, we use

locus tags for this purpose. For the metabolic network, we

take EcoCyc IDs [13]. The program is flexible, and can

use other identifiers as well. The gene regulatory network

file contains an adjacency list of genes, which are identified

by locus tags. For each edge, the interaction type is given

as well. The metabolic network file is in the SBML [7]

format, and it contains a.o. the list of compounds and re-

actions, theirs attributes, and also the decomposition of the

network into metabolic pathways. Finally, microarray data

are given by two files, one containing expression levels and

the other expression ratios. These data are given as tables

in which each row corresponds to a gene, and the columns



Figure 1. Screenshot of our tool. On the left, some interaction controls are shown. The middle and
right panel contain a part of the metabolic network and regulatory network of E. coli , respectively.

Gene expression data from a 17-points time series experiment are overlaid on the nodes.

correspond to the gene expression and associated reliability

at all time points.

Figure 1 shows a screenshot of our tool. On the left,

some interaction controls are shown. The middle and right

panel contain a part of the metabolic network and regula-

tory network of the bacterium Escherichia coli K12, respec-

tively. Gene expression data from a 17-points time series

experiment are overlaid on the nodes.

The left panel has three interactor tools shown at the top.

From left to right: panning, selection, and rubber band se-

lect. In panning mode, the user can move the viewpoint

in each network view. Zooming is allowed in either view

by simple mouse operations. The selection tool can be

used to add single genes to a selection set. Linking and

brushing techniques are used to highlight the selected set

in both views. The rubber band select tool can be used to

select genes in a rectangular area in the transcription net-

work view. This allows creation of subnetworks that can be

studied in more detail.

The bottom part of the left panel shows the color legend

of the expression data, and allows switching between ex-

pression level and expression ratio visualization. A user can

also select a time point, which will set the fill color of the

gene boxes according to the expression values at that time

point. Finally, our tool supports filtering by expression ratio

or expression level of genes. This is controlled by a double

slider (see Fig. 1 to the left of the color legend). If filtered

out, a gene (or a reaction) is considered as unaffected and it

will be drawn semi-transparent just as the other unaffected

genes (or reactions).

Figure 1 also shows two network visualization widgets:

the metabolic network widget on the left and the gene reg-

ulatory network widget on the right. Both widgets contain

a network view and features dedicated to one of these two

types of networks. We will now describe these in more de-

tail.

The gene regulation network widget is shown in Fig. 2.

This widget contains four main parts, labelled (A) to (D).

The visualization panel (A) offers an overview+detail visu-

alization of the regulatory network. When the user selects

a gene in panel (A) (or in the metabolic network visualiza-

tion), its properties are displayed in panel (B). Some genes

are never considered affected during any time point, there-

fore the user may want to remove them from the visualiza-

tion. Panel (C) allows to filter out these unaffected genes.

Finally, panel (D) allows the user to set up the parameters

for the active network detection algorithm.

Figure 3 shows the metabolic network widget. This wid-

get contains four main parts, labelled (A) to (D). Panels (A)

and (B) offer the same possibilities as in the gene regu-

latory widget, i.e. an overview+detail visualization of the

network and the properties of the selected compound or re-

action. Panel (C) contains two tables, one for the unaffected

and one for the affected pathways and their corresponding



Figure 2. Gene regulatory network widget.

(A) The visualization panel. (B) Selected gene
properties. (C) Full network visualization or
affected network visualization. (D) Affected

genes detection parameters.

Fisher’s exact test values. Finally, panel (D) allows the user

to change the threshold Tp used in Fisher’s exact test.

A video demonstration of the application is available at

our website1.

5. Discussion

We have used a time series dataset from the bacterium

Escherichia coli [5] to perform an initial validation of our

approach. The aim of the validation test was to repro-

duce findings reported in [5]. The dataset contains gene

expression data from 17 time points, during which E. coli is

grown on a mixture of glucose and lactose. The bacterium

grows preferentially on glucose until that energy source is

depleted, resulting in growth arrest while the cells adjust to

growth on lactose. This shift, called the diauxic shift, takes

places at about time point 6. At time point 14, the station-

ary phase is entered in which the organism stops growing

due to the lack of nutrients. During this phase, many pro-

cesses are shut down by the bacterial cell in order to save

energy. The expression levels for this data set range from

0 to 14.97. We set the medium and high expression level

thresholds to Tm = 5.0 and Th = 10.0, respectively. The

ratio threshold was set to Tr = 1.5, and we consider path-

1http://www.labri.fr/perso/bourqui/demo IV09.avi

Figure 3. Metabolic network widget. (A)

The visualization panel. (B) Selected reac-
tion/compound properties. (C) Lists of unaf-
fected and affected pathways and their corre-

sponding p-value according to Fisher’s exact
test. (D) Fisher’s exact test threshold.

ways significant at the 5% level, i.e., we set Tp = 0.05. We

find many pathways related to amino acid degradation and

amino acid biosynthesis, which is consistent with the find-

ings of Chang et al. [5]. At the time of the diauxic shift,

the genes involved in lactose degradation are upregulated,

and we find lactose degradation-related pathways with sig-

nificance levels around p = 0.02. It is beyond the scope

of this paper to provide an in-depth analysis of this dataset,

but these initial results show that our integrated approach

can reproduce results of a traditional approach that involves

many manual and time-consuming steps.

In this paper, we have presented an application for vi-

sualization of gene expression data from microarray time

series experiments in both a gene regulatory network and

a metabolic network context. The expression data can be

used to study activity at the transcriptional level, and this

information can be linked to behavioral characteristics of

an organism at the metabolic level. The combination of vi-

sual exploration of a time series in multiple contexts and

statistical tests for analysis is powerful, and it speeds up the

data analysis process. In comparison with other biological

network visualization approaches, our application is not de-

pendent on specific databases. Transcription networks and

microarray data can be provided in simple flat text files, and

any metabolic network provided in SBML format can be



loaded. This allows domain experts to load their own data

in a straightforward manner.

As part of future work, we will perform an experimental

evaluation of the effectiveness and the efficiency of our tool.

This will involve domain experts with whom we already

have a fruitful collaboration.

We are planning a number of extensions to our current

work. To better support data analysis, it is necessary to

provide statistical analysis methods, so that a domain ex-

pert does not have to rely on visual inspection alone. A

commonly-used method involves clustering of expression

profiles to find groups of genes that show similar behavior.

This helps a biologist in determining functional classes, or

it enables inferring gene function for genes with unknown

function. It would be useful to visualize such clusters in the

context of the transcription and metabolic network.
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