Real time measurement of long parabolic optical similaritons

Christophe Finot, Kamal Hammani, Stéphane Pitois, Julien Fatome, Guy Millot

To cite this version:

Christophe Finot, Kamal Hammani, Stéphane Pitois, Julien Fatome, Guy Millot. Real time measurement of long parabolic optical similaritons. Electronics Letters, IET, 2008, 44 (21), pp.1239-1240. 10.1049/el:20081663. hal-00406239

HAL Id: hal-00406239
https://hal.archives-ouvertes.fr/hal-00406239

Submitted on 14 Apr 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
We generate long optical similaritons using a Raman fibre amplifier. These pulses, with a highly parabolic profile, are monitored in real time on a high speed oscilloscope. Tunability of both the temporal and spectral widths of the pulses is then investigated.

Introduction: Since their first experimental demonstration in 2000 [1], parabolic similaritons have stimulated a growing interest in the field of fibre amplification of high-power ultrashort pulses. This new type of optical pulse is asymptotically generated in an amplifier as the result of the combined interaction of normal dispersion, Kerr nonlinearity and gain. The pulse can then experience temporal and spectral self-similar dynamics and can evolve without suffering from the deleterious effects of optical wave-breaking which usually deteriorates the pulse shape propagating in the normal dispersion regime [2]. Experimental demonstrations have been carried out both in rare-earth doped fibres (with Ytterbium [1] and Erbium [2] dopants) as well as in Raman fibre amplifiers [3]. The use of frequency resolved optical gating (FROG) technique based on iterative algorithms has enabled a precise but indirect intensity and phase characterisation of the amplified pulses which exhibit a parabolic
intensity profile combined with a strictly linear chirp. Parabolic pulse durations ranging from 500 fs to 50 ps have then been demonstrated.

In this paper, we generate and characterise long (> 200 ps) parabolic pulses. To this aim, the use of distributed Raman amplification is particularly well suited to adiabatically reshape initial picosecond-pulses into the targeted parabolic profile. Thanks to a 50-GHz high-speed oscilloscope coupled with an optical spectrum analyser, we have for the first time monitored in real time the parabolic pulse shape. We have also checked that the pulse duration and spectral width can be easily tuned over a wide range by simply adjusting the gain and the initial pulse energy.

Experimental set-up: The all-fibred experimental set-up is sketched in Fig. 1 and relies only on telecommunication-ready devices. Initial pulses are delivered by an erbium fibre laser working at a repetition rate of 22 MHz. The pulses are transform-limited with a temporal duration of 12 ps and a central wavelength of 1550 nm. They are amplified in a 15-km Raman amplifier based on a dispersion compensating fibre (normal dispersion $\beta_2 = 16.6 \times 10^{-3}$ ps2/m and nonlinear coefficient $\gamma = 4$ /W/km). The amplifier is pumped by a continuous fibre laser with an output power up to 1 W. A counterpropagative pumping scheme is used in order to avoid deleterious temporal depletion effects [4]. This also prevents from detrimental noise transfer from the pump to the signal so that the amplified pulse train exhibit very low amplitude and timing jitters as can be seen experimentally (insets Fig. 1) on a high-speed
oscilloscope (50-GHz optical bandwidth). Output pulse spectra are also recorded.
Experimental results: Experimental results are summarised in Fig. 2 for a small signal gain of 28 dB (1 W pump) and for two values of the input pulse energy E_{ini} (7.3 pJ, solid black line and 0.6 pJ, solid grey line). Experimental properties of input pulses are plotted in black dashed-line. Output intensity profile directly recorded by our high-speed photodiode (Fig. 2a) clearly illustrates the excellent agreement between the pulse shape (solid black line) and a parabolic fit (circles). From Fig. 2(a), we can make out that an increase in the initial pulse energy leads to an increase of the peak-power of the amplified pulse as well as its temporal duration, which is a signature of the intrinsic nonlinear nature of the self-similar pulse propagation. In contrast with the anomalous dispersion regime where the amplified shape is highly affected by solitonic compression effect, let us outline that the parabolic shape is here remarkably maintained over a wide range of input power.

The Kerr nonlinearity also leads to an enhanced spectral broadening as illustrated in Fig. 2b (a 15 time spectral broadening is recorded for a 7.2 pJ initial pulse energy). The spectra of the amplified pulse exhibit the characteristic shape of similariton pulses, i.e. rapidly decreasing wings combined with reduced oscillations in the central part of the pulse. Using a Gerchberg-Saxton algorithm [5] and given the temporal and spectral intensity profiles, one can infer the temporal chirp of the pulse. Results are plotted in Fig. 2c and highlight the high linearity of the chirp of the amplified pulses.

Given the ability to directly visualise the amplified pulses, we have studied the influence of the initial pulse energy E_{ini} for different values of small-signal gain g. Temporal and spectral full-widths at half-maximum were recorded and results are plotted in Fig. 3. Output temporal width can be continuously varied...
over a wide range, from 50 ps to 250 ps. The experimental results are in good agreement with a fit based on a $E_{\text{ini}}^{1/3}$ function which is typical of the self-similar analytical evolution of the parabolic pulses [1]. However let us note that for pulse durations below 100 ps, the asymptotic parabolic profile is not fully reached. The maximum temporal duration of 250 ps was only limited by the power available from the ps fiber laser so that larger temporal broadenings could potentially be achieved with more powerful seeds.

Whereas similar temporal broadenings can be obtained for pulses with initial energy of 3.6 pJ and 7.2 pJ associated with 28 dB and 18 dB gains respectively, the resulting spectral broadenings are rather different: pulses amplified in the 28 dB configuration are significantly more broadened than for the 18 dB configuration. This highlights that higher gains lead to pulses with a higher temporal chirp, which is qualitatively consistent with the g / β_2 expression of the linear chirp coefficient of the parabolic pulse [1].
Conclusion: We have generated long 230-ps parabolic similariton pulses using an all-fibred device at telecommunication wavelengths. The parabolic profile has both been assessed by direct visualization on a 50-GHz oscilloscope and by monitoring the optical spectrum. The high quality of the temporal and spectral profiles will be a key element for future applications such as retiming processes [6] or pulse shaping applications. Temporal and spectral properties of the similaritons can be instantaneously tuned over a wide range by simply adjusting the initial pulse energy or the Raman pump power.

Acknowledgements: This research was supported by the Agence Nationale de la Recherche (SUPERCODE project, ANR-06-BLAN-0401) and by the Conseil Regional de Bourgogne. We thank J.M. Dudley for fruitful discussions.

References

Authors’ affiliations:
K. Hammani, C. Finot *, S. Pitois, J. Fatome and G. Millot (Institut Carnot de Bourgogne, UMR 5209 CNRS-Université de Bourgogne, 9 Av. A. Savary, BP 47 870, F-21078 DIJON Cedex, FRANCE)

* e-mail adress of the corresponding author : christophe.finot@u-bourgogne.fr
Figure captions:

Fig. 1 Experimental set-up. Insets: oscilloscope records of the initial and amplified pulses (persistence mode)

Fig. 2 Experimental properties of the 7.2 pJ initial pulse (black dashed line) and of the amplified pulses for initial pulse energy of 0.6 pJ and 7.2 pJ (solid grey line and solid black line respectively)

(a) Temporal intensity profiles recorded on the high-speed oscilloscope
(b) Optical spectra
(c) Frequency chirp.

The output temporal results obtained for a 7.2 pJ initial pulse are compared with a parabolic fit for the intensity profile and with a linear fit for the chirp (circles)

Fig. 3 Temporal and spectral full widths at half maximum of the output pulses as a function of the initial pulse energy. Experimental results without gain (black crosses) and with different values of gain (7 dB, 18 dB and 28 dB, light grey, grey and black circles respectively). Experimental results are compared with a $E_{ini}^{1/3}$ fit function.
Figure 1

ps fibre laser \(\lambda_p = 1550 \text{ nm} \)

residual pump

WDM coupler

15km fibre with normal dispersion

WDM coupler

Raman fiber laser \(\lambda_p = 1455 \text{ nm} \)

pump

signal

amplified signal

HIGH-SPEED OSCILLOSCOPE

SPECTRUM ANALYSER
Figure 2
Figure 3

(a) Temporal width (ps) vs. Initial pulse energy (pJ)

(b) Spectral width (GHz) vs. Initial pulse energy (pJ)