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Optimization of Synthesis Oversampled

Complex Filter Banks

Jerdome GauthierStudent Member, IEEB_aurent Duval Member, IEEEand
Jean-Christophe Pesqué&egnior Member, IEEE

Abstract

An important issue with oversampled FIR analysis filter lsa(iBs) is to determine inverse synthesis
FBs, when they exist. Given any complex oversampled FIRyaisaFB, we first provide an algorithm
to determine whether there exists an inverse FIR synthgstera. We also provide a method to ensure
the Hermitian symmetry property on the synthesis side, lwlgcserviceable to processing real-valued
signals. As an invertible analysis scheme corresponds &mlandant decomposition, there is no unique
inverse FB. Given a particular solution, we parameterize tinole family of inverses through a null
space projection. The resulting reduced parameter setlifgapdesign procedures, since the perfect
reconstruction constrained optimization problem is reagsan unconstrained optimization problem. The
design of optimized synthesis FBs based on time or frequétalization criteria is then investigated,

using a simple yet efficient gradient algorithm.

Index Terms

Oversampled filter banks, inversion, filter design, optatian, time localization, frequency localiza-

tion, lapped transforms, modulated filter banks.

. INTRODUCTION

Since the 70s, filter banks (FBs) have become a central tool irakignage processing and commu-

nications: lapped or discrete wavelet transforms can bwedeas instances of FB structures. Likewise,
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oversampled FBs (OFBs) constitute an extensively studiderine with remaining open questions. Their
development came along under a variety of different appefis, to name a few: general Analysis-
Synthesis Systems [1], DFT (discrete Fourier transform) widtlksshift capability, Overlap-Add or
Generalized DFT, underdecimated systems, oversampledoharmmodulated filter banks [2], [3], com-
plex lapped transforms [4], generalized lapped pseuddHmzgonal transformetc

In a more generic form, OFBs have received a considerablgtiatteboth theoretically and in many
applications, in the past ten years, following their assi@n with specific types of frames [2], [5], [6].
Their design flexibility, improved frequency selectivity aimtreased robustness to noise and aliasing
distortions have made them useful for subband adaptiveiridfen audio processing [7], noise shaping
[8], denoising [3], multiple description coding [9], echarzellation [10], multiple antenna code design
[11], channel equalization [12], [13], [14] or channel cogli[15].

Two major problems arise when resorting to OFB}tlfe existence of an inverse for the analysis OFB
achieving perfect reconstruction (PR) anid the determination of an “optimal” synthesis FB. Since the
additional degrees of freedom gained through redundangy in@ease the design complexity, several
works have focused on FBs modulated with a single [16], [17inaitiple windows [18]. More general
formulations are based on factorizations of OFB polyphageesentations with additional constraints
(restricted oversampling ratios, symmetry, realness @r figngth) into a lattice [19], [20], [21], [22] or a
lifting structure [23]. Constructions with near perfectoastruction (relaxing the PR property) have also
been proposed [24], [25], [10], [26]. In [27], [28], [29], m@involved algebraic tools (such asdbner
bases) have also been employed. Recently, €hal. have proposed a design based on FB state-space
representations [30]. The design may use different kindgptifrozation criteria based on filter regularity
or more traditional cost functions based on filter shape (@nblattenuation [21], [10], coding gain [31]).
Most of those synthesis FB designs rely on minimum-norm gwist An interesting approach combining
the latters with a null space method was successfully pdréyeMansour [32] for synthesis window
shape optimization in a modulated DFT FB.

Within the compass of the proposed work is a relatively geneonstruction and optimization of
oversampled synthesis filter banks with Finite Impulse RespdRIR) properties at both the analysis
and synthesis sides. We can additionally impose a pralgticaéful Hermitian symmetry on the synthesis
side. This work extends the results given in two previous exnfce papers [33], [34]. A special case
has been judiciously devised in [22], for specific filter lengifd redundancy factor allowing closed
form expressions for two design criteria. In Section Il weatethe polyphase notation used throughout

this paper. Given arbitrary FIR complex oversampled ansly&, we first describe in Section IlI-A

July 20, 2009 DRAFT



a simple algorithm to test whether it is FIR invertible or nbased on known results on polynomial
matrices [35], [36]. The standard Moore-Penrose pseudasav@l) solution [37] is studied in Section
[1I-B. In Section 1lI-C, a method is supplied to enforce an méman symmetric FB, which is useful
for real data analysis, processing and synthesis. In Sebfiothe problem of the optimal design of the
synthesis FB is addressed. Although optimization can beestuabth on the analysis and synthesis sides
[38], [39], we consider here a given analysis FB and work onsyrghesis side. We derive in Section
IV-A an efficient parameter set size reduction for this pugpddsing time or frequency localization
criteria, we then reformulate in Section 1V-B the constrdirmgtimization problem as an unconstrained
one for both the general and Hermitian symmetric cases.r Aféscribing the optimization process,
we illustrate, in Section V, the different methods proposedthe inversion and optimization on three

classical oversampled real and complex FB types.

II. PROBLEM STATEMENT

A. Notations

Yo(n) —
Hy p{|N}P— - TN b Hp
y1(n) v =~
X Hi p{|N}P— S | TN b H
! ?
: 2]
i ym—1(n)| 3 = ]
b o bV ] @ (S v e s

Fig. 1. Oversampled/-channel filter bank.

Lapped transforms [40] were introduced in [41] to avoid blagkartifacts in audio processing.
Similarly for images, they reduce tiling effects produceddigssical block transforms (as can be seen
in the JPEG image compression format). Lapped transforms dpeétothe class of FBs, such as the one
represented in Figure 1, with a decimation fachdorsmaller than the length of each filter. The filters,
whose impulse responses are denoted/hYo<i<ar, are supposed of finite lengthV with & an integer
greater than or equal to 2. We therefore considewverlapping blocks of sizév.

A signal (z(n))nez is decomposed by/ filters; since the decimation factor 1§, the overall redun-
dancy of the transform i8//N = k’. In this paper, we investigate the oversampled casek’ > 1.

The M outputs of the analysis FB are denoted (ay(n))o<i<n. With these notations, the outputs of
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the analysis FB are expressed, fora#t {0,...,M — 1} andn € Z, as

N-1
Zh 2(Nn—p)=>_ > hi(Nl+ j)z(N(n— L) — j). (1)

¢ j=0
B. Polyphase formulation

Let H(¢) = [hi(NC+ j)]o<icrro<jens € € {0,. ..,k — 1} be thek polyphase matrices obtained from
the impulse responses of the analysis filters. We also definpdlyphase vector from the input signal

z(n): Vn € Z, X(n) = (z(Nn — j))o<,<n, leading to concisely rewriting (1) into a convolutive farm

y(n) = (yo(n), - ynr—( ZH = (Hxx) (n), (2)

where " is the transpose operator. Thus, (2) can be reexpresseg|zas= H[z]x[z], whereH[z] =

z’;;ol H(¢)z=! is the M x N polyphase transfer matrix of the analysis FB add (resp.y[z]) is the

z-transform of (X(n))nez (resp.(y(n))nez)-

C. Synthesis FB

The polyphase transfer matrix of the synthesis FBz] = 3, H(¢)z, satisfies:

X[z] = H[zly[z], 3)

where the polyphase vector of the ouput signal of the syigheB (X(n)),cz is defined similarly to
(X(n))nez. We deduce from (3) that:

M— 0o
vneZ,Vie{0,..,N -1}, Z(nN—i)= Z Z y; (0), (4)

Whereﬁ(é) = (f]i7j(£))0<i<N 0<jenr’ Expressing (4) with impulse responses, we can write: foryeve
i€{0,...,N—1} andn € Z,

M— [e%)
F(nN —i) = Z > hi(N(n—0) —i)y;(0) (5)

7j=0 {=—00
which, by identifying (4) and (5), allows us to deduce that
H(0) = [y (e - z)}0§i<N7O§j<M, le. 6)

These expressions hold for any oversampled FIR FB.
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[1l. I NVERSION
A. Invertibility of an analysis FB

This work being focused on the construction of FIR synthesier§ijta preliminary point is the
verification of the given analysis FB FIR invertibility. The pplyase representation of FBs offers the
advantage of relating the perfect reconstruction proptrtyhe invertibility of the polyphase transfer
matrix [42]. The latter matrix belongs to the ring[z, z—!]M*V of Laurent polynomial matrices of
dimensionsM x N. We emphasize that we do not look for any inverse MIMO filtett fou an inverse
polynomial matrix in C[z, 21 |V*M instead. In other words, we aim at obtaining a (non-necigsar
causal) FIR synthesis FB.

A first answer to this FIR invertibility problem can be conveyduough the study of the Smith
McMillan form of a polynomial matrix [43], [42], but unfortuately this decomposition is quite costly.
Park, Kalker and Vetterli also devised a method usingb®er bases [28] to study the invertibility
of polynomial matrices which is applicable to the generaltidimensional case. We describe here an
alternative cost-effective method in the one-dimensi@aake. The following result gives a necessary and
sufficient condition for a matrix to be left invertible, andu#) for the existence of such an inverse system:

let H[z] € C[z, 2~ 1]M*N pe a polynomial matrix with\/ > N. The following conditions are equivalent:

1) HJ[z] is “coprime”, which means that the determinants of the maximminors (sub-matrices of
size N x N) are mutually relatively prime.

2) Hl[z] is left invertible in the sense that there exibt&] € C[z, z~!|V*M such thatH [z]H[2] = | x.

A proof of this result can be found in [35] for instance.

The first condition is directly applicable in practice to resothe left invertibility of the polyphase
transfer matrix. Using the following procedure, we can éhecmerically whether this condition is
satisfied:

O Extract a maximal sub-matrikl.[z] of H][z].

00 Computedet(H.[z]), and determine its set of roos.

[0 Consider another maximal sub-matrix. Remove frémthe elements which are not roots of the

determinant of this sub-matrix.

0 Repeat stefil until S, = () or all maximal sub-matrices have been extracted.

O If S. = 0 then the polyphase transfer matrix is left-invertible; eathise, it is not.

The corresponding algorithm is easily implemented, leattingxtract the roots of a single polynomial

and check the roots of at mo(sﬁ(,’) —1= N,(+lm, — 1 polynomials. If the polyphase matrix is left
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invertible, the number of considered polynomials in pi@etis usually much smaller tha(r%) — 1, this
bound being reached only when the matrix is not invertibleteNthat in the case of causal filters (i.e.
both H[z] and H[z] are polynomial matrices i©[z—']V*M), simpler invertibility conditions exist by
invoking the so-calleccolumn-reducedproperty [44], [45]. Also notice that, one of the advantagés

this algorithm over other methods is that it can be fully nuoadly implemented.

B. Computation of an inverse FB

The method proposed in Section IlI-A only guarantees the exit of a left-inverse, corresponding
to an FIR synthesis FB. Since it does not provide a construckipeession, we now perform the actual
computation of an inverse polyphase transfer matrix. Weirasshereafter thati[z] was proven to be
FIR left invertible.

Since the goal is to achieve PR, we search for a méatfix in C[z, z—'|V*M such thaH[z] H[z] = | »
and there existgp;,p2) € N? such that the polyphase transfer function of the synthesisréils:
H[z] = ﬁi_pl H(¢)z~¢. The resulting overlapping factor of the synthesis filterg is- p; + py + 1.
When working with Laurent polynomial matrices, these intsge andp, area priori unknown, whereas
with polynomial matrices a bound exists [44]. By rewritifgetPR property in block convolutional form,

we get the following linear system:

HH =U (7)
where
UT = [Onp.n, 1y Ox psrnyn| € RYEPZDN 1T — [H(—py),- H(po)| € CV9Y, (8)
H(O) -+ H(k—1) 0
and H' = e CPMxWtp= N, ©)
0 HO) - H(k-1)

As already mentioneds; andp, are unknown, but since the system (7) is supposed invertblieast
a couple of integergp;, p2) solving the system exists. The valuesgf and p, are actually obtained
by increasing the value gf and looking for every couple satisfying = p; + p2 + 1, starting with
p = 1. Hence, for a giverp, we consider all(p;,p2) in {(p — 1,0), (p — 2,1),...,(0,p — 1)}. The first
p allowing a Moore-Penrose pseudo-inverse [46] solution Jopfdvides an inverse polyphase transfer

matrix of minimum order.
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C. Hermitian symmetric case

1) Symmetry conditionslt is well known that the Fourier transform of a real signalHsrmitian
Symmetric (HS): its frequency decomposition is symmetrictfa real part and anti-symmetric for the
imaginary part. Conversely, if the coefficients are HS in tlemfiency domain, then the reconstructed
signal is real. This property is very useful for real data filtgr which often consists of removing or
thresholding coefficients in the frequency domain befor@mstructing. Securing the reconstruction of
real-valued signals from the transformed coefficients is #ndesirable property. In this section, we study
the HS case and its effects on the methods proposed in thepsesections.

The HS property in the synthesis filters is satisfied providet twnsidering any symmetric subband
indicesj; € {0,...,M — 1} and M — 1 — j, for any coefficientgy;(n))o<i<a such thaty;(n) = 0 if
(i,n) # (jg,ng) or (i,n) # (M — 1 — js,ny) with ny € Z and, such thay;, (ns) = ym—1-;,(ny), @

real-valued signal is reconstructed. The reconstructethkigads:

M-1 oo
Fm)= > > hj(m—NOy;(0) = hj,(m —ngN)y;, (ng) + har—1-j,(m — ngN)y;, (ny).
j=0 t=—0c0

A necessary and sufficient condition fa{m) € R for all y; (ny) € C, is that Ejf (m —nsN) =

har—1-j,(m —nyN). This condition must be verified for any couple of integéfs, ;). The condition
on the synthesis filter is thetvj € {0,..., M — 1} andV¥n € Z, h;(n) = ha—1_;(n). Using (6), we

rewrite the condition as

Ve € {—p1,..,p2}, H(E) =H)Iu. (10)
whereJ,; is the M x M counter-identity matrix:
0 1
Iy =
1 0
We have supposed here that the transformed coefficients @i aigmal exhibit the HS property. In other
words, for any real signalz(n)),ez, and for any coupl€;s,ns) € {0,...,M — 1} x Z, the output of

the analysis FB verifiesy;, (ns) = yar—j,—1(ns). This condition can be rewritten:
- by (m)a(Nng —m) = 3 har—j, -1 (m)a(Nny —m).

Considering a zero input signal except for one sample, we deduce that(n) = hy;—j,—1(n), which
is equivalent to
H(¢) = dpH(0). (11)
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Hence, if the analysis FB verifies Condition (11), then the ficiehts after decomposition satisfy the
HS property.

Remark 1:Consider an invertible HS analysis FB. By inserting (11) ia R condition we get:

min(p2,¢) _
Sl = > H(s)JpH(l — s).
s=max({—k+1,—p1)
. _ . T
It implies that if H = [H(—pl),--- ,H(pg)} is a solution of the linear system (7) then, under the
—~ — —_ T
HS hypothesis on the analysis FB, = {H(—pl)JM, e ,H(pQ)JM:| is also a solution of the linear

system. Finally, it follows that the sun‘ﬁo = %(ﬁ + 772) is also a solution. Moreover, this solution
verifies Condition (10) by construction.

In other words, we have proved that an invertible HS anallyfisadmits at least one HS synthesis FB.
2) Construction methodWe suppose here that the analysis FB was proven invertibletizatdthe
matricesH (¢) satisfy Condition (11). Our objective is to build a syntlseBB possessing both the PR

and HS properties.

a) First case:M is even: First, we rewrite Conditions (10) and (11):

A(0) = [A1(0), Aa(0)] . Hy € CV<M andf, e CVXM’ |
(10) ¥ € {—pr.opay .4 HO= [FO (0] Fy :

H(f): , H1€(CMI><N annge(CM’XN,
(11) & Ve e {0,...k—1}, Ha(0)

Hi(¢) = JdnHa(0)
with M’ = M /2. Combining these conditions and the PR property, we get:

min(p2,f) min(p2,¢) __
Sl = > Hi(s)Hi(£ —s) + > Hi(s)d3, Hi(€ —s). (12)
s=max({—k+1,—p1) s=max({—k+1,—p1)

SinceJ3,, = |y, the previous equation can be seen as the sum of a complei it its conjugate,

leading to a real matrix. We deduce that

min(p2,?) R
1 — - HY' (€ - s)
§5Z|N = > [H{%(s% —H{(S)] 11 ;
s=max({—k+1,—p1) Hl(g - S)

whereA” is the matrix of the real part of a matrik andA’ is its imaginary part. We will then define

the following matrices:

He = |Hf(=p1), ~H{(=p1), -+ ,Hf”(pg),—H{(pQ)} e RN*PM, (13)
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and

HE(0) HE(k —1) 0
H{(0) Hi(k —1) 0
HI = c RPM*(k+pi+p2)N
0 HEf(0) - Hf(k-1)
0 H(0) HI(k —1)

b) Second casel is odd : Similarly to the first case, Conditions (10) and (11) can be iteswr.

H(0) = [H1(0),c1(6),Ha(€)| , Hy € CV*M" andHy € CVXM,
(10)<:>\V/€€ {_pla"')pZ}) |: :|

1(£) = Ha(0)Jdyp andcy (¢) € RY
H1(¢)
C2(€)T
Ho ()
Hi(¢) = JarHo(¢) andcy(¢) € RY

H(ﬂ) , H, € (CMIXN and Hy € (C]\/[/XN,
(11) & Ve e {0,....k — 1},

with M’ = (M — 1)/2. Combining these conditions with the PR equation and folhgwihe same
reasoning as in the previous section, we deduce that

Rep
1 mi%@ HE(s) S0 1 Hl((f )TS)
,(SgIN = |:H1 (8), ,—Hl(S):| Glt—s
2 s=max({—k+1,—p1) \/Q V2

Hi(¢ - s)
Subsequently, we introduce in this case the following mestic
H;r = H{%(_pl)7 1(\/%)1)7_H{(_p1)7"’ 7H{%(p2)7 1\(/1)52)7_H{(p2):| ERNXPM? (14)
and
HE@O) - HE(k-1) 0
CQ(O)T (:2(]'671)—r 0
V2 V2
H{(0) Hi(k —1) 0
H;r — c RPMX(k+p1+P2)N_
0 HE©) e HEG -
0 c(0)T co(k—1)7
V2 V2
0 H{(0) H{(k —1)

July 20, 2009

DRAFT



10

¢) Conclusion :In both even and odd options, we solve a linear system of thee Size as the one
of Section I1I-B, but with real coefficients in this case. Momegisely, with the introduced notations, we
have:

1

— T
HsHs - us - 5 [ON,p1N7 IN7 ON,(p2+k71)N} .

The system is then solved, in the same way as in Section IlI-Birféoeasing values gb (starting with
p = 1), for each couplép;,p2) € N? such thatp = p; + p2 + 1 we try to invert the generated system

through a Moore-Penrose pseudo-inversion.

IV. OPTIMIZATION
A. Dimension reduction

1) General caseBefore addressing the issue of optimization in itself, letrewrite the linear system
expressing the PR property. The analysis FB is still supposesttible. Letr be the rank of the matrix
H e Chtpitr2)NxpM \We assumed that < Mp (with p = p; + ps + 1). Performing a Singular Value
Decomposition [47] (SVD) on this matrix yields{ = UyXoV;, where ¥y € C™" is an invertible
diagonal matrixly € CNk+r=1)xr andy, € CMP*" are semi-unitary matrices (i.&( U, = |1, and
ViWo = |,.). Therefore, there exist; € CNE+p—)x(N(ktp=1)=1) gndy; e CcMr*(Mp=7) sych that
Uy, Ui] and [V, V1] are unitary matrices. When an inverse polyphase transfebneists, a particular
solution to (7) isH® = H%U , where H! = Vo35 U4 is the pseudo-inverse matrix 6f. Equation (7)
is then equivalent twozovg(ﬁ - ﬁo) = On(k4p—1)xn- Sincelfgly = |, and X is invertible, we get:
Vi(H —H°) = 0, . In other words, the columns 6 — H° belong toKer(V;), the null space oV;.
Moreover, it can be easily seen thatr();) is equal tolm(V;). We then obtain the following affine
form for H:

H=WC+H, (15)

whereC € C(Mp=m)xN,

The construction of a synthesis FB thus amounts to the choia@ ¢f C = O(ys,—,)xn, then the
obtained synthesis FB is the Pl FB. This expression can be fugheitten into a more convenient form
for optimization purposes. First, we define the matri®és) jc(o,... a—1) by: forall € {—p1,...,p2} and
ne{0,...,Mp—r—1}, (Vj)itp,.n = Vi ((l4+p1)M+34,n), with Vi = [Vi(s,n)]o<s<Mp,0<n<Mp—r- AC-
cording to (15) and (8), we can write for dlle {—p1, ..., p2},i € {0,..., N — 1} andj € {0,..., M — 1}:

_ Mp—r—1 _
Hij(6) = > (Vi)erpnCln, i) + HY;(0),

n=0
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where (H; ;(¢)) pi<t<ps —p1 <U<p>

spond to the PI solution and = [C(n, ¢)]o<n<mp—ro<i<n. FOr allj € {0,..., M — 1}, we introduce the

matricesﬁ? defined by:(ﬁ?)@r = HY,(¢) for all £ € {—p1,...,p2} andi € {0,..., N — 1}. We thus
Pt g

represent the impulse responses of the synthesis(ﬁ%(é)) corre-

obtain

Hij(0) = (ViC +RY) (16)

l4p1,i
This equation is used in Section I1V-B1 to simplify the optintiaa problem raised by the design of the
synthesis FB.

The above expressions are given in the complex case, but #iayafly remain valid in the real case.
This will be illustrated by the first example of Section V-B3a.

2) Symmetric caseln this section, we adapt the results of the previous sedtiothe HS FB case.
The notations used here are similar to those introduced inddeldt-C2. It is worth noticing that we
can calculate the matrix( directly from’H,, as defined in Section 111-C2 whell is either even or odd,
in the following way:

H = PrcHs (17)
where the matrixPrc € CPM*PM s the block diagonal matrix built with the block:

L —ol
JM/ ZJM/

if M = 2M’ (even case, as seen in Section IlI-C2a) and:

lar 0 —alpp
0 V2 0
Jy 0 INEVE

if M =2M'+1 (odd case, as seen in Section 11I-C2b). By applying once agai8VD onH,, and by

following the same steps as in Section IV-Al, we end up with gmagon similar to (15):

—~ —~0

Hs =V1C + H, (18)

Note that, according to the properties of the SVD, the mafriss now real-valued. By noticing that

HO = PrcH,. and settingV, = PrcV;, we finally obtain:
H=wWiC +H’. (19)

We next define the matricedV;)o<j<y—1: for all £ € {—p1,...,p2} andn € {0,..., Mp —r — 1}:
(W;)t4pyn = Wi((€+ p1)M + j,n). Using (19) as in Section 1V-Al, we get:
0

f[@j(@ = (W]C + HJ)@erl,i ’

(20)
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B. Optimal solution

1) General form for the cost functiondepending on the desired properties for the synthesis FB,
several cost functions can be employed. We first propose aigeswst function formulation and then
provide practical examples based on the filter time or frequespread, respectively.

Our goal is to optimize the filter shape given by the coefficigntsf the synthesis FB, subject to
the perfect reconstruction property. According to the ltesim Section IV-A, it is possible to represent
the coefficients in the general case by using (16). The optiinizdavorably takes place in the reduced
dimension space the matrix belongs to (compared with the dimension of the space of tlefficents
of iNz), thus allowing us to reformulate the optimization undereaf@ct reconstruction constraint as an

unconstrained problem. In this context, the generic casttfan form we consider is:

e

J(h)=J(C) = 2
j=0 HVjC + HjHA

Hereabove, the following notation has been employed:
VAT AR = Y APl K (i 00,
(i,0',6,0")
whereK andA are(N x N xpxp) kernels. Moreover, we assume here thaf ,- represents a semi-norm
over CV*P and it is thus real non-negative. Liét be the matrice defined W ooy = K (1,06, 0)
forall (¢,¢) € {0,...,p —1}* and(i,7') € {0,..., N — 1}*. Without loss of generality, this matrix can be
taken positive semi-definite, which implies théf, ,y ., o n = Kl pn oy and, thus,K (i, i’ £,0') =

K(i,i,0,¢). We deduce the following expression:

Al = > AAi oK, d 00) = > Ahv oK@ i,0.0).
(ivi/7€7z/) (’LZ @é)

This relation will be used to simplify some equations in Setctié-C and Appendix C. We finally notice
thatK’ is a positive definite Hermitian matrix if and only |if| . is a norm.

2) Impulse responses optimizatioA: first objective is to obtain impulse respons{ég)oSKM for the
synthesis filters well-localized, around some time-indig@s)o< ;. We now explain the link between
the cost function form introduced in the previous sectiod tne previously described dimension reduction
to further simplify the problem.

The considered cost function is the following:

[ — 7,1 [y (m)

_ M—-1 Zm
Ji(h) = wy
j=0

~ 2 )
S ()|
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with o € R*. and weights(w ;)o<j<n € (Ry)M such thaty- M7 e = 1.

If a =2 andm; = W then Jt( ) represents a weighted sum of the standard temporal
dispersions measuring trﬁa time localization of a fih@r[48]. Combined with (6), we get:
2
oM R Y oLIEN — i — 7| |y (EN — i)
h) _ Z Wtj p N ) ’ 5 ‘
=0 Zzzipl i ‘h ((N — z)'
2
LDV SN Y |6N—z—m]| Hi(0)]
= Z C(Jt’j o 2
Jj=0 gf_p ‘Hz j ‘

We now introduce the kernelB’; and A defined by
Kjt(l, i/, 14 +p1,€/ +p1) = Wht,j MN -1 — mj]a 52'_1‘/5@,4/, (21)
A(Z7 i/a 14 +p1)€/ +p1) - 5i—i'5f—£’)

forall j € {0,...,M —1}, (¢,¢') € {=p1,...,p2}? and(i,i’) € {0,..., N — 1}2. Using (16) we write:

S 3 o] = e+ Al

t=—p; i=0

and
D2

N-1
Wi Z ZEN—z—m] ’H” . —’

{=—p; =0

Hereabove||.||, reduces to the Frobenius norm. Finally, we deduce that

M-1

A=Y = )
5 e+,

The constrained minimization of; is then reexpressed as the unconstrained minimization. of

3) Frequency response optimizatioWe proceed similarly to the previous section, for a diff¢érewst
function Jf(ﬁ). Our goal, dual to that in the previous section, is now to l&gze the frequency responses
of the synthesis FB by concentrating the frequency respohsaah filterﬁj around some frequenc.

This is achieved by minimizing

1/2+f; ol nal?
T S = 517 Rl v o
— i [Y2EL ]2d
7= —1/2+f; |l AV

wherea € RY, (wrj)o<j<nm € (RE)M with Zj]‘iglwf,j = 1 and, h;[] is the frequency response of the

jth synthesis filter, defined as

- P2 — '
Vv e [-1/2,1/2, hj[V] Z Z H’] Q)e2m(Ne=iy,
E_—pl 1=0
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f%%l/‘ﬁj[y]fdv -

When f; = — — the cost function/s(h) represents a classical weighted frequency disper-
S5, |t dv

sion measure for the synthesis filters. We then define the kernel

1/24f; N
K;-(i,i/,€+p1,f/ 4p1) = Wf,j/ v — fi]® e TN U=~ gy,
—1/2+f;
V2 2 (V) ) )
= wa/ ) |v|* e = )Wl du, (23)

—1/2

with (i,7,6,0') € {0,....,N —1}* x {=p1, ..., p2 }*.
Remark 2: The examples provided in Section V-B3 are obtained wits 2. In this case, the explicit
expression of the kernel becomes:
wr,j

fr. . 12
Ki(i,i', £+ p1, 0 +p1) = wi j (—1) N~ = 2em(N (=) ~(i=i))

if i =4 and¢ = /¢

32N =) — (1= 7))° otherwise
with (i,7,6,0') € {0,...., N —1}* x {=p1, ..., p2 }*.
Combining these notations and (16), we have
1/2+f; ~ 2 0112
wi /1/2+fj lv — f;]* ‘hj[u]’ dv = HV]'C + Hj’ Kt
Invoking Plancherel’s theorem and the kernetefined in Section IV-B2, we obtain:

st ar= 35 S5 Aol = e

/1/2+fj
—1/2+f;

Finally, substituting these expressions in (22) yields

e+ /Y
W= HO‘K _ 7o)
=0 [vse + A

Once again, the constrained optimization problem has befenmulated as an unconstrained one.

C. Gradient optimization

The constrained optimization problem being turned into aoustrained minimization, we now provide
more details about the minimization algorithm we employtHis work we have used a simple gradient
algorithm with an adaptive step,. The algorithm can be summarized as follows:

O Initialization: Cp = 0, n = 0.

U u,=1

0 Computation oD,, = V.J(C,).
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L = 1
0 While J(Cp — pnDy) 2 J(Cr), setpn — —.
0 Cn+1 = Cn - MnDn'

Hn

O If ||Cht1 — Cnll > € then increment: and go to stef].

The step-sizgu,, used here remains large as long as the algorithm is gettosgicto a local minimum
(in other words, as long a#(C,.1) < J(Cy,)). It is only adapted (reduced) to prevent the criterion from
increasing. The initialization witldy, = 0 entails that we consider the pseudo-inverse synthesis FBeas t
starting point for the algorithm. In practicewas set tal0~!3.

Other step selection strategies exist: constant or optsteps, steps satisfying Wolfe or Armijo
conditions [49], [50]. The method used in this work is easy mplement and is well-suited to the
different cost functions we have considered, while keegingasonable complexity.

As the cost functions considered in this work are not contlere is no theoretical guarantee that
the algorithm converges to a global minimum. Yet, as is shaw8ection V, initializing this method
with the PI synthesis FB provides quite good results and exeisgmulations have confirmed this good
behaviour.

The expression of the gradient for the general cost functagivien in Appendix A and is next applied

to .J; and J; in Appendix B.

D. Optimal solution in the symmetric case

1) Cost functions:Using the same notations as in Section IV-B, in the HS casefdltmving form
of the cost function is found:

M1 HWjC + ﬁ?‘

2
Js(h) = J5(C) = Y —————p "
5 Jwe
As in the general case, (20) has been used to transform tlstramed optimization problem ol into
an unconstrained minimization problem 6n
2) Examples of cost functions€Equation (20) is very similar to (16). We consequently define th
cost functions in the HS case following the same approac &ections IV-B2 and IV-B3. Thus, the

following functions are considered:

M1 ijc + H?\

2
K
2

JsC) = > —
" R
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to concentrate the time localization of impulse responaed;

v Wi+ Hj|

2
Te0) =Y ———
i=0 HWJC+H].HA

to enhance the frequency selectivity of the filters. Their gnatd are provided in Appendix C.

V. EXAMPLES

As emphasized in the introduction, a wide variety of filter keand design choices can be made. In
this section, we have chosen to work with three differentngpias exhibiting interesting properties and

allowing us to show the benefits incurred in the proposed &iwerand optimization methods.

A. Considered filter banks

1) Real Lapped TransformsThe study, developed for the general complex case, remallysaip-
plicable to the design of real filter banks. As an illustratiare first consider real lapped transforms
introduced in the middle of the 90s under the nam&ehLOT (generalized linear-phase lapped orthog-
onal transform) [51]. Those transforms generalize the DCiBi®te Cosine Transform) and the LOT
(lapped orthogonal transform).

To illustrate the inversion method, we have chosen a GenLQh Wi = 16 filters of 32 coefficients.
This FB is invertible, in a non standard oversampled use, vattapetersV = 8, k = 4 andk’ = 2. Its
impulse and frequency responses are represented in Figlites2-B is real and does not satisfy the HS
condition. By using the method described in Section III-B, fivel p; = 3 andp, = 0 (hencep = 4).
The frequency and impulse responses of the synthesis FB cethputh the pseudo-inverse are shown
on Figures 3(a) and 4(a).

2) Modulated complex lapped transforriVe now consider another analysis FB based on a windowed
generalized Fourier transform, corresponding to a moddlaomplex lapped transforrMCLT). This
family of FB has been used by Kingsbury [4] or Malvar [7] for &pations in video as well as audio

processing. The analysis impulse responses/afe:;) = E(i,n)ha(n), Where

B 1 (i k'N 1 _ kN 1\ 2%
E(i,n) = Wi= ) (=4 T

VN
and (ha(n))1<n<kn IS an analysis window. In this paper, we consider two anslygndows. The first,
defined by

Vn e {1,..,kN}, faxn)zsm(gfg%j)
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Fig. 2. (a) Impulse and (b) frequency responses of a GenLOT sindiB.

is a standard sine window, employed for example in [7], [4Je Becond ha, (n))1<n<kn, COrresponds to
a zero-phase low-pass filter with cutoff frequery/(kN), built from a Kaiser window. This window,
with better tapering thah,,, was used for instance in [32]. It is interesting to note thé analysis FB
family, with both analysis windows, satisfies Condition (1t other words, it can be used to illustrate
our approach in the HS case. The method from Section IlI-A wasl@rad to verify the invertibility on
this FB, with both analysis windows and parametdfs= 8, k = 3 and k¥’ = 7/4. We then compute a
first synthesis FB with the Pl method of Section I1I-B. For the gsial FB withh,, window, the minimal
parameterg; = 2 andp, = 0 were obtained. The frequency response of this synthesis Fdpissented
in Figure 5(a). In théh,, case, the minimal parameters = 2 andp, = 0 were, once again, found when

applying the method of Section IlI-B. An HS synthesis FB is tluemived from this filter bank using
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Fig. 3. First example (with the GenLOT FB of Section V-Al): frequenegponse of the synthesis FB obtained (a) through
the pseudo-inverse method and (b) after optimization with cost fundtion

the method of Section 111-C2 to directly build an HS synthdsis The frequency and impulse responses
of the resulting synthesis FBs, in titg, case, are shown in Figures 6 and 7, respectively. Figure 6(a)
shows that synthesis filters present a symmetric behaviah®r coefficients (in other words, they have

a linear phase) while the synthesis FB in itself is not HS. We atstice that the frequency selectivity or

time-frequency localization of the filters obtained throubé pseudo-inverse methods is not satisfactory.

B. Optimization examples

1) Kernel parameters:
a) Temporal kernelK}: It is defined by (21). The parameters; define the (temporal) positions

around which the impulse responses of f;ﬂ@ filter should be concentrated. To obtain well tapered
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Fig. 4. First example: impulse response of the synthesis FB obtainetir(a)gh the pseudo-inverse method and (b) after

optimization with cost function’;.

filters, we need to concentrate the impulse responses arbenahitldle of the filter support. Therefore,
the same parameter was used for all filters. The support of teesfitteing{ —p1 N — N +1,...,pa N},

we have chosem; as

N+4+1—-p N—N
VO<j<M, —je=m=2 i 2p1 .
In our design exampley has been set t0.
b) Frequency kerneK;: It is defined by (23). The parametefs represent the reduced frequencies
around which we want to concentrate the frequency respaofsd®e synthesis filters. More precisely,
we chosef; such that it is centered inside the bandwidth of the analités /;. The exponenty has

been set t®.
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Fig. 5. Second example (in the MCLT case with windbywy): frequency responses of synthesis filters (a) before and (b) afte

optimization with the cost functioﬁf.

c) Weight parameterstn the proposed cost functions, the parametgrsandws ; control the relative
importance of the different filters in the optimization preseFor the following examples we have chosen

equal weights:
1

Vie{0,...M -1}, wyj = wr; = I
In other words, we aim at obtaining synthesis filters with Embehavior.

2) Computation time:In Section IV-A, we have seen how to parameterize the systedhthns
how to reduce the dimension of the optimization problem. Valwate the gain resulting from this
parameterization, Matlab programs were written to compleesolutions of the constrained problem,
using functionf mi ncon, with the solutions of the unconstrained problem, usingcfiom f mi nunc
and using the gradient method explained in Section IV-C. The fimctionsf mi ncon andf i nunc
were chosen as examples of optimization implementationlewthe gradient procedure can be easily

applied in different languages without requiring Matlab.e$b programs were tested with the analysis
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Fig. 6. Modulus of the impulse responses of the synthesis FBs (in the M@s& withha, window): (a) pseudo-inverse and

(b) symmetric version with the method of Section 11I-C2.

FB introduced in Section V-A2 with the,, window and the following parameters: overlap factos 3,
redundancyk’ = 7/4 and downsamplingV € {4,8,16}. The cost function used wa% (as defined
in Section 1V-B2). Table | shows the computation time for th#fedent methods on a computer with
2.16GHz Intel Core T7400 CPU and2Gb of RAM.

TABLE |

COMPUTATION TIME TO OPTIMIZE A SYNTHESISFB WITH DIFFERENT METHODS USINGMATLAB .

| N=4|N=8|N=16]

Constrained optimization (withni ncon) 1.2s 120s 8800s
Unconstrained optimization (withm nunc) 0.04s 0.7s 8s
Unconstrained optimization (gradient algorithm) 0.06s 0.6s 7s

A first interesting result is that all three methods, startirgm the same FB, converge to almost
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Fig. 7. Frequency responses of the synthesis FBs (in the MCLT casewyitwvindow): (a) pseudo-inverse and (b) symmetric

version with the method of Section III-C2.

identical synthesis FBs. The computation times are howewsr ddferent: more than two hours (with
N = 16) for the constrained optimization against a few secondshferunconstrained optimizations. We
can also notice that the gradient algorithm is as fast ag thenunc Matlab function. This shows that
the optimization method can be easily implemented, thraugiadient algorithm, with no performance
loss and without having to resort to tiievi nunc Matlab functiort. In other words, this last result
indicates that in some applicative contexts in which Mat&hot available the optimization method can
still be easily and efficiently implemented.

3) Examples of optimized FBdn this section, we present optimization restiltbtained with the

different FBs introduced in Section V-A and using the différproposed cost functions.

1This fairly sophisticated function uses an interior-reflective Newton nueffa].

2A matlab toolbox for FB optimization is available here: http://www.laurent-devamisc-research-codes.html
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a) General case:We have applied the optimization method on the real FB intteduin Sec-
tion V-Al with parameters’N = 8, k = 4 andk’ = 2. The employed cost function i%. The result is
shown in Figure 4(b), the coefficients before optimizationtgoted with the pseudo-inverse method) are
also displayed. It is clear that the impulse responses aiiged filters are better concentrated around
the middle of the support. Figure 3 illustrates that the gairiime localization does not entail a too
severe loss in frequency selectivity of the optimized filters

A second optimization example is given using an MCLT FB witlalgsis windowh,, and parameters
N =8, k=3 andk’ = 7/4. The resulting frequency responses after optimization witht function.J;
are represented in Figure 5(b). We observe that the frequesppnses after optimization exhibit more
regularity and an improved selectivity. The proposed costtions take into account all synthesis filters
at once. It therefore interesting to look more closely athefdlter independently and determine whether
the optimization leads to better results. In Table Il, theqtrency dispersion of each filter is reported
before and after optimization with cost functioh In this case, the overall frequency dispersion of the

optimized filters has been noticeably improved and spreadhifity has been drastically reduced.

TABLE I

FREQUENCY DISPERSION OF THE SYNTHESIS FILTERS OPTIMIZED WHTCOST FUNCTIONJf.

’ Filter ‘ Freq. disp.H Filter ‘ Freq. disp.

ho 0.0200 | AP | 0.0111

ha 0.0851 || K" | 0.0110
hs 0.0569 || hSP* | 0.0109
ha 0.0606 | APt | 0.0112

ha 0.0658 || hP* | 0.0110
hs 0.0596 || AP | 0.0109
he 0.0363 || K" | 0.0111
hr 0.0156 || A% | 0.0111
hs 0.0411 || A% | 0.0109
ho 0.0231 RSP | 0.0110
hio | 0.0508 || RS' | 0.0112
ha 0.0499 || A% | 0.0110
hiz | 0.0574 || K%' | 0.0109
his | 00521 || RSEY | 0.0111
Sum 0.6833 0.1544
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b) Results in the symmetric cas&he optimization procedure was next applied in the HS case to
the FB of Section V-A2 (with analysis window,,). In this case, the cost functionks and Jis were
employed. Once again, the following parameters were udee: 8, k = 3 andk’ = 7/4. Figures 8 and
9 show the optimization results. We observe that the op#tioas with these two cost functions lead
to FBs with different characteristics: as expected, withthe impulse responses are better concentrated

than with Jis and, conversely, with/s the frequency selectivity is better than wiffy.
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Fig. 8. Third example (in the MCLT case with windaky,): modulus of the impulse responses of synthesis filters (a) before

and after optimization (b) with the cost functiols and (c) WithJNfS.

4) Comparison: To conclude this example section, we propose a comparistn am existing filter
bank design. We have chosen to compare our design methgdeitly the filter banks used in [7], [4].
In these works, the considered FBs correspond to a modulateglex lapped transform with overlap
factor £ = 2 and redundancy’ = 2. For this application, our choice o = 8 results in the filters
shown in [4]. The synthesis filter bank is then built with a melkteguivalent to the weighted overlap-add
technique. We have applied the methods proposed in this wwocompute an optimized synthesis filter

bank using the cost functioths. In Table 1Il, the time dispersion of each synthesis filter pobed as
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Fig. 9. Third example (in the MCLT case with windof,): frequency responses of synthesis filters (a) before and after

optimization (b) with the cost functiods and (c) withJNfs.

explained in [4] (hj)je{o,_.,,w}

and after optimizatior(ﬁ;?pt)

y are reported as well as the value

of the cost function/is. The time dispersion was clearly reduced with the proposetthode

VI. CONCLUSION

In this paper, we have proposed a method to test that a giversawipled FIR analysis FB is FIR

invertible and a method to compute an optimized inverse FB.oftienization was performed for a class

of cost functions allowing either to emphasize the time liaetion or the frequency selectivity of the

filters. By rewriting the system defining the synthesis FB, weenale to parameterize the synthesis

filters for a given filter length. This parameterization was tlused to convert the constrained optimal

synthesis problem into an unconstrained one, which can wedwith a simple gradient algorithm.

The FB considered here are one-dimensional; it would be istiageto study how the proposed methods

could be extended to the multidimensional case. Anothespgeetive could be to study the case of FBs

admitting an IR left inverse that can be approximated ugifgiR FB with very long support.
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TABLE 11l

TIME DISPERSION OF THE SYNTHESIS FILTERS OPTIMIZED WITH COSHUNCTION fj»;

’ Filter ‘Time disp. H Filter Time disp.

ho, his | 21.25 ROt R | 2.4152
hi, has | 2125 || RSP RSP | 2.1064
ha, his | 2125 || hSPY RSEY | 2.3424
hs, hiz | 21.25 ht, Rt | 25516
ha, by | 2125 || RPE RSP | 25516
hs, hio | 21.25 ROt RSEE | 2.3424
he, ho 21.25 | K3, RSP | 2.1064
h7, hs 21.25 || P, R | 2.4152

Jis 340 37.6626

APPENDIX A
EXPRESSION OF THE GRADIENT

In this first appendix, we study the gradient.bf(as defined in Section IV-B1) with respect o We
first need to calculate the gradient HfC) = HVjC + ﬁ?‘

of _ of . of
Oy OCE. 0OCL,

2
e The matrixC being complex, we have

~0 ~0 .o
= Z ((Vj)i,m(Sgn(VjC + Hj)l'/’g/ + (Vj)i,7m5g/,n(VjC + Hj)i’g) Kj(z, Z/,E,ﬁl)
i 0

+1 (z(vj)i,mag_n(vjc + H?)M — (V) me—n(V;C + ﬁ?)i,[) K;(i,i',¢,0)

N ~0 ..

=2 Z(Vj)i’,m(vjc + Hj)i,EKj(% Zl,f,n).
iy 0

From this result, we deduce that

M—-1 /. 0 i i
T i,i’,@(v 4)i',m(v C+H ')i,f(ﬁ'K'(Zv ? 567 TL) -« 'A(% ? 767 n))
<VJ(C))mn:2 Z / / J 52 ! ! )

’ j=0 J

(24)

with a; = [|V;C + ﬁin and ;= ||v,C + HE’Hi
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APPENDIX B

EXAMPLES OF GRADIENTS

A first example is the calculation of the gradient of the cosiction J;. Applying (24) to the kernels

(K;)O§j<M: we get:
of
OCp,

_2%2 vac+H ) 2(T))in

= 2wy (VT 0 (V,C+H)))
where(T';); 4p, = (N —i—m;|* forall 0 <i < N and—p; < £ < py. The symbol® represents the
Hadamard product (or pointwise matrix product). Finally wsain:
M—1 \/* ~ 0
th —9 Z V wt,jﬂjI‘j — Oéﬁji.) © (V]C + Hj))’
J

wherel;, =1forall 0 <i< N andO <i<p.

The same study can be carried out for the cost funcfiorwith kernels(K )0<]<M Rewriting the
result under a matrix form does not simplify the final expressn this case. Hence, the gradient reads:
~0 o
(V€ Hj)i (B K (0,7 6,n) — 0j6ii0e—n)

(Vi ) g LiireV ]7ﬂ§

APPENDIXC

GRADIENT FUNCTIONS IN THEHS CASE

0112
Similarly to Appendix A, we first compute the gradient pfC) = HWjC + H?HK with respect to the

matrix C, the only difference being that the matiixis now real:

0 ~0 S ~0 .
acf = Z ((Wj)i7m65n(WjC + Hj)i’,é’ + (Wj)i/,m(Sg/,n(WjC + Hj)i,g> Kj(z, Z/,E, 5/).
KL RN

By using this expression and the relatiéfy (i, ¢, ¢,¢') = K;(i,i,¢',¢), we deduce the gradient of the

cost function.J:

)

= e (W) m (W€ + H; Jine (B K (0,1, m, 0) — Osz(i,i’,n,E’)))

(vj;(c))m =2Re (Z e (Wi, e
’ j=0 J
(25)

with Q=

2 ~0112
S X and3; = HWJ-C + H?HA, for all 0 < j < M. Using (25), the calculation of
the gradient of/ yields

)

M-1 * AT, . ‘ NQ
V.Js(C) = 2Re ( 3 WillagOily 0221) & (W,C + H])))
j=0 ;
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whereT'; is defined as in Appendix B. For the second cost function we find

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

&)

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M—1 0 f( o /
—_— ZZ il /(W)Zym(WC + H ')i/}@/(/g‘K-(Z’ 7 7n’£ ) — ~5i_i/5n,g/)
(VJfS(C)) —2Re | Y =W J J 55 J J

J

m,n =0
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