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Abstract

We study when a given Gaussian random variable on a given probability space
(Ω,F , P ) is equal almost surely to β1 where β is a Brownian motion defined on the
same (or possibly extended) probability space. As a consequence of this result, we
prove that the distribution of a random variable in a finite sum of Wiener chaoses
(satisfying in addition a certain property) cannot be normal. This result also allows to
understand better a characterization of the Gaussian variables obtained via Malliavin
calculus.
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1 Introduction

We study when a Gaussian random variable defined on some probability space can be ex-
pressed almost surely as a Wiener integral with respect to a Brownian motion defined on the
same space. The starting point of this work are some recent results related to the distance
between the law of an arbitrary random variable X and the Gaussian law. This distance
can be defined in various ways (the Kolmogorov distance, the total variations distance or
others) and it can be expressed in terms of the Malliavin derivative DX of the random
variable X when this derivative exists. These results lead to a characterization of Gaussian
random variables through Malliavin calculus. Let us briefly recall the context. Suppose that
(Ω,F , P ) is a probability space and let (Wt)t∈[0,1] be a Ft Brownian motion on this space,
where Ft is its natural filtration. Equivalent conditions for the standard normality of a cen-
tered random variable X with variance 1 are the following: E

(

1 − 〈DX,D(−L)−1〉|X
)

= 0
or E

(

f ′
z(X)(1 − 〈DX,D(−L)−1〉

)

= 0 for every z where D denotes the Malliavin derivative,
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L is the Ornstein-Uhlenbeck operator, 〈·, ·〉 denotes the scalar product in L2([0, 1]) and the
deterministic function fz is the solution of the Stein’s equation (see e.g. [4]). This character-
ization is of course interesting and it can be useful in some cases. It is also easy to understand
it for random variables that are Wiener integrals with respect to W . Indeed, assume that
X = W (h) where h is a deterministic function in L2([0, 1]) with ‖h‖L2([0,1]) = 1. In this case
DX = h = D(−L)−1X and then 〈DX,D(−L)−1〉 = 1 and the above equivalent conditions
for the normality of X can be easily verified. In some other cases, it is difficult, even impos-
sible, to compute the quantity E

(

〈DX,D(−L)−1〉|X
)

or E
(

f ′
z(X)(1 − 〈DX,D(−L)−1〉

)

.

Let us consider for example the case of the random variable Y =
∫ 1
0 sign(Ws)dWs. This is

not a Wiener integral with respect to W . But it is well-known that it is standard Gaus-
sian because the process βt =

∫ t

0 sign(Ws)dWs is a Brownian motion as follows from the
Lévy’s characterization theorem. The chaos expansion of this random variable is known
and it is recalled in Section 2. In fact Y can be expressed as an infinite sum of multiple
Wiener-Itô stochastic integrals and it is impossible to check if the equivalent conditions for
its normality are satisfied (it is even not differentiable in the Malliavin calculus sense). The
phenomenon that happens here is that Y can be expressed as the value at time 1 of the
Brownian motion β which is actually the Dambis-Dubbins-Schwarz (DDS in short) Brow-
nian motion associated to the martingale MY = (MY

t )t∈[0,1], MY
t = E (Y |Ft) (recall that

Ft is the natural filtration of W and β is defined on the same space Ω (or possibly on a
extension of Ω) and is a Gs -Brownian motion with respect to the filtration Gs = FT (s) where

T (s) = inf(t ∈ [0, 1]; 〈MY 〉t ≥ s)). This leads to the following question: is any standard
normal random variable X representable as the value at time 1 of the Brownian motion
associated, via the Dambis-Dubbins-Schwarz theorem, to the martingale MX , where for
every t

MX
t = E(X|Ft)? (1)

By combining the techniques of Malliavin calculus and classical tools of the probability
theory, we found the following answer: if the bracket of the Ft martingale MX is bounded
a.s. by 1 then this property is true, that is, X can be represented as its DDS Brownian
motion at time 1. The property also holds when the bracket 〈MX〉1 is bounded by an
arbitrary constant and 〈MX〉1 and β〈MX〉1 are independent. If the bracket of MX is not
bounded by 1, then this property is not true. An example when it fails is obtained by
considering the standard normal random variable W (h1)sign(W (h2)) where h1, h2 are two
orthonormal elements of L2([0, 1]). Nevertheless, we will prove that we can construct a
bigger probability space Ω0 that includes Ω and a Brownian motion on Ω0 such that X is
equal almost surely with this Brownian motion at time 1. The construction is done by the
means of the Karhunen-Loève theorem. Some consequences of this result are discussed here;
we believe that these consequences could be various. We prove that the standard normal
random variables such that the bracket of its associated DDS martingale is bounded by 1
cannot live in a finite sum of Wiener chaoses: they can be or in the first chaos, or in an
infinite sum of chaoses. We also make a connection with some results obtained recently via
Stein’s method and Malliavin calculus.
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We structured our paper as follows. Section 2 starts with a short description of the
elements of the Malliavin calculus and it also contains our main result on the structure of
Gaussian random variables. In Section 3 we discusses some consequences of our characteri-
zation. In particular we prove that the random variables whose associated DDS martingale
has bracket bouned by 1 cannot belong to a finite sum of Wiener chaoses and we relate
our work with recent results on standard normal random variables obtained via Malliavin
calculus.

2 On the structure of Gaussian random variable

Let us consider a probability space (Ω,F , P ) and assume that (Wt)t∈[0,1] is a Brownian
motion on this space with respect to its natural filtration (Ft)t∈[0,1]. Let In denote the
multiple Wiener-Itô integral of order n with respect to W . The elements of the stochastic
calculus for multiple integrals and of Malliavin calculus can be found in [3] or [6]. We
will just introduce very briefly some notation. We recall that any square integrable random
variable which is measurable with respect to the σ-algebra generated by W can be expanded
into an orthogonal sum of multiple stochastic integrals

F =
∑

n≥0

In(fn) (2)

where fn ∈ L2([0, 1]n) are (uniquely determined) symmetric functions and I0(f0) = E [F ].
The isometry of multiple integrals can be written as: for m,n positive integers and

f ∈ L2([0, 1]n), g ∈ L2([0, 1]m)

E (In(f)Im(g)) = n!〈f, g〉L2([0,1])⊗n if m = n,

E (In(f)Im(g)) = 0 if m 6= n. (3)

It also holds that
In(f) = In

(

f̃
)

where f̃ denotes the symmetrization of f defined by f̃(x1, . . . , xx) = 1
n!

∑

σ∈Sn
f(xσ(1), . . . , xσ(n)).

We will need the general formula for calculating products of Wiener chaos integrals of any
orders m,n for any symmetric integrands f ∈ L2([0, 1]⊗m) and g ∈ L2([0, 1]⊗n); it is

Im(f)In(g) =

m∧n
∑

l=0

l!C l
mC l

nIm+m−2l(f ⊗l g) (4)

where the contraction f ⊗l g (0 ≤ l ≤ m ∧ n) is defined by

(f ⊗ℓ g)(s1, . . . , sn−ℓ, t1, . . . , tm−ℓ)

=

∫

[0,T ]m+n−2ℓ

f(s1, . . . , sn−ℓ, u1, . . . , uℓ)g(t1, . . . , tm−ℓ, u1, . . . , uℓ)du1 . . . duℓ. (5)

3



Note that the contraction (f ⊗ℓ g) is an element of L2([0, 1]m+n−2ℓ) but it is not necessary
symmetric. We will by (f⊗̃ℓg) its symmetrization.

We denote by D
1,2 the domain of the Malliavin derivative with respect to W which

takes values in L2([0, 1] × Ω). We just recall that D acts on functionals of the form f(X),
with X ∈ D

1,2 and f differentiable, in the following way: Dαf(X) = f ′(X)DαX for every
α ∈ (0, 1] and on multiple integrals In(f) with f ∈ L2([0, 1]n) as DαIn(f) = nIn−1f(·, α).

The Malliavin derivative D admits a dual operator which is the divergence integral
δ(u) ∈ L2(Ω) if u ∈ Dom(δ) and we have the duality relationship

E(Fδ(u)) = E〈DF, u〉, F ∈ D
1,2, u ∈ Dom(δ). (6)

For adapted integrands, the divergence integral coincides with the classical Itô integral.

Let us fix the probability space (Ω,F , P ) and let us assume that the Wiener process
(Wt)t∈[0,1] lives on this space. Let X be a centered square integrable random variable on
Ω. Assume that X is measurable with respect to the sigma-algebra F1. After Proposition
1 the random variable X will be assumed to have standard normal law.

The following result is an immediate consequence of the Dambis-Dubbins-Schwarz
theorem (DDS theorem for short, see [2], Section 3.4, or [8], Chapter V).

Proposition 1 Let X be a random variable in L1(Ω). Then there exists a Brownian motion
(βs)s≥0 (possibly defined on an extension of the probability space) with respect to a filtration
(Gs)s≥0 such that

X = β〈MX〉1

where MX = (MX
t )t∈[0,1] is the martingale given by (1). Moreover the random time T =

〈MX〉1 is a stopping time for the filtration Gs and it satisfies T > 0 a.s. and ET = EX2.

Proof: Let T (s) = inf
(

t ≥ 0, 〈MX 〉t ≥ s
)

. By applying Dambis-Dubbins-Schwarz theo-
rem

βs := MT (s)

is a standard Brownian motion with respect to the filtration Gs := FT (s) and for every

t ∈ [0, 1] we have MX
t = β〈MX〉t a.s. P . Taking t = 1 we get

X = β〈MX〉1 a.s..

The fact that T is a (Gs)s≥0 stopping time is well known. It is true because (〈MX〉1 ≤
s) = (T (s) ≥ 1) ∈ FT (s) = Gs. Also clearly T > 0 a.s and ET = EX2.

In the sequel we will call the Brownian β obtained via the DDS theorem as the DDS
Brownian associated to X.

Recall the Ocone-Clark formula: if X is a random variable in D
1,2 then

X = EX +

∫ 1

0
E (DαX|Fα) dWα. (7)
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Remark 1 If the random variable X has zero mean and it belongs to the space D
1,2 then

by the Ocone-Clark formula (7) we have MX
t =

∫ t

0 E (DαX|Fα) dWα and consequently

X = βR

1

0
(E(DαX|Fα))2dα

where β is the DDS Brownian motion associated to X.

Assume from now on that X ∼ N(0, 1). As we have seen, X can be written as the
value at a random time of a Brownian motion β (which is fact the Dambis-Dubbins-Schwarz
Brownian associated to the martingale MX). Note that β has the time interval R+ even if
W is indexed over [0, 1]. So, if we know that βT has a standard normal law, what can we say
about the random time T ? It is equal to 1 almost surely? This is for example the case of
the variable X =

∫ 1
0 sign(Ws)dWs because here, for every t ∈ [0, 1], MX

t =
∫ t

0 sign(Ws)dWs

and 〈MX〉t =
∫ t

0 (sign(Bs)
2ds = t. An other situation when this is true is related to Bessel

processes. Let (B(1), . . . B(d)) be a d-dimensional Brownian motion and consider the random
variable

X =

∫ 1

0

B
(1)
s

√

(B
(1)
s )2 + . . . + (B

(d)
s )2

dB(1)
s + . . . +

∫ 1

0

B
(d)
s

√

(B
(1)
s )2 + . . . + (B

(d)
s )2

dB(d)
s (8)

It also satisfies T := 〈MX〉t = t for every t ∈ [0, 1] and in particular 〈MX〉1 = 1 a.s..
We will see below that the fact that any N(0, 1) random variable is equal a.s. to β1 (its
associated DDS Brownian evaluated at time 1) is true only for random variables for which
the bracket of their associated DDS martingale is almost surely bounded and T and βT are
independent or if T is bounded almost surely by 1.

We will assume the following condition on the stopping time T .

There exist a constant M > 0 such that T ≤ M a.s. (9)

The problem we address in this section is then the following: let (βt)t≥0 be a Gt-
Brownian motion and let T be a almost surely positive stopping time for its filtration such
that E(T ) = 1 and T satisfies (9). We will show when T = 1 a.s.

Let us start with the following result.

Theorem 1 Assume (9) and assume that T is independent by βT . Then it holds that
ET 2 = 1.

Proof: Let us apply Itô’s formula to the Gt martingale βT∧t. Letting t → ∞ (recall that
T is a.s. bounded) we get

Eβ4
T = 6E

∫ T

0
β2

sds.
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Since βT has N(0, 1) law, we have that Eβ4
T = 3. Consequently

E

∫ T

0
β2

sds =
1

2
.

Now, by the independence of T and βT , we get E(Tβ2
T ) = ETEβ2

T = 1. Applying again Itô
formula to βT∧t with f(t, x) = tx2 we get

ETβ2
T = E

∫ T

0
β2

sds + E

∫ T

0
sds.

Therefore E
∫ T

0 sds = 1
2 and then ET 2 = 1.

Theorem 2 Let (βt)t≥0 be a Gt Wiener process and let T be a Gt bounded stopping time
with ET = 1. Assume that T and βt are independent. Suppose βT has a N(0, 1) law. Then
T = 1 a.s.

Proof: It is a consequence of the above proposition, since E(T−1)2 = ET 2−2E(T )+1 = 0.

Proposition 2 Assume that (9) is satisfied with M ≤ 1. Then T = 1 almost surely.

Proof: By Itô’s formula,

Eβ4
T = 6E

∫ T

0
β2

sds = 6E

∫ 1

0
β2

sds + E

∫

R+

β2
s1[T,1](s)ds.

Since 6E
∫ 1
0 β2

sds = 3 and Eβ4
T = 3 it follows that E

∫

R+
β2

s1[T,1](s)ds = 0 and this implies

that β2
s (ω)1[T (ω),1](s) = 0 for almost all s and ω. Clearly T = 1 almost surely.

Next, we will try to understand if this property is always true without the assump-
tion that the bracket of the martingale MX is finite almost surely. To this end, we will
consider the following example. Let (Wt)t∈[0,1] a standard Wiener process with respect to its
natural filtration Ft. Consider h1, h2 two functions in L2([0, 1]) such that 〈h1, h2〉L2([0,1]) = 0
and ‖h1‖L2([0,1]) = ‖h2‖L2([0,1]) = 1. For example we can choose

h1(x) =
√

21[0, 1
2
](x) and h2(x) =

√
21[ 1

2
,1](x)

(so, in addition, h1 and h2 have disjoint support). Define the random variable

X = W (h1)signW (h2). (10)

It is well-known that X is standard normal. Note in particular that X2 = W (h1)
2. We will

see that it cannot be written as the value at time 1 of its associated DDS martingale. To
this end we will use the chaos expansion of X into multiple Wiener-Itô integrals.
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Recall that if h ∈ L2([0, 1]) with ‖h‖L2([0,1]) = 1 then (see e.g. [1])

sign(W (h)) =
∑

k≥0

b2k+1I2k+1(h
⊗(2k+1)) with b2k+1 =

2(−1)k√
2π(2k + 1)k!2k

, k ≥ 0.

We have

Proposition 3 The standard normal random variable X given by (10) is not equal a.s. to
β1 where β is its associated DDS martingale.

Proof: By the product formula (4) we can express X as (note that h1 and h2 are orthogonal
and there are not contractions of order l ≥ 1)

X =
∑

k≥0

b2k+1I2k+2

(

h1⊗̃h⊗2k+1
2

)

and

E (X|Ft) =
∑

k≥0

b2k+1I2k+2

(

(h1⊗̃h⊗2k+1
2 )1⊗2k+2

[0,t] (·)
)

for every t ∈ [0, 1].

We have

(h1⊗̃h⊗2k+1
2 )(t1, . . . , t2k+2) =

1

2k + 2

2k+1
∑

i=1

h1(ti)h
⊗2k+1
2 (t1, .., t̂i, .., t2k+2) (11)

where t̂i means that the variable ti is missing. Now, MX
t = E (X|Ft) =

∫ t

0 usdWs where,
by (11)

us =
∑

k≥0

b2k+1(2k + 2)I2k+1

(

(h1⊗̃h2k+1
2 )(·, s)1⊗2k+1

[0,s] (·)
)

=
∑

k≥0

b2k+1

[

h1(s)I2k+1

(

h⊗2k+1
2 1⊗2k+1

[0,s] (·)
)

+(2k + 1)h2(s)I1(h11[0,s](·))I2k

(

h⊗2k
2 1⊗2k

[0,s](·)
)

.
]

for every s ∈ [0, 1]. Note first that, due to the choice of the functions h1 and h2,

h1(s)h2(u)1[0,s](u) = 0 for every s, u ∈ [0, 1].

Thus the first summand of us vanishes and

us =
∑

k≥0

b2k+1(2k + 1)h2(s)I1(h11[0,s](·))I2k

(

h⊗2k
2 1⊗2k

[0,s](·)
)

.

Note also that h1(x)1[0,s](x) = h1(x) for every s in the interval [12 , 1]. Consequently, for
every s ∈ [0, 1]

us = W (h1)
∑

k≥0

b2k+1(2k + 1)h2(s)I2k

(

h⊗2k
2 1⊗2k

[0,s](·)
)

.
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Let us compute the chaos decomposition of the random variable
∫ 1
0 u2

sds. Taking
into account the fact that h1 and h2 have disjoint support we can write

∫ 1

0
u2

sds

=
∑

k,l≥0

b2k+1b2l+1(2k + 1)(2l + 1)W (h1)
2

∫ 1

0
dsh2(s)

2I2k

(

h⊗2k
2 1⊗2k

[0,s](·)
)

I2l

(

h⊗2l
2 1⊗2l

[0,s](·)
)

.

Since

W (h1)
2 = I2

(

h⊗2
1

)

+

∫ 1

0
h1(u)2du = I2

(

h⊗2
1

)

+ 1

and

E (sign(W (h2))
2 =

∫ 1

0
dsh2

2(s)E





∑

k≥0

b2k+1(2k + 1)I2k

(

h⊗2k
2 1⊗2k

[0,s](·)
)





2

= 1

we get

∫ 1

0
u2

sds =
(

1 + I2

(

h⊗2
1

))

×



1 +
∑

k,l≥0

b2k+1b2l+1(2k + 1)(2l + 1)

∫ 1

0
dsh2(s)

2

[

I2k

(

h⊗2k
2 1⊗2k

[0,s](·)
)

I2l

(

h⊗2l
2 1⊗2l

[0,s](·)
)

− EI2k

(

h⊗2k
2 1⊗2k

[0,s](·)
)

I2l

(

h⊗2l
2 1⊗2l

[0,s](·)
)])

=:
(

1 + I2

(

h⊗2
1

))

(1 + A).

Therefore we obtain that
∫ 1
0 u2

sds = 1 almost surely if and only if
(

1 + I2

(

h⊗2
1

))

(1+A) = 1

almost surely which implies that I2(h
⊗2
1 )(1+A)+A = 0 a.s. and this is impossible because

I2(h
⊗2
1 ) and A are independent.

We obtain an interesting consequence of the above result.

Corollary 1 Let X be given by (10). Then the bracket of the martingale MX with MX
t =

E (X|Ft) is not bounded by 1.

Proof: It is a consequence of Proposition 3 and of Theorem 2.

Remark 2 Proposition 3 provides an interesting example of a Brownian motion β and of
a stopping time T for its filtration such that βT is standard normal and T is not almost
surely equal to 1.
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Let us make a short summary of the results in the first part of our paper: if X is a
standard normal random variable and the bracket of MX is bounded a.s. by 1 then X can be
expressed almost surely as a Wiener integral with respect to a Brownian motion on the same
(or possibly extended) probability space. The Brownian is obtained via DDS theorem. The
property is still true when the bracket is bounded and T and βT are independent random
variables. If the bracket of MX is not bounded, then X is not necessarily equal with β1, β
being its associated DDS Brownian motion. This is the case of the variable (10).

Nevertheless, we will see that after a suitable extension of the probability space,
any standard normal random variable can be written as the value at time 1 of a Brownian
motion constructed on this extended probability space.

Proposition 4 Let X1 be a standard normal random variable on (Ω1,F1, P1) and for every
i ≥ 2 let (Ωi,Fi, Pi,Xi) be independent copies of (Ω1,F1, P1,X1). Let (Ω0,F0, P0) be the
product probability space. On Ω0 define for every t ∈ [0, 1]

W 0
t =

∑

k≥1

fk(t)Xk

where (fk)k≥1 are orthonormal elements of L2([0, 1]). Then W 0 is a Brownian motion on

Ω0 and X1 =
∫ 1
0

(

∫ 1
u

dsf1(s)
)

dW 0
u a.s..

Proof: The fact that W 0 is a Brownian motion is a consequence of the Karhunen-Loève
theorem. Also, note that

X1 = 〈W 0, f1〉 =

∫ 1

0
W 0

s f1(s)ds

and the conclusion is obtained by interchanging the order of integration.

Remark 3 Let us denote by F0
t the natural filtration of W 0. It also holds that

E
(

X1|F0
t

)

= E

∫ t

0
gudW 0

u

where gu =
∫ 1
u

dsf1(s). It is obvious that the martingale E
(

X1|F0
t

)

is a Brownian motion
via the DDS theorem and X1 can be expressed as a Brownian at time 1.

3 Consequences

We think that the consequences of this result are multiple. We will prove here first that a
random variable X which lives in a finite sum of Wiener chaoses cannot be Gaussian if the
bracket of MX is bounded by 1. Again we fix a Wiener process (Wt)t∈[0,1] on Ω.

Let us start with the following lemma.
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Lemma 1 Fix N ≥ 1. Let g ∈ L2([0, 1]⊗N+1) symmetric in its first N variables such that
∫ 1
0 dsg(·, s)⊗̃g(·, s) = 0 almost everywhere on [0, 1]⊗2N . Then for every k = 1, . . . , N − 1 it

holds that
∫ 1

0
dsg(·, s)⊗̃kg(·, s) = 0 a.e. on [0, 1]2N−2k .

Proof: Without loss of generality we can assume that g vanish on the diagonals (ti = tj)
of [0, 1]⊗(N+1). This is possible from the construction of multiple stochastic integrals. From
the hypothesis, the function

(t1, . . . , t2N ) → 1

(2N)!

∑

σ∈S2N

∫ 1

0
dsg(tσ(1), . . . , tσ(N), s)g(tσ(N+1), . . . , tσ(2N), s)

vanishes almost everywhere on [0, 1]⊗2N . Put t2N−1 = t2N = x ∈ [0, 1]. Then for every x,
the function

(t1, . . . t2N−2) →
∑

σ∈S2N−2

∫ 1

0
dsg(tσ(1), . . . , tσ(N−1), x, s)g(tσ(N), . . . , tσ(2N−2), x, s)

is zero a.e. on [0, 1]⊗(2N−2) and integrating with respect to x we obtain that
∫ 1
0 dsg(·, s)⊗̃1g(·, s) =

0 a.e. on [0, 1]⊗(2N−2) . By repeating the procedure we obtain the conclusion.

Let us also recall the following result from [7].

Proposition 5 Suppose that F = IN (fN ) with f ∈ L2([0, 1]N ) symmetric and N ≥ 2 fixed.
Then the distribution of F cannot be normal.

We are going to prove the same property for variables that can be expanded into a
finite sum of multiple integrals.

Theorem 3 Fix N ≥ 1 and et let X be a centered random variable such that X =
∑N+1

n=1 In(fn) where f ∈ L2([0, 1]n) are symmetric functions. Suppose that the bracket of
the martingale MX (1) is bounded almost surely by 1. Then the law of X cannot be normal.

Proof: We will assume that EX2 = 1. Suppose that X is standard normal. We can write
X as X =

∫ 1
0 usdWs where us =

∑N
n=1 In(gn(·, s)). As a consequence of Proposition 4,

∫ 1

0
u2

sds = 1 a. s.

But from the product formula (4)

∫ 1

0
u2

sds =

∫ 1

0
ds

(

N
∑

n=1

In(gn(·, s))
)2

=

∫ 1

0
ds

N
∑

m,n=1

m∧n
∑

k=1

k!Ck
nCk

mIm+n−2k(gn(·, s) ⊗ gm(·, s))ds.
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The idea is to benefit from the fact that the highest order chaos, which appears only once
in the above expression, vanishes. Let us look to the chaos of order 2N in the above
decomposition. As we said, it appears only when we multiply IN by IN and consists in

the random variable I2N

(

∫ 1
0 gN (·, s) ⊗ gN (·, s)ds

)

. The isometry of multiple integrals (3)

implies that
∫ 1

0
gN (·, s)⊗̃gN (·, s)ds = 0 a. e. on [0, 1]2N

and by Lemma 1, for every k = 1, . . . , N − 1.

∫ 1

0
gN (·, s)⊗̃kgN (·, s)ds = 0 a. e. on [0, 1]2N−2k . (12)

Consider now the the random variable Y := IN+1(fN+1). It can be written as Y =
∫ 1
0 IN (gN (·, s))dWs and b y the DDS theorem, Y = βY

R

1

0
ds(IN (gN (·,s)))2

. The multiplica-

tion formula together with (12) shows that
∫ 1
0 ds(IN (gN (·, s)))2 is deterministic and as a

consequence Y is Gaussian. This is in contradiction with Proposition 5.

The conclusion of the above theorem still holds if MX satisfies (9) and 〈MX〉1 is
independent by β〈MX 〉1 .

Finally let us make a connection with several recent results obtained via Stein’s
method and Malliavin calculus. Recall that the Ornstein-Uhlenbeck operator is defined as
LF = −∑n≥0 nIn(fn) if F is given by (2). There exists a connection between δ,D and L

in the sense that a random variable F belongs to the domain of L if and only if F ∈ D
1,2

and DF ∈ Dom(δ) and then δDF = −LF .
Let us denote by D the Malliavin derivative with respect to W and let, for any

X ∈ D
1,2

GX = 〈DX,D(−L)−1X〉.
The following theorem is a collection of results in several recent papers.

Theorem 4 Let X be a random variable in the space D
1,2. Then the following affirmations

are equivalent.

1. X is a standard normal random variable.

2. For every t ∈ R, one has E
(

eitX (1 − GX)
)

= 0.

3. E ((1 − GX)/X) = 0.

4. For every z ∈ R, E (f ′
z(1 − GX)) = 0, where fz is the solution of the Stein’s equation

(see [4]).
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Proof: We will show that 1. ⇒ 2. ⇒ 3. ⇒ 4. ⇒ 1. First suppose that X ∼ N(0, 1). Then

E
(

eitX (1 − GX)
)

= E(eitX) − 1

it
E〈DeitX ,D(−L)−1X〉

= E(eitXn) − 1

it
E
(

XeitX
)

= ϕX(t) − 1

t
ϕ′

X(t) = 0.

Let us prove now the implication 2. ⇒ 3. It has also proven in [5], Corollary 3.4. Set
F = 1 − GX . The random variable E(F |X) is the Radon-Nykodim derivative with respect
to P of the measure Q(A) = E(F1A), A ∈ σ(X). Relation 1. means that E

(

eitXE(F/X)
)

=
EQ(eitX ) = 0 and consequently Q(A) = E(F1A) = 0 for any A ∈ σ(Xn). In other words,
E(F |X) = 0. The implication 3. ⇒ 4 is trivial and the implication 4. ⇒ 1. is a consequence
of a result in [4].

As we said, this property can be easily understood and checked if X is in the
first Wiener chaos with respect to W . Indeed, if X = W (f) with ‖f‖L2([0,1]) = 1 then
DX = D(−L)−1X = f and clearly GX = 1. There is no need to compute the conditional
expectation given X, which is in practice very difficult to be computed. Let us consider now
the case of the random variable Y =

∫ 1
0 sign(Ws)dWs. The chaos expansion of this variable

is known. But Y is not even differentiable in the Malliavin sense so it is not possible to
check the conditions from Theorem 4. Another example is related to the Bessel process (see
the random variable 8). Here again the chaos expansion of X can be obtained (see e.g. [1])
but is it impossible to compute the conditional expectation given X.

But on the other hand, for both variables treated above their is another explanation
of their normality which comes from Lévy’s characterization theorem. Another explanation
can be obtained from the results in Section 2. Note that these two examples are random
variables such that the bracket of MX is bounded a.s.

Corollary 2 Let X be an integrable random variable on (Ω,F , P ). Then X is a stan-
dard normal random variable if and only if there exists a Brownian motion (βt)t≥0 on an
extension of Ω such that

〈DβX,Dβ(−Lβ)−1X〉 = 1. (13)

Proof: Assume that X ∼ N(0, 1). Then by Proposition 4, X = β1 where β is a Brownian
motion on an extended probability space. Clearly (13) holds. Suppose that there exists β a
Brownian motion on (Ω,F , P ) such that (13) holds. Then for any continuous and piecewise
differentiable function f with Ef ′(Z) < ∞ we have

E
(

f ′(Z) − f(X)X
)

= E
(

f ′(X) − f ′(X)〈DβX,Dβ(−Lβ)−1X〉
)

= E
(

f ′(Z)(1 − 〈DβX,Dβ(−Lβ)−1X〉
)

= 0

and this implies that X ∼ N(0, 1) (see [4], Lemma 1.2).
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