
HAL Id: hal-00403286
https://hal.science/hal-00403286

Submitted on 9 Jul 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reduced languages as omega-generators
Sandrine Julia, Vinh Duc Tran

To cite this version:
Sandrine Julia, Vinh Duc Tran. Reduced languages as omega-generators. DLT 2007, Jul 2007, Turku,
Finland. pp.266-277, �10.1007/978-3-540-73208-2_26�. �hal-00403286�

https://hal.science/hal-00403286
https://hal.archives-ouvertes.fr


Reduced languages as ω-generators

Sandrine JULIA1 and TRAN Vinh Duc2

1 Université de Nice - Sophia Antipolis,
Laboratoire I3S - CNRS, B.P. 121,

06903 Sophia Antipolis Cedex, France.
Sandrine.Julia@unice.fr

2 Thang Long School of Technology,
Hanöı, Viet-Nam.
tvduc@ifi.edu.vn

Abstract. We consider the following decision problem: “Is a rational
ω-language generated by a code ?” Since 1994, the codes admit a char-
acterization in terms of infinite words. We derive from this result the
definition of a new class of languages, the reduced languages. A code is
a reduced language but the converse does not hold. The idea is to “re-
duce” easy-to-obtain minimal ω-generators in order to obtain codes as
ω-generators.

Introduction

Our research deals with the classical theory of automata and languages. We
particularly focus on the rational languages of infinite words (ω-languages) which
are recognized by Büchi or Muller automata [16]. A rational ω-language may be
ω-generated by a language. The operation ω stands for the infinite concatenation
and maps a language L into an ω-language Lω. Lω is then called an ω-power and
L is one of its ω-generators. One can decide if a rational ω-language admits an
ω-generator. If so, a rational ω-generator exists [14]. Various decision problems
arise from the set of ω-generators of a given rational ω-language.

Here is the open decision problem on which we focus: “Is a rational ω-
language generated by a code ?” A language L is a code if and only if every
non-empty word in L∗ has a unique factorization over L [2]. The similar prob-
lem for the Kleene closure ∗ instead of ω has a simple solution. The monoid L∗

is its own greatest generator and is generated by a code if and only if its root
L∗ \ (L∗ \ {ε})2 is a code. By analogy, we wonder when a rational ω-language
Lω is the ω-power of a code.

Unfortunately, the set of ω-generators of a rational ω-language does not admit
one but a finite number of maximal ω-generators [14]. Even if the greatest ω-
generator exists, the ω-power can be generated by a code without the root of its
greatest ω-generator being a code. For instance, consider the ω-power Lω with
the root of its greatest ω-generator equals to L = a + ab + ba, which is not a
code. Surprisingly, Lω is ω-generated by the infinite code C = a + (ab)∗ba.

Our approach of the problem consists of the definition of a new class of
ω-languages called the reduced languages. It is known that a code is minimal



(with respect to inclusion) in the set of ω-generators. Our new class of reduced
languages is useful here because it contains the codes and is included in the set
of minimal ω-generators. Usual approaches restrict the problem to subclasses
of codes: prefix codes [13], ω-codes [9], codes with delay [5]. In addition, the
problem is solved for prefix codes in [13]. Here, we decide to widen the problem
by considering a notable superclass: the class of reduced languages.

The graph of a Büchi automaton reveals that it is possible to sligthly modify
an ω-generator without changing the ω-power expressed. But in practice, we
had no idea about how to modify a minimal ω-generator towards another which
could be a code. Hopefully, to get a reduced language is possible, and may provide
codes.

The paper is divided in five main sections. The two first ones set prelimi-
nary definitions and useful results, in particular, the characterization of codes
by means of infinite words [6]. The third introduces the concept of reduced lan-
guages, followed by the study of the whole class and its decidability. Different
cases are then detailed in the fourth section to convince that, despite of their
great similitary, the reduced languages do not behave exactly as codes when
taken as ω-generators. At last, the fifth section explores the ability of the con-
struction of reduced ω-generators to reach codes.

1 Preliminaries

Let Σ be a finite alphabet. A word (resp. ω-word) is a finite (resp. infinite)
concatenation of letters in Σ. We note ε the empty word. Σ∗ is the set of words
over Σ, Σ+ = Σ∗ \ {ε}. Σω is the set of ω-words. Any subset of Σ∗ is called a
language and any subset of Σω is called an ω-language.

A word u is a prefix of v if v ∈ u(Σ∗∪Σω) and we write: u < v. The induced
order is the prefix order. For v ∈ (Σ∗ ∪ Σω), Pref(v) stands for the set of all
prefixes of v. Hence, for every L ⊆ (Σ∗ ∪ Σω), Pref(L) is the set of the prefixes
of the words in L.

Let L ⊆ Σ∗ be a language, the language L∗ is the set of words built with
words in L: L∗ = {ε} ∪ {a1...an | ∀i 1 ≤ i ≤ n, ai ∈ L}. In the same way, the
ω-power Lω is the set of ω-words: Lω = {a1...an... | ∀i > 0, ai ∈ L \ {ε}}. L∗

(resp. Lω) is generated (resp. ω-generated) by L, and so L is called a generator
(resp. ω-generator). Henceforth, minimality or maximality are specifically used
with respect to inclusion over the set of ω-generators.

Both of following languages are useful: Prem(L) = (L\{ε})\(L\{ε})(L\{ε})+

and, whenever M is a monoid, Root(M) = Prem(M) = (M \ {ε}) \ (M \ {ε})2.
The stabilizer of Lω is the language: Stab(Lω) = {u ∈ Σ+ | uLω ⊆ Lω}.

Stab(Lω) is a semigroup in which every ω-generator of Lω is included. So, when
Stab(Lω) is an ω-generator of Lω, it is the greatest [14]. The characteristic lan-
guage of Lω is the language: χ(Lω) = {u ∈ Σ+ | uLω ⊆ Lω and uω ∈ Lω}.
χ(Lω) is not anymore a semigroup. Every ω-generator of Lω is still included in
χ(Lω) and so, when χ(Lω) is an ω-generator of Lω, it is also the greatest [14].
Lω rational implies that Stab(Lω) and χ(Lω) are also rational.



Let L = L \ {ε} (abusively written L = L \ ε). A L-factorization of a word u
in L+ is a finite sequence of words in L: (u1, u2, ..., un) such that u = u1u2...un.
A L-factorization of an ω-word w in Lω is an infinite sequence: (w1, w2, ..., wn, ...)
such that w = w1w2...wn... . We will say indifferently L-factorization or factor-
ization over L. A language L is a code (resp. an ω-code) if every word u ∈ Σ∗

(resp. every ω-word w ∈ Σω) has at most one L-factorization [2][17]. Any ω-code
is a fortiori a code. Later, rational languages and ω-languages can be denoted
by their regular (ω)-expressions.

Let L be a language, the adherence of L is the ω-language Adh(L) = {w ∈
Σω | Pref(w) ⊆ Pref(L)} and an ω-language A is an adherence if A = Adh(L)
for some language L.

A language L is said to have a bounded (deciphering) delay if: ∃d ≥ 0 ∀u ∈ L
(uLdΣω ∩ Lω) ⊆ uLω.

A finite automaton A (resp. Büchi automaton B) is specified by (Σ, Q, δ, I, T )
where Σ denotes the finite alphabet, Q the finite set of states, I ⊆ Q the set of
initial states and T ⊆ Q the set of recognition states. A run of a word m in A
(resp. a run of an ω-word w in B) is a finite sequence l = (qi)0≤i≤n (resp. an
infinite sequence l = (qi)i≥0) of states in Q such that q0 ∈ I and ∀i δ(qi, mi+1) =
qi+1, with mi the ith letter of m (resp. w). A word m (resp. an ω-word w) belongs
to the language recognized by A (resp. ω-language recognized by B) if there exists
a run (qi)0≤i≤n (resp. a run (qi)i≥0) such that q0 ∈ I and qn ∈ T (resp. q0 ∈ I
and Inf(w) ∩ T 6= ∅, where Inf(w) = {q ∈ Q/Card({i/qi = q}) is infinite}). We
note L(A) (resp. L(B)) the language (resp. ω-language) recognized by A (resp.
B). The set of recognized languages coincide with the set of rational languages.
A rational ω-language is of the form: L =

⋃n

i=1
AiB

ω
i with n ≥ 1 such that

for every i, Ai and Bi are rational languages respectively included in Σ∗ and
Σ+. Their class coincides with the class of ω-languages recognized by Büchi
automata [18].

2 Useful results

In this section, we present some preliminary results. The first one is very im-
portant for our purpose. It gives an elegant characterization of codes based on
periodic infinite words.

Proposition 1. [6] Let L ⊆ Σ+. The language L is a code if and only if for
every word u ∈ L+, uω has a unique L-factorization.

Below, we recall two results about adherence needed in the sequel to justify
the hypothesis taken.

Proposition 2. [3][11] Let L be a language. If Lω is an adherence, then
Lω = Adh(L∗) = Adh(Pref(L∗)).

Proposition 3. [14] Let L be a language. If Lω is an adherence then χ(Lω) and
Stab(Lω) coincide with the greatest ω-generator of Lω.



Example 1. Consider L = a + ab + b2. Lω is finitely ω-generated so it is an
adherence and χ(Lω) = Stab(Lω) = L+ is the greatest ω-generator. Let K =
a∗b. Kω is not an adherence, Stab(Lω) = Σ+ is not ω-generator of Kω but
χ(Lω) = Σ∗bΣ∗ is the greatest ω-generator. Finally, let M = Σ∗(aa + bb).
There are two maximal ω-generators M1 = Σ∗(aa + bb)Σ∗ + a(ba)∗ and M2 =
Σ∗(aa + bb)Σ∗ + b(ab)∗. Neither Stab(Lω) = Σ+ nor χ(Lω) = M1 ∪ M2 are
ω-generators of Mω.

The following result is about languages with a bounded delay. Usually, this
deciphering property is linked to codes, not here.

Proposition 4. [7] Let L be a language with a bounded delay such that L+ is
the greatest ω-generator of Lω. If Lω is an adherence, then every ω-generator
code of Lω is necessarily a finite ω-code.

We point out here the result called lemma of infinite iteration frequently
used to prove the equality between two ω-powers.

Lemma 1. [14] Let L and R ⊆ Σ+ be two rational languages, Lω ⊆ RLω ⇒
Lω ⊆ Rω.

The language L \ LStab(Lω) is still an ω-generator of Lω and will be useful
to finally simplify ω-generators.

Proposition 5. [12] Let L be a language, the following properties hold:

(i) L \ LStab(Lω) ⊆ Prem(L).
(ii) L \ LStab(Lω) and Prem(L) are ω-generators of Lω.

At last, let us recall now a classic result on words.

Lemma 2. [15] Two words u, v ∈ Σ+ commute, i.e. uv = vu, if and only if
there exists a word z ∈ Σ+ and two different integers i and j ≥ 1 such that
u = zi and v = zj.

3 Reduced languages

In this section, we present a new class of languages based on a property partic-
ularly relevant when refering to ω-generators. This class lies between the class
of codes and the class of minimal ω-generators. We call it the class of reduced
languages.

3.1 Presentation

In the sequel, we present the definition of reduced langages which involves pe-
riodic ω-words. Then, we state a characterization of them in order to locate
reduced ω-generators among minimal ω-generators.



Definition 1. A language R ⊆ Σ+ is called reduced if:

∀u ∈ R uω /∈ (R \ u)ω

Proposition 6. Every reduced ω-generator is a minimal ω-generator.

Proof. Let L be a language. If L is not minimal, then there exists a word u ∈ L
such that uω ∈ Lω = (L \ u)ω. Hence L is not reduced.

The converse does not hold. For instance, the language L = a + ab + ba is
minimal but is not reduced. Clearly, (ab)ω ∈ (L \ ab)ω.

Proposition 7. A language L is reduced if and only if for each word u ∈ L, the
periodic ω-word uω has a unique L-factorization.

Proof. The second condition clearly implies L reduced. Conversely, assume there
exists u ∈ L such that uω has two L-factorizations with different first steps:
(u, u, . . .) and (v0, v1, . . .). Two cases arise:
– either, for each integer i ≥ 0, vi 6= u, hence uω ∈ (L \ u)ω.
– either there exists a smallest integer k > 0 verifying vk = u.
Hence, there exist two words α, β ∈ Σ∗ and n > 0 such that:
- v0 . . . vk−1α = un

- v0 . . . vk−1u = unβ
- v0 . . . vk−1uα = unβα = un+1

then, u = αβ = βα. According to Lemma 2, there exists z verifying α =
zi and β = zj. We obtain uω = zω = (v0 . . . vk−1)

ω and so, uω ∈ (L \ u)ω.
In both cases, a contradiction appears with L reduced.
Table 1 gives the maximal number of factorizations of different kinds of ω-

words, like in [6]. The asterisk ∗ attests that the column property characterizes
the corresponding class of languages. Consequently:

Proposition 8. A code is a reduced language.

The converse does not hold. For instance, the language L = a + ab + bc + c
is a reduced language but is not a code since the ω-word (abc)ω has two distinct
L-factorizations. We summarize below the relations between the different classes
of ω-generators we consider:

Code ω-generator ⇒ reduced ω-generator ⇒ minimal ω-generator.

Table 1. Maximal number of factorizations over ω-codes, codes, reduced languages.

Language L uω uω any
(u ∈ L) (u ∈ L+)

ω-code 1 1 1∗

code 1 1∗ ∞

reduced language 1∗ ∞ ∞



3.2 Decidability

The aim of this part is to ensure that the property of reduced language is de-
cidable over the set of rational languages. Four preliminary lemmas are needed
before stating the main result.

Let L ⊆ Σ+ a language. We use the set Amb(L) introduced in [10]. We
restrict Amb(L) to ω-words, so the set Amb(L) contains ω-words in Lω with
several L-factorizations with different first steps.

Amb(L) = {w ∈ Lω | ∃(wi)i∈N, (wj
′)j∈N

two L-factorizations of w with w0 6= w0
′}

Lemma 3. [6][9] If a language L ⊆ Σ+ is rational, then the set Amb(L) is
rational too.

Proof. If L is rational, the congruence defined as u ≃ v ⇔ u−1L = v−1L has a
finite index. Let us write 〈u〉 the equivalence class of the word u. The set Amb(L)
is obtained as: Amb(L) =

⋃

〈u〉⊆L 〈u〉 (Lω ∩ (u−1L \ ε)Lω).

The following lemma is a consequence of Definition 1:

Lemma 4. Let L ⊆ Σ+ be a language, L is reduced if and only if L verifies:

∀u ∈ L uω /∈ Amb(L)

We present here some notation concerning the Büchi congruence [4] in order
to prove our result. Let A = (Σ, Q, I, δ, T ) a complete Büchi automaton. For
each state q ∈ Q, and for every word u ∈ Σ∗, we write:

δT (q, u) = {q′ ∈ Q | exists t ∈ T and u1, u2 ∈ Σ∗

with u = u1u2 and t ∈ δ(q, u1) and q′ ∈ δ(t, u2)}

The Büchi congruence ≈ is defined by:

u ≈ v ⇔ ∀q ∈ Q,

{
δ(q, u) = δ(q, v)
δT (q, u) = δT (q, v)

for every u, v ∈ Σ+. Let [u] = {w ∈ Σ+|w ≈ u} be the equivalence class of u.
As ≈ has a calculable finite index, we obtain:

Lemma 5. [4] For each u ∈ Σ+, its equivalence class [u] is a constructible
rational language.

Lemma 6. If v1 ≈ v2, then v1
ω ∈ Lω(A) ⇔ v2

ω ∈ Lω(A).

It is time to state the main result.

Theorem 1. One can decide whether a rational language is a reduced language.

Proof. Let L be a rational language. It is effective to:
– construct the automaton A which recognizes the set Amb(L) (according to
Lemma 3);
– compute the equivalence classes [u1], . . . , [uk] (according to Lemma 5);
– verify if there exists [ui] such that [ui] ∩ L 6= ∅ and ui

ω ∈ Amb(L).
If so, L is not reduced, otherwise, L is reduced (according to lemmas 4 and 6).



4 Reduced languages as ω-generators

The class of reduced languages comes from considerations on the set of ω-
generators. This set contains or not a reduced language. If so, this set contains
or not a code. Both subsections illustrate the main two cases, the first revealing
incidently that a rational ω-power is not necessarily ω-generated by a code.

4.1 No reduced ω-generator

We show that there exists an ω-power that cannot be generated by a reduced
language. Consequently, this implies that a rational ω-power is not necessarily
generated by a code. Previously, this result has been proved in [19] and clearly
reinforces the interest in the decision problem we study.

Proposition 9. Some rational ω-powers do not admit reduced ω-generators.

Proof. Consider L = a2 + a3 + ba + b. Notice that Lω = Σω \ abΣω and that
L = χ(Lω) is the greatest ω-generator of Lω. Assume that there exists a reduced
ω-generator R of Lω. Let us prove the following two facts:

Fact 1 Let w ∈ Lω. If w ∈ aΣω then aw ∈ Lω.

Proof (Fact 1). Clearly, w ∈ (a2Lω ∪a3Lω). If w ∈ a2Lω then aw ∈ a3Lω ⊆ Lω.
If w ∈ a3Lω then aw ∈ (a2)2Lω ⊆ Lω.

Fact 2 For all k ≥ 1 and u ∈ Σ∗, we obtain {aku, akua} 6⊆ R.

Proof (Fact 2). If {aku, akua} is included in R, using Fact 1, we get:

(akua)ω = (aku) (ak+1u)ω

︸ ︷︷ ︸

∈Rω

Consequently, (akua)ω has two R-factorizations: (αi)i≥0 and (βj)j≥0 with α0 =
akua and β0 = aku. Hence, R is not reduced.

– as aω ∈ Lω, there exists a unique i0 > 1 such that ai0 ∈ R (according to
Fact 2 with u = ε).

– as ai0abaω ∈ Lω and abaω /∈ Lω, there exists a unique integer i1 ≥ 0 such
that ai0abai1 ∈ R.

– as ai0abai1abaω ∈ Lω and ai0abai1a /∈ R (according to Fact 2), then, there
exists a unique integer i2 ≥ 0 such that ai0abai1abai2 ∈ R.

– and so forth, we define a unique infinite sequence (ij)j≥0.

Now, let us consider the following ω-word: w = ai0abai1ab . . . abain . . .. This
word w belongs to Lω but lacks a factorization over R. We deduce that R is
not an ω-generator of Lω. We conclude that Lω does not have any reduced
ω-generator.

Corollary 1. Some rational ω-powers do not admit codes as ω-generators.



4.2 Reduced vs code ω-generator

In this section, we show that an ω-power generated by a reduced language is not
necessarily generated by a code.

Proposition 10. A rational language ω-generated by a reduced language is not
necessarily ω-generated by a code.

Proof. L = a+ab+bc+c is a language with a bounded delay 1, studied in [1]. Lω

is an adherence since L is finite and then χ(Lω) = L+ is its greatest ω-generator.
It is clear that L is reduced. Let us show that Lω cannot be generated by a code.
Assume firstly that C is an ω-code ω-generator of Lω. As (uai)aω = (u) aω

︸︷︷︸

∈Lω

and

(ub)cω = (u) bcω

︸︷︷︸

∈Lω

, we obtain the property P : {uai, u} 6⊆ C and {ub, u} 6⊆ C, for

every u ∈ Σ+ and i > 0. We intend to construct an infinite sequence of elements
from C:
– as aω ∈ Lω, there exists a unique integer i0 > 0 (according to P ) such that
ai0 ∈ C;
– i0 > 0, then ai0baω ∈ Lω, but ai0b /∈ C (according to P ), and there exists a
unique integer i1 > 0 such that ai0bai1 ∈ C;
– and so on; we define a unique infinite sequence (ij)j≥0.

The cardinality of C is necessarily infinite, so there is no finite ω-code ω-
generating Lω. According to Prop. 4, there is no code C ω-generating Lω.

5 Reducing ω-generator

For the moment, the interest of the new class of reduced languages is not proven.
However, some minimal ω-generators which are not codes are prevented from
being codes essentially because there are not reduced. So, we present a method
in order to make ω-generators reduced without affecting their ω-power.

5.1 Reduction

The reduction mixes two ideas: the first is a transformation required to aim at
the uniqueness of factorizations of specific periodic ω-words, according to the
characterization of reduced languages (Prop. 7). The second one is a simplifica-
tion to guarantee the minimality of reduced ω-generators (Prop. 6).

Let us call A(L) the language of words in L which prevents L from being
reduced.

A(L) = {u ∈ L | uω ∈ (L \ u)ω}

A step of reduction consists in the elimination of an element from A(L),
eventually compensated by the apparition of other elements. A first way to do
this is described below:



Proposition 11. Let L ⊆ Σ+ be a rational language. For every u ∈ A(L), both
languages G = u∗(L \ u) and especially Γ = G \ GStab(Lω) are ω-generators
of Lω.

Proof. Let G = u∗(L \ u). As u ∈ L, we get that G ⊆ L+ and then Gω ⊆ Lω.
Conversely, let w ∈ Lω. There are two cases :
- either w = uω and then w ∈ (L \ u)ω ⊆ (u∗(L \ u))ω.
- either there exists n ≥ 0 such that w = xyw′ where x = un, y ∈ (L \ u) and
w′ ∈ Lω. Hence, w ∈ (u∗(L \ u))Lω. From Lemma 1, w ∈ (u∗(L \ u))ω .

The equality Lω = Gω is proved. Lω = Γ ω follows from Prop. 5.

Example 2. Let L = a + ab + ba. As (a, ba, ba, ...) is a L-factorization of the
word (ab)ω, we know that A(L) = ab. According to Prop. 11, the languages
G = (ab)∗(a + ba) and Γ = a + (ab)∗ba are ω-generators of Lω. Here, the latter
language is an ω-code. It is necessarily a code and a reduced language too.

To increase the possibility to find a code when reducing a language, we have
to treat separately the case where A(L) contains two words sharing the same
primitive root. So, here is a second way to remove an element from A(L).

Proposition 12. Let L ⊆ Σ+ be a rational language. If A(L) contains two
non-empty words u and v such that u and v commute, then both languages G =
u + v∗(L \ {u, v}) and especially Γ = G \ GStab(Lω) are ω-generators of Lω.

Proof. From Lemma 2, uv = vu implies that there exist two different integers i ≥
1 and j ≥ 1 and a word z ∈ Σ+ such that u = zi and v = zj . As {zi, zj} ⊆ A(L),
according to Prop. 11, G′ = (zj)∗(L \ zj) is an ω-generator of Lω. Moreover,
(zj)+zi = zi(zj)+ ⊆ G′Stab(Lω). Then, we obtain: G′ \ G′Stab(Lω) ⊆ G =
zi+(zj)∗(L\{zi, zj}) ⊆ G′ and we deduce from Prop. 5 that G is an ω-generator
of Lω. From Prop. 5 again, Γ = G \ GStab(Lω) is an ω-generator of Lω.

Example 3. Let L = a2 + a3 + b. A(L) = a2 + a3 and we choose to remove
a3. We deduce from Prop. 12 that G = a2 + (a3)∗b and Γ = a2 + a3b + b are
ω-generators of Lω. So Γ is an ω-code. The other choice would have lead to the
ω-code Γ ′ = a3 + a2b + a4b + b.

Obviously, the ω-generators computed by a step of reduction are not neces-
sarily reduced. Perhaps the problem has just been moved. We study in the next
section the use of the reduction, its range, and of course, its limit.

5.2 Experimentation

This section explains how to use the reduction in order to find reduced ω-
generators, possibly codes. We limit ourselves to rational ω-powers which are
adherences. Indeed, from Prop. 2 and Prop. 3, such ω-powers verify:

Lω = (χ(Lω))ω = Adh(Root(χ(Lω))



Moreover, every finitely ω-generated language is an adherence [11]. From now
on, L will denote the root of χ(Lω) which is ever characteristic of Lω [8] and
is, in addition here, the greatest ω-generator. The reduction principle consists
in applying recursively either Proposition 11 or Proposition 12 to L and the
languages obtained, while it is possible.

As an illustration, we make here a digression towards automata. Let A be the
minimal (deterministic) automaton which recognizes L∗, we note L∗ = L(A). Let
B be the same automaton in its Büchi version, Lω is recognized by B and we note
Lω = Lω(B). So, we intend to apply the reduction to L which is already minimal
whenever it is not reduced. How does a reduction step operate on a deterministic
Büchi automaton ? It suppresses a recognition state from one cycle. To do this,
it induces a dilation of others as shown in Figure 1.

q2

q0

q1a

b

a

b
a

q0 q1

q3q2

a

b

a

b

b a

a

Fig. 1. Two automata for L∗ = (a + ab + ba)∗ and C∗ = (a + (ab)∗ba)∗ coupled with
two Büchi automata for Lω = Cω = (a + ab + ba)ω.

Let us come back to the implementation of reduction. Thus, three different
cases arise when we apply a step of reduction:

(i) the process halts and gives an ω-generator code;
(ii) the process halts on a reduced ω-generator which is not a code;
(iii) the process does not halt.

In the sequel, we discuss the three cases from examples. The last two cases
explore the actual limit of the reduction principle.

Case (i) In this case, the reduction provides a code, as illustrated in the follow-
ing example. Note that the examples from Section 5.1 would have be convenient
here. However, we give another example to show that, sometimes, it is also pos-
sible to get a code which is not ω-code.

Example 4. Let L = ab + aba + baba. The set A(L) = ab since, in particular,
(aba, baba, baba, ...) is a (L \ ab)-factorization of the word (ab)ω. According to
Prop. 11, the language G = (ab)∗(aba + baba) is an ω-generator of Lω. Hence,
Γ = aba+ ababa+(ab)∗baba is a reduced ω-generator of Lω. It is a code but not
an ω-code. It was already known that Lω has no ω-code as ω-generator [1].



Case (ii) This time, the process of reduction provides a reduced ω-generator
which is not a code.

Example 5. Let L = a + ab + bab. We have A(L) = ab. According to Prop. 11,
Γ = a + bab + aba + ab2ab is an ω-generator of Lω. It is reduced but it is still
not a code. However, there is no way to continue the reduction because Γ is
reduced: one can easily verify that A(Γ ) = ∅. In addition, L is a language with
a bounded delay 1 and it was already known that Lω cannot be ω-generated by
an ω-code [1]. According to Prop. 4, Lω has no code among its ω-generators.

Every time the process halts on a reduced ω-generator which is not a code,
we succeed in finding a proof more or less ad hoc that the concerned ω-power is
not ω-generated by a code. But examples are quickly difficult to handle and we
do not know more. Nevertheless, it is not excluded that a generalization would
be possible. We have to investigate for instance deciphering delays.

Case(iii) How do we interpretate the third case ? Our process does not halt. It
clearly contains the case where Lω has no reduced ω-generator, nor code.

Example 6. Let L = a2 + a3 + ba + b. We get A(L) = a2 + a3. According to
Prop. 12, Γ = a2 + a3ba + a3b + ba + b and Γ ′ = a3 + a2ba + a2b + a4ba +
a4b + ba + b are both ω-generators of Lω. Neither Γ nor Γ ′ are reduced since
A(Γ ) = a3ba+a3b and A(Γ ′) = a2ba+a4ba+a4b. So neither Γ nor Γ ′ are codes.
We can continue the process for a while ... But it necessarily continues without
halting (nor looping) because we proved there is no reduced ω-generator for such
an ω-language (in the proof of Prop. 9).

Is the condition sufficient ? We have no counterexample, nor proof. The only
certitude is that the process cannot halt if there is no reduced languages among
the ω-generators.

To decide if a rational adherence admits an ω-generator code, it is not suffi-
cient to test whether the root of the greatest ω-generator is a code. The technique
of reduction can help but obscure areas remain. Finally, several significative
examples are recapitulated in Table 2 like in [19]. It is not worth exhibiting
complicated examples to illustrate the complexity of the problem.

6 Conclusion

The research of ω-generators codes lead us to define the new class of reduced
languages, strongly connected with periodic ω-words. Particularly, we have ex-
plained its remarkable position between code and minimal ω-generators though
this area is not so large. In the rational case, the definition of reduced languages
allows an algorithmic approach to search and sometimes find ω-generators codes.
Up to what point does our method produce a code whenever it exists ? An in-
tensive work of experimentation is needed to understand where is exactly the
limit of such a method.



Table 2. Examples in brief.

L = Lω has an ω-generator ...
Root(χ(Lω)) reduced code ω-code

a + ab a + ab

a2 + a3 + b a2 + a3b + b

a + ab + ba a + (ab)∗ba

a + ab + b2 a + ab + b2 no

ab + aba + baba aba + ababa + (ab)∗baba no

a + ab + bc + c a + ab + bc + c no

a + ab + bab a + bab + aba + ab2ab no

a2 + a3 + ba + b no

References

1. X. Augros. Etude des générateurs de langages de mots infinis. Master’s thesis,
Univ. de Nice - Sophia Antipolis, june 1997.

2. J. Berstel and D. Perrin. Theory of codes. Academic Press, 1985.
3. L. Boasson and M. Nivat. Adherences of languages. Journal of Computer and

System Sciences, 20:285–309, 1980.
4. J.R. Büchi. On a decision method in restricted second order arithmetics. In

International Congress on Logic, Methodology and Philosophy of Science, pages
1–11. Stanford University Press, 1960.

5. J. Devolder. Generators with bounded deciphering delay for rational ω-languages.
Journal of Automata, Languages and Combinatorics, 4(3):183–204, 1999.

6. J. Devolder, M. Latteux, I. Litovsky, and L. Staiger. Codes and infinite words.
Acta Cybernetica, 11(4):241–256, 1994.

7. S. Julia. Sur les codes et les ω-codes générateurs de langages de mots infinis. PhD
thesis, Université de Nice - Sophia Antipolis, 1996.

8. S. Julia. A characteristic language for rational ω-powers. In Proc. 3rd Int. Conf.

Developments in Language Theory, pages 299–308, Thessaloniki, 1997.
9. S. Julia, I. Litovsky, and B. Patrou. On codes, ω-codes and ω-generators. Infor-

mation Processing Letters, 60(1):1–5, oct. 1996.
10. J. Karhumäki. On three-element codes. Theoret. Comput. Sc., 40:3–11, 1985.
11. M. Latteux and E. Timmerman. Finitely generated ω-langages. Information Pro-

cessing Letters, 23:171–175, 1986.
12. I. Litovsky. Free submonoids and minimal ω-generators of Rω. Acta Cybernetica,

10(1-2):35–43, 1991.
13. I. Litovsky. Prefix-free languages as ω-generators. Information Processing Letters,

37:61–65, 1991.
14. I. Litovsky and E. Timmerman. On generators of rational ω-power languages.

Theoretical Computer Science, 53:187–200, 1987.
15. M. Lothaire. Algebraic Combinatorics on Words. Cambridge, 2002.
16. D. Perrin and J.E. Pin. Infinite words. Elsevier Academic Press, 2004.
17. L. Staiger. On infinitary finite length codes. Theoretical Informatics and Applica-

tions, 20(4):483–494, 1986.
18. W. Thomas. Automata on infinite objects. In Handbook of Theoretical Computer

Science, volume B, chapter 4. Elsevier Science Publishers, 1990.
19. Tran Vinh Duc. A la recherche des codes générateurs de langages de mots infinis.

Master’s thesis, IFI Hanöı - Univ. de Nice - Sophia Antipolis, 2006.


