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Complex resonance frequencies of a finite, circular
radiating duct with an infinite flange
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@ Laboratoire de Mécanique et d’Acoustique, UPR CNRS 7051, 31 chemin Joseph Aiguier,
13402 Marseille cedex 20, France

Abstract

Radiation by solid or fluid bodies can be characterized by resonance modes.
They are complex, as well as resonance frequencies, because of the energy loss
due to radiation. For ducts, they can be computed from the knowledge of the
radiation impedance matrix. For the case of a flanged duct of finite length ra-
diating on one side in an infinite medium, the expression of this matrix was
given by Zorumski, using a decomposition in duct modes. In order to calculate
the resonance frequencies, the formulation used in Zorumski’s theory must be
modified as it is not valid for complex frequencies. The analytical development
of the Green’s function in free space used by Zorumski depends on the integrals
of Bessel functions which become divergent for complex frequencies. This pa-
per proposes first a development of the Green’s function which is valid for all
frequencies. Results are applied to the calculation of the complex resonance fre-
quencies of a flanged duct, by using a formulation of the internal pressure based
upon cascade impedance matrices. Several series of resonance modes are found,
each series being shown to be related to a dominant duct mode. Influence of
higher order duct modes and the results for several fluid densities is presented
and discussed.

Keywords: Acoustics, radiation impedance, cylindrical pipe, resonance
frequencies
PACS: 43.20.Rz, 43.20.Mv

1. Introduction

For the problem of duct radiation, many works have been done concerning
the calculation of radiation for a given duct mode, but to the author’s knowkedge
no study has been done concerning the resonance modes. We will treat the
problem, in order to get a better insight of the coupling of the duct and the
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surrounding space by radiation. We choose the case of a duct with infinite
flange, because of its relative simplicity. One difficulty is due to the fact that
resonance frequencies (and modes) are complex, because radiation is a form
of dissipation. Notice that in the literature, resonance modes are also called
eigenmodes: they must be distinguished from the duct modes used in the present
paper for the purpose of the calculation.

Green’s functions are widely used in many physical situations and notably
in acoustics, for the calculation of the pressure field radiated by physical sources
(e.g. speakers, musical instruments, vibrating structures,...). For instance, the
solution given by Rayleigh [m] to the classical problem of a plane piston radiating
into an infinite flange involves the Green’s function in free space. Zorumski [
extended this result to know the radiation of a semi-infinite flanged duct in the
form of matrix impedance, giving the coupling between duct modes and used the
Sonine’s infinite integral ( Ref. [E}, p-416, Eq.4) to develop the Green’s function
in free space. In Refs [E, E], formulations based on the Zorumski’s method of
this radiation impedance are obtained for a larger class of problems. However,
the development fails when the frequency becomes complex: the corresponding
infinite integral, involving a Bessel function whose argument is a product of the
frequency and the dummy argument, becomes divergent for complex frequen-
cies. In many studies, the Zorumski’s radiation matrix is used as a boundary
condition at the end of the duct in order to calculate input impedances, length
corrections or reflection coefficients (see e.g. Refs. [E] or @]) It is worth noting
that complex resonance frequencies can occur in various situations (e.g. dissi-
pative fluid, radiation, complex impedance wall boundary conditions such as in
Refs. [@ or [E]) In section E of this paper, we present a new expression for the
Green’s function in free space for complex frequencies. In section , an appli-
cation of this result is devoted to the determination of the complex resonance
frequencies of a cylindrical duct, closed at its input, considering the influence
of higher order duct modes. In the same secion, some results are given and dis-
cussed. For this purpose, the internal Green’s function is previously calculated
in section P with a method of cascade impedance.

2. Calculations of Green’s function for the Helmholtz equation in free
space

Many studies on sound radiation by cylindrical ducts can be found in the
literature. For the case of an infinite flange, Norris and Sheng @] or Nomura
[ used a Green’s function integral to find an appropriate formulation for the
external field. We can also cite the classical work by Levine and Schwinger
[ for the case of an unflanged pipe. Zorumski [E] extended the results for the
planar mode to obtain a multimodal radiation impedance which is a combination
of the duct modes present in the duct. In this section, these calculations are
briefly recalled, exhibiting the difficulty related to complex frequencies. Thus, a
new analytical formula for the Green’s function, valid for a dissipative problem,
is presented.



2.1. Zorumski’s radiation impedance

We consider the radiation of sound into an infinite half space from a circular
duct (with radius b and length L), with an infinite flange at zo = 0 (the index 0
corresponds to the cross section Sy at the end of the duct) and we have chosen
to work with circular coordinates where the vector r is denoted (z, r, #) as shown

by Fig. [i.
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Figure 1: Schema and coordinates of the duct.

The acoustic pressure in the infinite medium (z > 0) is given by a Helmholtz
integral (the time factor exp(—iwt) is omitted throughout this paper):

2w
p(r) = pr / rov(ro, 90 drod9o7 (1)

where h = [r? + 13 — 2rrg cos(9 — 6y) + 222, p the ambient density and the
wavenumber k = w/c (with w the circular frequency and ¢ the speed of sound).
The pressure p and the velocity v inside the duct (z < 0) are expressed as a
series of duct eigen modes, so in z = 0:

p(r,0,z=0) = pc? Z Z 1/)mn(kr)eim9Pmn, (2)

v(r,0,z=0) = CZ Z Yo (k7)™ Vi, (3)

where ., (kr)e?™? is the transverse function for the mode mn with ¥, (kr) =
Jo(kr)/Npmn. The A, are the eigenvalues, solutions of J' (A, kb) = 0, and the
norm N,,, is chosen similarly to that used by Zorumski [@
Substituting Eq. (E) into Eq. () gives the pressure for z > 0 in terms of the
modal velocity amplitudes V,,,,:

ikh

b
p(r.6.2) wpczZan / eimbo / TOST¢mn(kro)dTod9o- (4)
0

Zorumski expressed the free space Green’s function in equation (H) in terms
of a Sonine’s infinite integral ([ff], p. 416, Eq. 4) and wrote for z = 0 in the
expression of h:

ikh 00
— = k/ (% = 1)" 2 Jo(rkh)dr. (5)
0
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Next, he introduced a concept of ” generalized radiation impedance matrix Zay”
for a semi-infinite duct with an infinite flange to describe the relation between
the modal pressure and velocity amplitudes:

Pmn = Z Zmnlvmlu (6)
=1

where m, [ and n are, respectively, the orders of circumferential, radial incident
and reflected modes. The element Z,,,; of the radiation impedance matrix
gives the contribution of the velocity mode ml to the pressure mode mn (for
reasons of symmetry, the coupling is possible only for a duct mode with the same
azimuthal dependance). The expression of the radiation impedance is obtained
as:

A / (7% = 1) % Dy (7, k) Dyt (7, k), (7)
0
with, for a hard wall condition:

TWmn (kb)J), (Tkb)

2 2
A, —T

Dy (7, k) = kb (8)

2.2. Green’s function for the Helmholtz equation in free space for complex fre-
quencies

The following asymptotic form (see Ref. [E]7 Eq. 9.2.1, p. 364) occurs when
v is fixed and |k| — oo:

) = | Zfeosts — Jom — S) - eBON0(w ) ©)

with |argk| < 7 (in this paper, the real part and imaginary part are repre-
sented, respectively, by the symbols & and $). As a consequence, for 7 — oo
with k € C we have Jy(rkh) — oo when (k) # 0, thus relation (f) and the
radiation impedance (ﬂ) given by Zorumski are divergent integrals for all non
real frequencies.
In order to have a Green’s function for the Helmholtz equation in free space
valid for complex frequencies, we use another form of the Sonine’s infinite in-
tegral to develop this Green’s function, expressed by Watson [B] (p. 416, Eq.
4):

cikh

h

This integral remains convergent even for k£ complex. A difficulty occurs since k
is a branch point of the square root. For a time factor exp(—iwt), the integration
path on the real axis must remain below k. However the complex resonance
frequencies w = ck have a negative imaginary part (see explanation in section
@), so the previous formula must be adapted because of the branch cut. The
integration path below k is classically deformed, as shown in Fig. E:

= /Oo 7‘(7’2 — k2)_%JQ(Th)dT. (10)
0
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Figure 2: Deformation of the integration contour.
Now, the integral in Eq. ) is written as:
cikh IR(K)| 1 N 1
h =/ Jo(Th)T(T2_k2)_§dT+Il(/€,h)—i—Ic-i-Ig(k,h)-i-/ Jo(rh)r (2 —k?)~}dr,
’ [R(K)]
(11)
with .
Li(k,h) = Ir(k,h) = _/ Jo(th)r (1% — k2)7%d7'
|R(K)|

and I, is zero according to Jordan’s lemma.

After calculations (similar to those developed by Morse and Feshbach [[[4],
p.410), the following five cases can be distinguished:

i) R(k) <0 and (k) >0

eikh o )
== [ deyr(t k) a2
0
ii) R(k) <0 and S(k) <0
etkh [R(k)| - I -
= Jo(Th) Zm==5d7 + Jo(Th) ——=—=d
h Z/o o7 )m T o o(Th) —— "
k
-
_2/ JO Th dr 13
IR (k)| (rh) T2 — k2 (13)
iii) ®(k) > 0 and (k) >0
etkh [R(k)| - 0o .
= i Jo(Th) ————dr + Jo(Th)————dr. 14
h Z/O O(T )\/m T |§R(k)| O(T ) 7—2 _ k2 T ( )
iv) R(k) > 0 and S(k) =0
gikh [k|(1—e) .
—— = Jo(kh)kv2e(1 — i) +i Jo(rh)————dr
h 0 kQ _ 7—2
o T
+/ J Th 7([7’7 15
|kl(1+¢) olrh) 2 — k2 (15)



with e << 1.
v) R(k) > 0 and (k) <0

gikh R ()| ; o ;
= + Jo(Th) ——=d1 + Jo(Th) —=dr1
h /0 o )\/kQ — 72 IR(k)| o(7h) T2 — k2

k
-
2 / Jo(h) —————dr. (16)
R (k)| VT —k?
Contrary to the original Zorumski’s formulation, these results involve con-
vergent integrals when the frequency is complex.

2.8. New formulation of generalized impedance of a flanged circular duct for
real frequencies
Initially, the previous result will be checked for the real case, in order to
compare the original Zorumski’s result, noted in Eq. (ﬂ), and that obtained
using the expansion of exp(ikh)/h for the case (iv) where S(k) = 0. Eq. ([F)
leads to the following results:

[k[(1—¢€)

- ~ N T ~ ~
Zont = —ik[Dyn (k) Dyt (k)kv/2€(1 — i) + i i T D (") Dt ()
e e] T ~ _
T S5 mn m d ’
+/|k|(1+e) =gz o (T Dma(1)er] 1)
vhere U (0) T (1)
Do () = b5 T2 (18)

The radiation impedance for the planar mode (m = n = 0 with | = 0)
with Zorumski’s formulation (fJ) and formulation ([7) (with € = 1076) are very
similarly and thus, confirms the validity of formula ([L'7]) with the identical com-
putational cost. This formula is used in Ref. [@] to calculate an approximation
of the reflection coefficient and of the length correction, taking into account the
effect of the higher order duct modes below the first cut-off frequency.

The comparison between complex Zorumski’s formulation for the planar mode
(m=n=0 and 1=0) and Rayleigh’s radiation impedance of a flanged plane piston
confirm the validity of Zygo for all the frequencies (see subsection @), because
Rayleigh’s radiation impedance is by definition the same quantity as Zygp.

In what follows, we show the interest of the radiation impedance valid for com-
plex frequencies when calculating the complex resonance frequencies of a flanged
finite length duct terminating in a Zorumski’s radiation condition. In a first in-
stance, the internal Green’s function must be determined, with a method of
cascade impedances.



3. Calculation of the finite flanged duct internal Green’s function
with a method of cascade impedances

8.1. Definition of the internal Green’s function

We search for the internal Green’s function G(M, M’ w) at a point M(r, 8, 2)
with a source in M'(r, 0, 2'), satisfying:

1
(An + EHG(M, M w) = —ﬂé(r —7")5(0 — 6')5(z — 2'), (19)
™

with 0,G(M, M',w) = 0 on the walls. It is classically (see e.g. Morse and
Feshbach [@]) expanded in a series of duct modes (the boundary conditions for
the variable z will be given later on):

oo oo

GM,M',w) =D > Gmn(r,0)bmn (1, 6")gun (2, 2/, w), (20)

m=0n=0

where ¢ (r,0) = mn(r)e?™? is the transverse function for the mode mn and
Imn(2, 2',w) is the longitudinal function for the mode mn. In what follows, the
dependance in w of gmn(z,2,w) is omitted for simplicity. It is worth noting
that now we have the transverse function with respect to r and not kr, as per
Zorumski [{]. Therefore, 1y, (1) = W where the A, are solutions of
J! (Amnb) = 0, With Apun = Yimn/b. The vy are the (n + 1) zeros of the first
derivative of the Bessel’s function J,,. The following norm N,,, is chosen (Ref.
[B] with respect to b and not kb):

m?2

Im (Amnb). (21)

The transverse modes ¢, (r,0) satisfy:
(AL + /\im)d)mn('ra 9) =0,

with A; = %%(rai) + T%aa—;, thus: AJ dmn(r,0) = =2, dmn(r,0). Studies
such as Refs. @] or [ﬁ] show that a small finite number of terms is necessary for a
numerical estimate of the summation and it can be truncated: M, is defined as
the number of circumferential modes m and N,, as the number of radial modes

n. Introducing the previous expression (R0)) in (L9) gives:

Z Z N R, 006 (7, 0 gun (2 7) = —5—6(r — 1150 — 0)6(= — ), (22)

27r
m=0n=0

where k2, = k2 — X2, Then, multiplying the left and right sides of (29) by
@, (r,0) and integrating the resulting equality on the surface S, the orthogo-
nality condition ([ ¢mn®},dS = GmmOni), leads to:

2

(%—i—k2 n)Gmn(z,2') = =6(z — 2'). (23)



With a conservative Neumann or Dirichlet boundary condition at the ex-
tremities of the duct, the resonance wavenumbers can be easily computed. But
with a dissipative boundary condition like those occurring for the sound radi-
ation of a flanged cylinder, there is no simple analytical solution. Therefore,
in the next section, the elements gn,(z,z’) are calculated with a method of
cascade impedances presented in Refs. [EL or [@]

3.2. Presentation of the method of cascade impedances

The calculation of the duct impedance at an abscissa z; with respect to
another abscissa 2y is based on the following transfer matrix relationship (see

e.g. Ref. [@])
‘I;mn(jl) _ (MT) ‘P;mn(zQ) , (24)
< mn( 1) mn( 2)

cosh(ikmn (22 — 21))  Ze.mn sinh(ikpn (22 — 21))

= inh(ik —
Mr S (1 mn(22 Zl)) COSh(ikmn(Zg N Zl)) , Where Zc,mn
Zc,mn
is an element of the diagonal matrix of characteristic impedance Ze:
kpc
Zc,mn = %

Moreover, matrices formulation is chosen: ®(r, 6) is a column vector constituted
by the M, N, clements ¢pmn, verifying [ ®(r,0)®" (r,0)dS = I, P(2) is a
column vector counstituted by the M, N,, elements P,,, and V(z) is a column
vector constituted by the M, N, elements V,,,. Thus, relation (@) is now

TGS e

where C and S are diagonal matrices constituted by the elements cosh(ik,, (z2—
z1)) and sinh(iky,, (22 — 21)), respectively.

The transfer matrix formulation @) is now transformed into an impedance ma-
trix formulation. The calculation, presented in Ref. [@}, is recalled in Appendix
A. This gives the following matrix equation:

B2 () e
P(2) Zo1 —Zao V(z2) )’
where Zq11 = chilc, Z1o = chil, Zo, = chil and Zog = chilc.

3.3. Calculation of P(z’)

First, the pressure vector at the source position 2z’ is calculated. For this
purpose, we calculate a right-side matrix impedance Z*(z’) at 2’ with respect
to Zyay, a left-side matrix impedance Z~(z') at 2’ with respect to Z. and fi-
nally the connection between these two matrices at z’, the abscissa of the source.



Step 1: Right-side matrix impedance Z*(z’)
Let us denote Cs and Sg the diagonal matrix constituted by the elements
cosh(ik,,nl2) and sinh(ik,,,l2), respectively, where lo (see Fig. EI) is the distance
between the abscissa 2z’ and the extremity (z = 0). The radiation impedance
Z.ay, constituted by the elements Z,,,; calculated in the previous section, ver-
ifies P(2' + l2) = Zyay V(2’4 l2). Thus Eq. (P§) leads to:

V(2 +12) = (Zyay + Z22)  Z21 V(2'), (27)
and, with Egs. (P§) and (R7), to:
P(2') = Z11V(2') — Z12(Zyay + Z22) ' Z21 V(7).
With Z* verifying P(z') = Z1(2/)V(2'), we have finally:
Z7(2') = Z11 — Z12(Zeay + Z22) " ' Zo1, (28)

or:

Z1(2) = ZcS; Cs — ZeS; M Zg Y Zray + S Cs) TS (29)

Step 2: Left-side matrix impedance Z~(z')
We choose a Neumann condition for z = —L (thus V(2/ —l3) = 0). Here, Ce
and Se are the diagonal matrices constituted by the elements cosh(ik,,,l1) and
sinh(ékmnl1), respectively. l; (see Fig. [I]) is the distance between the point

z = —L and the point z’. The impedance Z, is calculated at z = —L.
Relation (R6) is written for the present case as:

P(2) = ZS;' V(2 —11) — ZS;TCV(Y). (30)

Thus, with the Neumann condition in z = — L and with Eq. (B0)), using P(z') =
Z~(2)V(z'), the following result is obtained:

Z" () = —Z.S;'Ce. (31)

Step 3: Connection between the impedance matrices ZT and Z~
at z’
Let us denote P, (2') = [gmn(2,2')]2=2'+c. Using the continuity of the Green’s
function at z = 2/, leads to when € — 0:
Pin(2') = Prn(2') = Pan(?), (32)

m

Integrating relation (R3) on an interval of width 2¢ between 2’ + ¢ and 2’ — ¢
gives:

2 +e 52
/ (8 + kfnn)gmn(zv Zl)dz =-1 (33)

and, with the pressure continuity, when ¢ — 0:

0:Pn(2) = 0: Py, (21) = —1, (34)



with 0, Pt (2") = [0.0mn (2, 2")] = +e- _
Euler’s dimensionless equation éan(z' )= —wipaszn(z' ) implies 0, Py (27) =
ikVpn(2'), thus, using Eq. (B4):
1
V(&) = Vi) = (39)
i

mn

We introduce a column vector W of M,,, N,, lines whose elements equal 1. Equa-
tion (BJ) may be expressed as:

(2°() P - (2 ()P = - W,

and using Eq. @), the pressure at the source is written as follows:

P() = (") (@ ()7 W, (36)

3.4. Expression of the function g(z,2’)
We introduce a column vector g(z,z’) constituted by the M,,N,, elements

gmn(2,2"). They are two possible configurations with respect to the relative
positions of receiver at z and source at 2’:

First configuration: z > z’
Let I, = z — 2’ be the distance between the receiver and the source (see Fig. [l]),
C,, the diagonal matrix constituted by the elements cosh(ik,,l,), and S;, the
diagonal matrix constituted by the elements sinh(iky,,!-). Relation (P4) gives
for z > 2"
g(z,2') = CL.P(2') — Z.S1, V(7'),

then, with P(z') = ZT(2/)V(2'):
8(z.2) = 81, [S.1C1, - Ze(Z* (=) 1] P(). 67)

Second configuration: z’' > z
Let I; = 2’ — z be the distance between the receiver and the source(see Fig. m),
C), the diagonal matrix constituted by the elements cosh(iky,.l;), and Sy, the
diagonal matrix constituted by the elements sinh(ikmy,l;). Relation (R4) gives
for 2/ > z:

g(z, Z/> = ChP(z/) + ZCSllv(zl>a
then, with P(z') = Z~ (") V(2'):

g(z,2') =8y, [S;,'Cy, + Ze(Z7 (') ] P(2). (38)
Finally, the Green’s function of a finite duct with an infinite flange is given as:

G(M,M') = ®(r,0)®(r',0")g(z,2"). (39)

10



4. Application to complex resonance frequencies of a flanged, finite
length duct

Resonances of a flanged, finite length duct are interesting as they contain
important information about the coupling between internal and external fluids.
Their calculation is based on the fact that the internal pressure becomes infinite
at each resonance. Newton’s method is used to compute the zeros of the inverse
of the pressure. Since the resonances of a dissipative problem are complex, a
complex formulation of the impedance radiation is needed. As a time depen-
dence exp(—iwt) has been chosen, the imaginary part needs to be negative for
resonance frequencies in order to ensure that the amplitude remains bounded
for all times ¢. Using the integrals () and ([Ld), for R(k) > 0 and S(k) < 0,
Zmnl becomes:

ROl ) teo .
Lmnt = —ikli ———— D (T) Dy (7)d7 +/ —_—
i [ DD+ [ T
k
T ~ ~
—2/ — Dmn T Dml T)dt].

This expression is used as a radiation condition Z.,y at the end of the finite
length duct.

4.1. Resonance wavenumbers for the planar mode without influence of higher
order duct modes

In a first instance, we consider the resonance wavenumbers of the planar
duct mode (m=n=0) without the influence of higher order duct modes (1=0).
With radiation, the j** resonance wavenumbers of duct mode mn are denoted
k} .. and denoted k7, without radiation.

In order to validate the complex formulation of the radiation impedance, we
compare the resonances obtained with radiation impedance given by relation
(@) for m =n =0 and | = 0, with the resonances obtained with the radiation

impedance of a flanged plane piston given by Rayleigh’s formulation as (see Ref.
4] p.1458):
1 i
Zy ~ pc|l — —J1(2kb) — —
0= pell = 5 N1 (2k0) =
The radiation impedance for m=n=1=0 calculated with relation (f) and
that of a flanged plane piston (@) are identical. Thus, resonance wavenumbers
calculated with these two formulations are so identical, as observed in Fig. .
It is worth noting in Table [I| that without radiation, the resonance frequen-
cies are those obtained by the usual longitudinal resonances of a cylindrical duct
with one side ”closed” and the other side ”open” (Neumann/Dirichlet problem)
for:

Qi+ D7
ko= "gr—i=0,1,2,..

11

Do (1) Do (r)dr

(40)



-25

Figure 3: Evolution of resonance wavenumbers kgo’r depending on wavenumber k (with
b=0.1m and L = 1m) with the radiation impedance defined by Eq. (@) for m =n =0 and
1 =0 (+) and with the radiation impedance of a flanged plane piston (Eq. 1) (O).

We can observe in Table EI of Appendix B that the real part of resonance fre-
quency decreases when radiation is taken into account: this is normal behavior
because the reactive effect of radiation can roughly be described as an increase
in the duct length. The semi-infinite duct length correction is estimated by the
following formula (see Ref. [E] with the modification given in private commu-
nication):

AL 1+ 32
—- = 0.82159 . (42)
L+ 1.2949 + (1.2949)

The difference between the real part of the j first resonance wavenumbers k(%O,r of
a finite radiating cylindrical duct (below the first cut off wavenumber k.yi01 =
3.83/b) and those estimated using the length correction defined by Eq. ([i2)
(kdo.ar = (27 + 1)m/[2(L + AL)]), tends to zero when the ratio L/b increases.
The values agree well (< 1% of difference) for L/b > 3 with several values of L.

4.2. Resonance wavenumbers with influence of higher order duct modes

The principal interest of the complex Zorumski’s formulation is that we
can observe the influence of higher order duct modes (also denoted by H.M
afterward). In this paper, we taken into account only the axisymmetric modes
(m = 0) (but the non-axisymmetric are very easy to calculate with the same
method). Figure [ shows resonance wavenumbers &y ., kg1 ., kpo,,.. We observe
three series of resonances. Each series starts at the cutoff frequency of a duct
mode. The first one corresponds to a domination of the planar duct mode, the
second one to a domination of duct mode 01 and the third one to a domination
of duct mode 02 (see Appendix B, the Green’s function profile is plotted around
kéd and k],). Fig. [ shows the influence of the two first higher order duct modes
(m =0,l =1andm = 0,] = 2) on the resonance wavenumbers of the first series.
It is worth noting that below the first cut off wavenumber k.01 = 3.83/b, only

12



one higher order duct mode is sufficient to accurately describe the resonances
(see some values in Table ); between the first and second cut off wavenumber
kcuto2 = 7.02/b, only two higher order duct modes are enough and similarly to
the higher order duct modes: between the n'* and (n+ 1) cut off, only (n+1)
higher order duct modes are enough.
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Figure 4: Resonance wavenumbers k(%o - (), kél » (B), kfﬁ , (x) for L =1m and b = 0.1m.
Figure in Appendix C shows the mode profiles around the two wavenumbers indicated by
an arrow.
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Figure 5: Resonance wavenumbers k%O,r of the first series (m = 0,n = 0) with an influence of
0(l=0:%),1(1=1:A)and2 (I=2: +) HM for L = 1m and b= 0.1m
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j Ky Ko, with0HM Ky with 1 HM
0 1.5708 1.449-0.00951  1.451 - 0.0096i
1 4712 4.369-0.077i 4.375-0.0776i
2 7.854 7.333-0.182i 7.345-0.183i
3 10.996  10.336-0.296i 10.345-0.2991
4 14137 13.365-0.412i 13.4-0.415i
5 17.279  16.409-0.526i 16.45-0.53i
6 2042  19.463-0.6451 19.523-0.644i
723562  22.523-0.773i 22.608-0.76
8 267 25.59 -0.924i 25.707-0.881i
9  29.85 28.674-1.12i 28.824-1.01i
10 3299  31.822-1.408i 31.965-1.152i
11 3613  35.377-1.711i 35.149-1.317i
12 39.27  38.747-1.409i 38.395-1.579i

Table 1: Values of the j first resonance wavenumbers without radiation (kgo) and with radi-
ation (k(J)O,r) for 0 and 1 H.M, with b = 0.1m and L = 1m.

4.8. Evolution of the j first resonance wavenumbers with respect to radiation
In the present section, we show the evolution of the j first resonance wavenum-
bers when only the planar duct mode propagates with respect to radiation and
as shown in the previous section, we take into account the effect of one higher
order duct mode. For this purpose, we introduce a multiplicative coefficient on
the radiation impedance. Physically, this coefficient 77, can be regarded as the
ratio between the external fluid density pe;:+ and the internal fluid density pjn¢,

such as:
mp = £, (43)
Pint
the density of the external fluid pes,: varying from a vacuum to water density,
the sound celerity, 340m.s~!, remaining constant.

Figures ] and [ show that when the parameter 1, increases, a Neumann/Neumann

problem is obtained: the real part tends to jm/L and the imaginary part tends
to zero. This behavior corresponds to a system without losses, the external fluid
becoming a perfectly reflective surface.
Fig. ﬂ shows that the absolute value of the imaginary part of the resonance
frequency goes through a maximum, corresponding to the maximum of the ra-
diation. Similarly results have been observed for non planar modes. So, we can
conclude that energy radiation losses evolves with the densities of internal and
external fluid and goes through a maximum for a specific densities ratio.

5. Conclusion

A development of the Green’s function for the Helmholtz equation in a free
space valid for complex frequencies is possible and leads to a new formula in Zo-
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Figure 6: Evolution of the real part of the j first longitudinal resonance wavenumbers kéo -
with respect to 7y, for L = 1m and b = 0.1m.
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Figure 7: Evolution of the imaginary part of the j first longitudinal resonance wavenumbers
kéo » with respect to 7n,, for L = 1m and b = 0.1m.

rumski’s radiation impedance. The interest has been shown for an application
example, dedicated to the calculations of the complex resonance frequencies of
a radiating flanged cylindrical duct. It has been shown that length correction
calculated for a semi-infinite duct is a good estimate of a finite duct radiation
when the ratio L/b > 2 and for frequencies sufficiently below the first cut off
frequency. The study of the influence of higher order duct modes has shown
that below the first cut off frequency, only one higher order duct mode is needed
to accurately describe the influence of the external fluid on the resonances and
between the n* and (n + 1) cut off, only (n + 1) higher order duct modes are
enough. In the last part, it has been observed a maximum of radiation for a
specific densities ratio. In the future, it will be interesting to use a BEM method
to study more complicated geometries and to observe the resonances with an
experimental method. This work is a first step to study the relation between
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radiation and several parameters in order to optimize geometry for minimizing
(e.g. for noise pollution) or maximizing the sound radiation (e.g. for wind in-
struments).
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Appendix A. Matricial calculation

The main steps required to obtain the results of section @ are presented
here (see Ref. [L7)).
For a cylinder, the general solutions at point z; can be described with respect

to the values of P and V at point 2z such as described by relation (@) For all
the modes mn, the following matrix problem is obtained:

P(21) = CP(2) + ZeSV(22), (A1)

V(Zl) = ZJISP(ZQ) + CV(ZQ), (AQ)

C being a diagonal matrix constituted by the elements cosh(ik,,(z2 — 21)) et
S a diagonal matrix constituted by the elements sinh(ikmn (22 — 21)). Eq. (A2
implies:
P(z2) = ZcS™'V(21) — ZSTICV(22). (A.3)
Introducing Eq. (A-3) in Eq. (A) and using the commutativity of the
diagonal matrices, we obtain:

P(21) = ZcS 'CV(21) — [ZeS 1CC — ZS|V(22),

with
Z.S'CC-Z.S = Z, S 'I+8SS)-7Z.S
= chil + ch - ZCS
= ZS,
thus:
P(21) = ZSTICV(21) — ZS MV (2). (A.4)

Therefore, with Eqs. ([A.3) and (A.4), we obtain the relation (R6).
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Appendix B. Green’s function profile in the duct around resonance
frequencies

Figure @ shows that around the resonance frequency ki3, the profile of
Green’s function corresponds to the profile of the planar duct mode even if duct
mode 01 is propagating and similarly around the resonance frequency kg, the
profile of Green’s function corresponds to the profile of the first non planar
duct mode even if planar duct mode is propagating. The same comportment is
observed around other resonance frequencies. Therefore, it is worth noting that
each series observed in Fig. E corresponds to a predominant duct mode even
if other duct modes are propagating. Notice that the evanescent duct modes
exist mainly near to the source (at z = —0.5): this clearly appears on the upper
figure.

m=0 and n=3,|=3 with k=44.63-2.246i

0(G(M,M',2))

0(G(M,M',2))

Figure B.8: Profile in the duct of the real part of Green’s function around kéé with 3 H.M
(upper figure) and around k; with 3 H.M (lower figure)
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