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Laboratoire de Mécanique et d’Acoustique

31 chemin Joseph Aiguier

13402 Marseille Cedex 20 (France)

(Dated: July 10, 2009)

Complex resonance frequencies of a finite, circular radiating duct 1



Abstract

The pressure field inside a flanged duct of finite length radiating on

one side in an infinite medium can be described from the knowledge

of a radiation matrix impedance, as proposed by Zorumski. In order

to calculate the resonance frequencies (which are complex because of

the energy loss by radiation), the formulation used in Zorumski’s the-

ory must be modified as it is not valid for complex frequencies. The

analytical development of the Green’s function in free space used by

Zorumski depends on the integrals of Bessel functions which become

divergent for complex frequencies. This paper purposes a development

of the Green’s function which is valid for all frequencies. The results

are applied to the calculation of the complex resonance frequencies of

a flanged duct of finite length, by using a formulation of the inter-

nal pressure based upon cascade impedance matrices. It presents and

discusses the influence of higher order duct modes and the results for

several duct radius/length ratios.

PACS numbers: 43.20.Rz, 43.20.Mv
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I. INTRODUCTION

Green’s functions are widely used in many physical situations and notably in acoustics,

for the calculation of the pressure field radiated by physical sources (e.g. speakers, musical

instruments, vibrating structures,...). For instance, the solution given by Rayleigh1 to the

classical problem of a plane piston radiating into an infinite flange involves the Green’s

function in free space. Zorumski2 extended this result to obtain the radiation of a semi-

infinite flanged duct in the form of matrix impedance, giving the coupling between duct

modes and used the Sonine’s infinite integral ( Ref. 3, p.416, Eq.4) to develop the Green’s

function in free space. In Refs 4, 5, formulations based on the Zorumski’s method of this

radiation impedance are obtained for a larger class of problems. However, the development

fails when the frequency becomes complex: the corresponding infinite integral, involving a

Bessel function whose argument is a product of the frequency and the dummy argument,

becomes divergent for complex frequencies. In many studies, the Zorumski’s radiation matrix

is used as a boundary condition at the end of the duct in order to calculate input impedances,

length corrections or reflection coefficients (see e.g. Refs. 6 or 7). To the authors’ knowledge,

no studies have been reported on the calculation of modes inside the duct for the problem

of a duct with an infinite flange. The modes are complex and have complex resonance

frequencies (in the literature, the modes are called either eigenmodes or resonance modes,

and must be distinguished from the duct modes used in the present paper for the purpose of

the calculation). It is worth noting that complex resonance frequencies can occur in various

situations (e.g. dissipative fluid, radiation, complex impedance wall boundary conditions

such as in Refs. 8 or 9). In section II of this paper, we present a new expression for the

Green’s function in free space for complex frequencies. In section IV, an application of this

result is devoted to the determination of the complex resonance frequencies of a cylindrical

duct, closed at its input, considering the influence of higher order duct modes and several

radius/length ratios. For this purpose, the internal Green’s function is previously calculated

a)Electronic address: mallaroni@lma.cnrs-mrs.fr
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in section III with a method of cascade impedance.

II. CALCULATIONS OF GREEN’S FUNCTION FOR THE HELMHOLTZ

EQUATION IN FREE SPACE

Many studies on sound radiation by cylindrical ducts can be found in the literature.

For the case of an infinite flange, Norris and Sheng10 or Nomura11 used a Green’s function

integral to find an appropriate formulation for the external field. We can also cite the

classical work by Levine and Schwinger12 for the case of an unflanged pipe. Zorumski2

extended the results for the planar mode to obtain a multimodal radiation impedance which

is a combination of the duct modes present in the duct. In this section, these calculations

are briefly recalled, exhibiting the difficulty related to complex frequencies. Thus, a new

analytical formula for the Green’s function, valid for a dissipative problem, is presented.

A. Zorumski’s radiation impedance

We consider the radiation of sound into an infinite half space from a circular duct (with

radius b and length L), with an infinite flange at z0 = 0 (the index 0 corresponds to the cross

section S0 at the end of the duct) and we have chosen to work with circular coordinates

where the vector r is denoted (z, r, θ) as shown by Fig. 1.

b b

-L z z’
z

Ze Zray
receiver source

l1 l2

z0=0

S0

z

r

θ

FIG. 1. Schema and coordinates of the duct.

The acoustic pressure in the infinite medium (z ≥ 0) is given by a Helmholtz integral
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(the time factor exp(−iωt) is omitted throughout this paper):

p(r) = −iωρ
2π

∫ 2π

0

∫ b

0

r0v(r0, θ0)
eikh

h
dr0dθ0, (1)

where h = [r2 + r2
0 − 2rr0 cos(θ − θ0) + z2]

1

2 , ρ the ambient density and the wavenumber

k = ω/c (with ω the circular frequency and c the speed of sound).

The pressure p and the velocity v inside the duct (z < 0) are expressed as a series of duct

eigen modes, so in z = 0:

p(r, θ, z = 0) = ρc2
∑

m

∑

n

ψmn(kr)eimθPmn, (2)

v(r, θ, z = 0) = c
∑

m

∑

n

ψmn(kr)eimθVmn, (3)

where ψmn(kr)eimθ is the transverse function for the mode mn with ψmn(kr) = J0(kr)/Nmn.

The λmn are the eigenvalues, solutions of J ′(λmnkb) = 0, and the norm Nmn is chosen

similarly to that used by Zorumski2.

Substituting Eq. (3) into Eq. (1) gives the pressure for z ≥ 0 in terms of the modal velocity

amplitudes Vmn:

p(r, θ, z) = −iωρc
2π

∑

m

∑

n

Vmn

∫ 2π

0

eimθ0

∫ b

0

r0
eikh

h
ψmn(kr0)dr0dθ0. (4)

Zorumski expressed the free space Green’s function in equation (4) in terms of a Sonine’s

infinite integral (3, p. 416, Eq. 4) and wrote for z = 0 in the expression of h:

eikh

h
= k

∫ ∞

0

τ(τ 2 − 1)−
1

2J0(τkh)dτ. (5)

Next, he introduced a concept of ”generalized radiation impedance matrix Zray” for a semi-

infinite duct with an infinite flange to describe the relation between the modal pressure and

velocity amplitudes:

Pmn =

∞
∑

l=1

ZmnlVml, (6)

where m, l and n are, respectively, the orders of circumferential, radial incident and reflected

modes. The element Zmnl of the radiation impedance matrix gives the contribution of the

velocity mode ml to the pressure mode mn (for reasons of symmetry, the coupling is possible
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only for a duct mode with the same azimuthal dependance). The expression of the radiation

impedance is obtained as:

Zmnl = −i
∫ ∞

0

τ(τ 2 − 1)−
1

2Dmn(τ, k)Dml(τ, k)dτ, (7)

with, for a hard wall condition:

Dmn(τ, k) = kb
τψmn(kb)J ′

m(τkb)

λ2
mn − τ 2

. (8)

B. Green’s function for the Helmholtz equation in free space for complex

frequencies

The following asymptotic form (see Ref. 13, Eq. 9.2.1, p. 364) occurs when ν is fixed

and |κ| → ∞:

Jν(κ) =

√

2

πκ
[cos(κ− 1

2
νπ − 1

4
π) + e|ℑ(κ)|O(|κ|−1)], (9)

with | arg κ| < π (in this paper, the real part and imaginary part are represented, respec-

tively, by the symbols ℜ and ℑ). As a consequence, for τ → ∞ with k ∈ C we have

J0(τkh) → ∞ when ℑ(k) 6= 0, thus relation (5) and the radiation impedance (7) given by

Zorumski are divergent integrals for all non real frequencies.

In order to have a Green’s function for the Helmholtz equation in free space valid for com-

plex frequencies, we use another form of the Sonine’s infinite integral to develop this Green’s

function, expressed by Watson3 (p. 416, Eq. 4):

eikh

h
=

∫ ∞

0

τ(τ 2 − k2)−
1

2J0(τh)dτ. (10)

This integral remains convergent even for k complex. A difficulty occurs since k is a branch

point of the square root. For a time factor exp(−iωt), the integration path on the real axis

must remain below k. However the complex resonance frequencies ω = ck have a negative

imaginary part (see explanation in section IV), so the previous formula must be adapted

because of the branch cut. The integration path below k is classically deformed, as shown

in Fig. 2:
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FIG. 2. Deformation of the integration contour.

Now, the integral in Eq. (10) is written as:

eikh

h
=

∫ |ℜ(k)|

0

J0(τh)τ(τ
2 − k2)−

1

2dτ + I1(k, h) + Ic + I2(k, h) +

∫ ∞

|ℜ(k)|

J0(τh)τ(τ
2 − k2)−

1

2dτ,

(11)

with

I1(k, h) = I2(k, h) = −
∫ k

|ℜ(k)|

J0(τh)τ(τ
2 − k2)−

1

2dτ

and Ic is zero according to Jordan’s lemma.

After calculations (similar to those developed by Morse and Feshbach14, p.410), the following

five cases can be distinguished:

i) ℜ(k) ≤ 0 and ℑ(k) > 0

eikh

h
=

∫ ∞

0

J0(τh)τ(τ
2 − k2)−

1

2dτ. (12)

ii) ℜ(k) ≤ 0 and ℑ(k) ≤ 0

eikh

h
= −i

∫ |ℜ(k)|

0

J0(τh)
τ√

k2 − τ 2
dτ +

∫ ∞

|ℜ(k)|

J0(τh)
τ√

τ 2 − k2
dτ

−2

∫ k

|ℜ(k)|

J0(τh)
τ√

τ 2 − k2
dτ. (13)

iii) ℜ(k) > 0 and ℑ(k) > 0

eikh

h
= +i

∫ |ℜ(k)|

0

J0(τh)
τ√

k2 − τ 2
dτ +

∫ ∞

|ℜ(k)|

J0(τh)
τ√

τ 2 − k2
dτ. (14)
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iv) ℜ(k) > 0 and ℑ(k) = 0

eikh

h
= J0(kh)k

√
2ǫ(1 − i) + i

∫ |k|(1−ǫ)

0

J0(τh)
τ√

k2 − τ 2
dτ

+

∫ ∞

|k|(1+ǫ)

J0(τh)
τ√

τ 2 − k2
dτ, (15)

with ǫ << 1.

v) ℜ(k) > 0 and ℑ(k) < 0

eikh

h
= +i

∫ |ℜ(k)|

0

J0(τh)
τ√

k2 − τ 2
dτ +

∫ ∞

|ℜ(k)|

J0(τh)
τ√

τ 2 − k2
dτ

−2

∫ k

|ℜ(k)|

J0(τh)
τ√

τ 2 − k2
dτ. (16)

Contrary to the original Zorumski’s formulation, these results involve convergent inte-

grals when the frequency is complex.

C. New formulation of generalized impedance of a flanged circular duct for

real frequencies

Initially, the previous result will be checked for the real case, in order to compare the

original Zorumski’s result, noted in Eq. (7), and that obtained using the expansion of

exp(ikh)/h for the case (iv) where ℑ(k) = 0. Eq. (15) leads to the following results:

Zmnl = −ik[D̃mn(k)D̃ml(k)k
√

2ǫ(1 − i) + i

∫ |k|(1−ǫ)

0

τ√
k2 − τ 2

D̃mn(τ)D̃ml(τ)dτ

+

∫ ∞

|k|(1+ǫ)

τ√
τ 2 − k2

D̃mn(τ)D̃ml(τ)dτ ], (17)

where

D̃mn(τ) = b
τψmn(b)J ′

m(τb)

λ2
mn − τ 2

. (18)

Figure 3 shows the comparison of the radiation impedance for the planar mode (m =

n = 0 with l = 0) with Zorumski’s formulation (7) and formulation (17) (with ǫ = 10−6).

This confirms the validity of formula (17) with the identical computational cost. This for-

mula is used in Ref. 15 to calculate an approximation of the reflection coefficient and of the
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FIG. 3. Real part (solid curve) and absolute value of imaginary part (dashed curve) of the

radiation impedance for the planar mode (m = n = 0 and l = 0) with respect to wavenumber

k, calculated with Zorumski’s formulation (7) (solid and dashed curves) and with modified

formulation (17) (crosses).

length correction, taking into account the effect of the higher order duct modes below the

first cut-off frequency.

The comparison between complex Zorumski’s formulation for the planar mode (m=n=0 and

l=0) and Rayleigh’s radiation impedance of a flanged plane piston confirm the validity of

Z000 for all the frequencies (see Appendix C), because Rayleigh’s radiation impedance is by

definition the same quantity as Z000.

In what follows, we show the interest of the radiation impedance valid for complex fre-

quencies when calculating the complex resonance frequencies of a flanged finite length duct

terminating in a Zorumski’s radiation condition. In a first instance, the internal Green’s

function mus be determined, with a method of cascade impedances.
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III. CALCULATION OF THE FINITE FLANGED DUCT INTERNAL

GREEN’S FUNCTION WITH A METHOD OF CASCADE IMPEDANCES

A. Definition of the internal Green’s function

We search for the internal Green’s function G(M,M ′, ω) at a point M(r, θ, z) with a

source in M ′(r′, θ′, z′), satisfying:

(∆M + k2)G(M,M ′, ω) = − 1

2πr
δ(r − r′)δ(θ − θ′)δ(z − z′), (19)

with ∂nG(M,M ′, ω) = 0 on the walls. It is classically (see e.g. Morse and Feshbach14)

expanded in a series of duct modes (the boundary conditions for the variable z will be given

later on):

G(M,M ′, ω) =

∞
∑

m=0

∞
∑

n=0

φmn(r, θ)φmn(r′, θ′)gmn(z, z′, ω), (20)

where φmn(r, θ) = ψmn(r)eimθ is the transverse function for the mode mn and gmn(z, z′, ω)

is the longitudinal function for the mode mn. In what follows, the dependance in ω of

gmn(z, z′, ω) is omitted for simplicity. It is worth noting that now we have the transverse

function with respect to r and not kr, as per Zorumski2. Therefore, ψmn(r) = Jm(λmnr)
Nmn

where the λmn are solutions of J ′
m(λmnb) = 0, with λmn = γmn/b. The γmn are the (n+ 1)th

zeros of the first derivative of the Bessel’s function Jm. The following norm Nmn is chosen

(Ref. 2):

Nmn = b
√
π

√

1 − m2

λ2
mnb

2
Jm(λmnb). (21)

The transverse modes φmn(r, θ) satisfy:

(∆⊥ + λ2
mn)φmn(r, θ) = 0,

with ∆⊥ = 1
r

∂
∂r

(r ∂
∂r

) + 1
r2

∂2

∂θ2 , thus: ∆⊥φmn(r, θ) = −λ2
mnφmn(r, θ). Studies such as Refs. 6

or 7 show that a small finite number of terms is necessary for a numerical estimate of the

summation and it can be truncated: Mm is defined as the number of circumferential modes

m and Nn as the number of radial modes n. Introducing the previous expression (20) in

10



(19) gives:

Mm
∑

m=0

Nn
∑

n=0

(
∂2

∂z2
+ k2

mn)φmn(r, θ)φmn(r′, θ′)gmn(z, z′) = − 1

2πr
δ(r − r′)δ(θ − θ′)δ(z − z′),(22)

where k2
mn = k2−λ2

mn. Then, multiplying the left and right sides of (22) by φ∗
m′l(r, θ) and inte-

grating the resulting equality on the surface S, the orthogonality condition (
∫

S
φmnφ

∗
m′ldS =

δmm′δnl), leads to:

(
∂2

∂z2
+ k2

mn)gmn(z, z′) = −δ(z − z′). (23)

With a conservative Neumann or Dirichlet boundary condition at the extremities of the

duct, the resonance wavenumbers can be easily computed. But with a dissipative boundary

condition like those occurring for the sound radiation of a flanged cylinder, there is no simple

analytical solution. Therefore, in the next section, the elements gmn(z, z′) are calculated with

a method of cascade impedances presented in Refs. 6,16 or 17.

B. Presentation of the method of cascade impedances

The calculation of the duct impedance at an abscissa z1 with respect to another abscissa

z2 is based on the following transfer matrix relationship (see e.g. Ref. 17):







Pmn(z1)

Vmn(z1)






= (MT )







Pmn(z2)

Vmn(z2)






, (24)

MT =







cosh(ikmn(z2 − z1)) Zc,mn sinh(ikmn(z2 − z1))

sinh(ikmn(z2 − z1))

Zc,mn

cosh(ikmn(z2 − z1))






, where Zc,mn is an element of

the diagonal matrix of characteristic impedance Zc:

Zc,mn =
kρc

kmn

.

Moreover, matrices formulation is chosen: Φ(r, θ) is a column vector constituted by the

MmNn elements φmn, verifying
∫

S
Φ(r, θ)ΦT (r, θ)dS = I, P(z) is a column vector constituted

by the MmNn elements Pmn and V(z) is a column vector constituted by the MmNn elements

11



Vmn. Thus, relation (24) is now written:






P(z1)

V(z1)






=







C ZcS

Z−1
c S C













P(z2)

V(z2)






, (25)

where C and S are diagonal matrices constituted by the elements cosh(ikmn(z2 − z1)) and

sinh(ikmn(z2 − z1)), respectively.

The transfer matrix formulation (25) is now transformed into an impedance matrix formu-

lation. The calculation, presented in Ref. 17, is recalled in Appendix A. This gives the

following matrix equation:






P(z1)

P(z2)






=







Z11 −Z12

Z21 −Z22













V(z1)

V(z2)






, (26)

where Z11 = ZcS
−1C, Z12 = ZcS

−1, Z21 = ZcS
−1 and Z22 = ZcS

−1C.

C. Calculation of P(z’)

First, the pressure vector at the source position z′ is calculated. For this purpose, we

calculate a right-side matrix impedance Z+(z′) at z′ with respect to Zray, a left-side matrix

impedance Z−(z′) at z′ with respect to Ze and finally the connection between these two

matrices at z′, the abscissa of the source.

Step 1: Right-side matrix impedance Z+(z′)

Let us denote Cs and Ss the diagonal matrix constituted by the elements cosh(ikmnl2) and

sinh(ikmnl2), respectively, where l2 (see Fig. 1) is the distance between the abscissa z′ and

the extremity (z = 0). The radiation impedance Zray, constituted by the elements Zmnl

calculated in the previous section, verifies P(z′ + l2) = ZrayV(z′ + l2). Thus Eq. (25) leads

to:

V(z′ + l2) = (Zray + Z22)
−1Z21V(z′), (27)

and, with Eqs. (26) and (27), to:

P(z′) = Z11V(z′) − Z12(Zray + Z22)
−1Z21V(z′).

12



With Z+ verifying P(z′) = Z+(z′)V(z′), we have finally:

Z+(z′) = Z11 − Z12(Zray + Z22)
−1Z21, (28)

or:

Z+(z′) = ZcS
−1
s Cs − ZcS

−1
s [Z−1

c Zray + S−1
s Cs]

−1S−1
s . (29)

Step 2: Left-side matrix impedance Z−(z′)

We choose a Neumann condition for z = −L (thus V(z′− l1) = 0). Here, Ce and Se are the

diagonal matrices constituted by the elements cosh(ikmnl1) and sinh(ikmnl1), respectively.

l1 (see Fig. 1) is the distance between the point z = −L and the point z′. The impedance

Ze is calculated at z = −L.

Relation (26) is written for the present case as:

P(z′) = ZcS
−1
e V(z′ − l1) − ZcS

−1
e CeV(z′). (30)

Thus, with the Neumann condition in z = −L and with Eq. (30), using P(z′) = Z−(z′)V(z′),

the following result is obtained:

Z−(z′) = −ZcS
−1
e Ce. (31)

Step 3: Connection between the impedance matrices Z+ and Z− at z′

Let us denote P±
mn(z′) = [gmn(z, z′)]z=z′±ǫ. Using the continuity of the Green’s function at

z = z′, leads to when ǫ→ 0:

P+
mn(z′) = P−

mn(z′) = Pmn(z′), (32)

Integrating relation (23) on an interval of width 2ε between z′ + ε and z′ − ε gives:

∫ z′+ε

z′−ε

(
∂2

∂z2

+ k2
mn)gmn(z, z′)dz = −1 (33)

and, with the pressure continuity, when ε→ 0:

∂zP
+
mn(z′) − ∂zP

−
mn(z′) = −1, (34)

13



with ∂zP
±
mn(z′) = [∂zgmn(z, z′)]z=z′±ǫ.

Euler’s equation 1
ρc
Vmn(z′) = − 1

iωρ
∂zPmn(z′) implies ∂zPmn(z′) = −ikVmn(z′), thus, using

Eq. (34):

V +
mn(z′) − V −

mn(z′) =
1

ik
. (35)

We introduce a column vector W of MmNn lines whose elements equal 1. Equation (35)

may be expressed as:

(Z+(z′))−1P+(z′) − (Z−(z′))−1P−(z′) =
1

ik
W,

and using Eq. (32), the pressure at the source is written as follows:

P(z′) =
1

ik

[

(Z+(z′))−1 − (Z−(z′))−1
]−1

W. (36)

D. Expression of the function g(z,z’)

We introduce a column vector g(z, z′) constituted by the MmNn elements gmn(z, z′).

They are two possible configurations with respect to the relative positions of receiver at z

and source at z′:

First configuration: z > z′

Let lr = z − z′ be the distance between the receiver and the source (see Fig. 1), Clr

the diagonal matrix constituted by the elements cosh(ikmnlr), and Slr the diagonal matrix

constituted by the elements sinh(ikmnlr). Relation (24) gives for z > z′:

g(z, z′) = ClrP(z′) − ZcSlrV(z′),

then, with P(z′) = Z+(z′)V(z′):

g(z, z′) = Slr

[

S−1
lr

Clr − Zc(Z
+(z′))−1

]

P(z′). (37)

Second configuration: z′ > z

Let ll = z′−z be the distance between the receiver and the source(see Fig. 1), Cll the diago-

nal matrix constituted by the elements cosh(ikmnll), and Sll the diagonal matrix constituted

14



by the elements sinh(ikmnll). Relation (24) gives for z′ > z:

g(z, z′) = CllP(z′) + ZcSllV(z′),

then, with P(z′) = Z−(z′)V(z′):

g(z, z′) = Sll

[

S−1
ll

Cll + Zc(Z
−(z′))−1

]

P(z′). (38)

Finally, the Green’s function of a finite duct with an infinite flange is given as:

G(M,M ′) = Φ(r, θ)Φ(r′, θ′)g(z, z′). (39)

IV. APPLICATION TO COMPLEX RESONANCE FREQUENCIES OF A

FLANGED, FINITE LENGTH DUCT

Resonances of a flanged, finite length duct are interesting as they contain important

information about the coupling between internal and external fluids. Their calculation is

based on the fact that the internal pressure becomes infinite at each resonance. Newton’s

method is used to compute the zeros of the inverse of the pressure. Since the resonances

of a dissipative problem are complex, a complex formulation of the impedance radiation is

needed. As a time dependence exp(−iωt) has been chosen, the imaginary part needs to be

negative for resonance frequencies in order to ensure that the amplitude remains bounded

for all times t. Using the integrals (13) and (16), for ℜ(k) > 0 and ℑ(k) < 0, Zmnl becomes:

Zmnl = −ik[i
∫ |ℜ(k)|

0

τ√
k2 − τ 2

D̃mn(τ)D̃ml(τ)dτ +

∫ +∞

|ℜ(k)|

τ√
τ 2 − k2

D̃mn(τ)D̃ml(τ)dτ

−2

∫ k

|ℜ(k)|

τ√
τ 2 − k2

D̃mn(τ)D̃ml(τ)dτ ]. (40)

This expression is used as a radiation condition Zray at the end of the finite length duct.
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A. Resonance wavenumbers for the planar mode without influence of higher

order duct modes

In a first instance, we consider the resonance wavenumbers of the planar mode (m=n=0)

without the influence of higher order duct modes (l=0). With radiation, the jth resonance

wavenumbers of mode mn are denoted kj
mn,r and denoted kj

mn without radiation.

0 20 40 60 80 100 120 140
−2.5

−2

−1.5

−1

−0.5

0

ℜ (k)

ℑ(
k)

FIG. 4. Evolution of resonance wavenumbers kj
00,r depending on wave number k (for b =

0.1m and L = 1m) for m = n = 0 and l = 0.

It is worth noting in Table I of Appendix B that without radiation, the resonance

frequencies are those obtained by the usual longitudinal resonances of a cylindrical duct

with one side ”closed” and the other side ”open” (Neumann/Dirichlet problem) for:

kj
00 =

(2j + 1)π

2L
, j = 0, 1, 2, ...

We can observe in Table I of Appendix B that the real part of resonance frequency decreases

when radiation is taken into account: this is normal behavior because the reactive effect of

radiation can roughly be described as an increase in the duct length. The semi-infinite duct

length correction is estimated by the following formula (see Ref. 10 with the modification

16



given in private communication):

△L
b

= 0.82159
1 + kb

1.2949

1 + kb
1.2949

+ ( kb
1.2949

)2
. (41)

Figure 5 shows that the difference between the real part of the first resonance frequency

k0
00,r of a finite radiating cylindrical duct and that estimated using the length correction

defined by Eq. (41) (kj
00,△L = (2j + 1)π/[2(L + △L)]), tends to zero when the ratio L/b

increases. The values agree well (≤ 1% of difference) for L/b ≥ 2 with several values of L,

when dissipative effects are low.

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

L/b

D 
(%

)

FIG. 5. Absolute value of difference in percent (D =
|ℜ(k0

00,r)−k
j

00,△L
|

ℜ(k0

00,r)
∗100) between the value

of the real part of the first resonance wavenumber calculated by Newton’s method (k0
00,r)

and that estimated with the length correction defined by the Eq. (41) (kj
00,△L), for several

ratios L/b.

B. Resonance wavenumbers with influence of higher order duct modes

The principal interest of the complex Zorumski’s formulation is that we can observe

the influence of higher order duct modes (also denoted by H.M afterward). In this paper,

we taken into account only the axisymmetric modes (m = 0). Figure 6 shows resonance

wavenumbers kj
00,r, k

j
01,r, k

j
02,r. We observe three series of resonances. Each series starts at

17



the cutoff frequency of a duct mode. The first one corresponds to a domination of the planar

duct mode, the second to a domination of mode 01 and the third to a domination of mode

02 (see Appendix D). Fig. 7 shows the influence of the two first higher order duct modes

(m = 0, l = 1 and m = 0, l = 2) on the resonance wavenumbers of the first series. It is worth

noting that below the first cut off wavenumber kcut01 = 3.83/b, only one higher order duct

mode is sufficient to accurately describe the resonances; between the first and second cut off

wavenumber only two higher order duct modes are enough and similarly to the higher order

duct modes: between the nth and (n+1)th cut off, only (n+1) higher order duct modes are

enough.
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FIG. 6. Resonance wavenumbers kj
00,r, k

j
01,r, k

j
02,r for L = 1m and b = 0.1m
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0 (l = 0), 1 (l = 1) and 2 (l = 2) H.M for L = 1m and b = 0.1m

C. Evolution of the j first resonance wavenumbers with respect to radiation

In the present section, we show the evolution of the j first resonance wavenumbers when

only the planar duct mode propagates with respect to radiation and as shown in the previous

section, we take into account the effect of one higher order duct mode. For this purpose, we

introduce a multiplicative coefficient on the radiation impedance. Physically, this coefficient

ηρ can be regarded as the ratio between the external fluid density ρext and the internal fluid

density ρint, such as:

ηρ =
ρext

ρint

, (42)

the density of the external fluid ρext varying from a vacuum to water density, the sound

celerity, 340m.s−1, remaining constant.

Figures 8 and 9 show that when the parameter ηρ increases, a Neumann/Neumann

problem is obtained: the real part tends to jπ/L and the imaginary part tends to zero. This

behavior corresponds to a system without losses, the external fluid becoming a perfectly

reflective surface (to facilitate reading, ηρ is denoted X and ℜ(kj
00,r) is denoted Y within

the figures).

Fig. 9 shows that the absolute value of the imaginary part of the resonance frequency
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00,r

with respect to ηρ, for L = 1m and b = 0.1m.
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FIG. 9. Evolution of the imaginary part of the j first longitudinal resonance wavenumbers

kj
00,r with respect to ηρ, for L = 1m and b = 0.1m; the dark square shows the maximum of

ℑ(kj
00,r).

goes through a maximum (showed by a dark square in each curve), corresponding to

the maximum of the radiation. The physical case (for the problem under considera-

tion) corresponds to ηρ = 1, the same fluid inside and outside the duct. Thus, it can be

interesting to study the evolution of resonances in this case for several values of the ratio b/L.
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D. Evolution of the two first resonance frequencies of the planar mode for

several ratios b/L

For this study, we introduce the loss factor ζj
mn describing the ratio between the imag-

inary part and real part of the resonance frequency: ζj
mn =

ℜ(kj
mn,r)

|ℑ(kj
mn,r)|

. Figures 10 and 11

show that the loss factor increases with radius and decreases with length. Therfore, it can

be concluded that radiation energy losses increase with radius and decrease with length.

Moreover, we can observe that if ratio b/L < 1, only one higher order duct mode is sufficient

to describe the resonances.
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FIG. 10. Loss factor ζ0
00 of the first resonance frequency of the planar mode with respect to

ratio b/L
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V. CONCLUSION

A development of the Green’s function for the Helmholtz equation in a free space valid

for complex frequencies is possible and leads to a new formula in Zorumski’s radiation

impedance. The interest has been shown for an application example, dedicated to the

calculations of the complex resonances frequencies of a radiating flanged cylindrical duct. It

has been shown that length correction calculated for a semi-infinite duct is a good estimate

of a finite duct radiation when the ratio L/b ≥ 2 and for frequencies sufficiently below the

first cut off frequency. The study of the relation between radiation and several parameters

is shown to be a way to optimize geometry for minimizing (e.g. for noise pollution) or

maximizing the sound radiation (e.g. for wind instruments). The study of the influence of

higher order duct modes has shown that below the first cut off frequency, only one higher

order duct mode is needed to accurately describe the influence of the external fluid on

the resonances and between the nth and (n + 1)th cut off, only (n + 1) higher order duct

modes are enough. In the future, it will be interesting to use a BEM method to study more

complicated geometries and to observe the resonances with an experimental method.
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APPENDIX A: MATRICIAL CALCULATION

The main steps required to obtain the results are presented (see Ref. 17).

For a cylinder, the general solutions at point z1 can be described with respect to the

values of P and V at point z2 such as described by relation (24). For all the modes mn, the

following matrix problem is obtained:

P(z1) = CP(z2) + ZcSV(z2), (A1)

V(z1) = Z−1
c SP(z2) + CV(z2), (A2)

C being a diagonal matrix constituted by the elements cosh(ikmn(z2 − z1)) et S a diagonal

matrix constituted by the elements sinh(ikmn(z2 − z1)). Eq. (A2) implies:

P(z2) = ZcS
−1V(z1) − ZcS

−1CV(z2). (A3)

Introducing Eq. (A3) in Eq. (A1) and using the commutativity of the diagonal matrices,

we obtain:

P(z1) = ZcS
−1CV(z1) − [ZcS

−1CC − ZcS]V(z2),

with

ZcS
−1CC − ZcS = ZcS

−1(I + SS) − ZcS

= ZcS
−1 + ZcS− ZcS

= ZcS
−1,

thus:

P(z1) = ZcS
−1CV(z1) − ZcS

−1V(z2). (A4)

Therefore, with Eqs. (A3) and (A4), we obtain the relation (26).
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APPENDIX B: NUMERICAL VALUES

The numerical values of the j first resonance wavenumbers without radiation (kj
00) and

with radiation (kj
00,r) are represented here (with b = 0.1m and L = 1m) in table I.

APPENDIX C: COMPARISON OF EXACT RESULTS WITH LOW

FREQUENCY APPROXIMATION

In order to validate the complex formulation of the radiation impedance, we compare

the resonances obtained with radiation impedance given by relation (40) for m = n = 0 and

l = 0, with the resonances obtained with the radiation impedance of a flanged plane piston

given by Rayleigh’s formulation as (see Ref. 14 p.1458):

Z0 ≃ ρc[1 − 1

kb
J1(2kb) −

i

kb
S1(2kb)] (C1)

The radiation impedance for m=n=l=0 calculated with relation (40) and that of a

flanged plane piston are similar. Thus, resonance wavenumbers calculated with the radiation

impedance Z000 obtained with the complex Zorumski’s formulation (40) and with Rayleigh’s

formulation (C1) are identical, as observed in Fig. 12.

Figure 12 shows that resonance wavenumbers calculated with the radiation impedance

Z000 obtained with the complex Zorumski’s formulation (40) and with Rayleigh’s formulation

(C1) are identical, thus it confirms that these two formulations of radiation impedance are

very similar.
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FIG. 12. Evolution of resonance wavenumbers kj
00,r depending on wave number k (with

b = 0.1m and L = 1m) with the radiation impedance defined by Eq. (40) for m = n = 0

and l = 0 (*) and with the radiation impedance of a flanged plane piston (Eq. C1) (�).

APPENDIX D: GREEN’S FUNCTION PROFILE IN THE DUCT AROUND

RESONANCE FREQUENCIES

Figures 13 and 14 show that around the resonance frequency k14
00, the profile of Green’s

function corresponds to the profile of the planar mode even if mode 01 is propagating. The

same comportment is observed around other resonance frequencies. Therefore, it is worth

noting that each series observed in Fig. 6 corresponds to a predominant duct mode even if

other modes are propagating.
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j kj
00 kj

00,r with 0 H.M kj
00,r with 1 H.M

0 1.5708 1.449 - 0.0095i 1.451 - 0.0096i

1 4.712 4.369-0.077i 4.375-0.0776i

2 7.854 7.333-0.182i 7.345-0.183i

3 10.996 10.336-0.296i 10.345-0.299i

4 14.137 13.365-0.412i 13.4-0.415i

5 17.279 16.409-0.526i 16.45-0.53i

6 20.42 19.463-0.645i 19.523-0.644i

7 23.562 22.523-0.773i 22.608-0.76i

8 26.7 25.59 -0.924i 25.707-0.881i

9 29.85 28.674-1.12i 28.824-1.01i

10 32.99 31.822-1.408i 31.965-1.152i

11 36.13 35.377-1.711i 35.149-1.317i

12 39.27 38.747-1.409i 38.395-1.579i

TABLE I. Values of the j first resonance wavenumbers without radiation (kj
00) and with

radiation (kj
00,r) for 0 and 1 H.M, with b = 0.1m and L = 1m, for m = n = 0.
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