Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable

Hervé Hocquard, Mickael Montassier

To cite this version:
Hervé Hocquard, Mickael Montassier. Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable. Information Processing Letters, Elsevier, 2009. hal-00402807

HAL Id: hal-00402807
https://hal.archives-ouvertes.fr/hal-00402807
Submitted on 8 Jul 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable

Hervé Hocquard and Mickaël Montassier
LaBRI, Université Bordeaux I, 33405 Talence Cedex, France

June 4, 2009

Abstract

An acyclic coloring of a graph G is a coloring of its vertices such that: (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an acyclic coloring ϕ of G such that $\phi(v) \in L(v)$ for all $v \in V(G)$. If G is acyclically L-list colorable for any list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$, then G is acyclically k-choosable. In this paper, we prove that every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.

1 Introduction

A proper coloring of a graph is an assignment of colors to the vertices of the graph such that two adjacent vertices do not use the same color. A k-coloring of G is a proper coloring of G using k colors; a graph admitting a k-coloring is said to be k-colorable. An acyclic coloring of a graph G is a proper coloring of G such that G contains no bicolored cycles; in other words, the graph induced by every two color classes is a forest. A list assignment of G is a function L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there is an acyclic coloring ϕ of G such that $\phi(v) \in L(v)$ for all $v \in V(G)$. If G is acyclically L-list colorable for any list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$, then G is acyclically k-choosable. The acyclic choice number of G, $\chi_a(G)$, is the smallest integer k such that G is acyclically k-choosable. Borodin et al. [1] first investigated the acyclic choosability of planar graphs proving that:

Theorem 1 [1] Every planar graph is acyclically 7-choosable.

and put forward to the following challenging conjecture:

Conjecture 1 [1] Every planar graph is acyclically 5-choosable.

In 1976, Steinberg conjectured that every planar graph without cycles of lengths 4 and 5 is 3-colorable (see Problem 2.9 [7]). This problem remains open. In 1990, Erdős suggested the following relaxation of Steinberg’s Conjecture: what is the smallest integer i such that every planar graph without cycles of lengths 4 to i is 3-colorable? The best known result is $i = 7$ [2]. This question is also studied in the choosability case: what is the smallest integer i such that every planar graph without cycles of lengths 4 to i is 3-choosable? In [12], Voigt proved that Steinberg’s Conjecture can not be extended to list coloring; hence, $i \geq 6$. Nevertheless, in 1996, Borodin [4] proved that every planar graph without cycles of lengths 4 to 9 is 3-colorable; in fact, 3-choosable. So, $i \leq 9$.

In this paper, we study the question of Erdős in the acyclic choosability case:
Problem 1 What is the smallest integer i such that every planar graph without cycles of lengths 4 to i is acyclically 3-choosable?

Note that it is proved that every planar graph without cycles of lengths 4 to 6 is acyclically 4-choosable [10]. Also, the relationship between the maximum average degree of G (or the girth of G) and its acyclic choice number was studied (see for example [9, 8, 5]).

Our main result is the following:

Theorem 2 Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.

Hence, in Problem 1, $6 \leq i \leq 12$.

Section 2 is dedicated to the proof of Theorem 2. Follow some notations we will use:

Notations Let G be a planar graph. We use $V(G)$, $E(G)$ and $F(G)$ to denote the set of vertices, edges and faces of G respectively. Let $d(v)$ denote the degree of a vertex v in G and $r(f)$ the length of a face f in G. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. $\geq k$-vertex, $\leq k$-vertex). We use the same notations for faces: a k-face (resp. $\geq k$-face, $\leq k$-face) is a face of length k (resp. at least k, at most k). A k-face having the boundary vertices $x_1, x_2, ..., x_k$ in the cyclic order is denoted by $[x_1x_2...x_k]$. For a vertex $v \in V(G)$, let $n_i(v)$ denote the number of i-vertices adjacent to v for $i \geq 1$, and $m_3(v)$ the number of 3-faces incident to v. A 3-vertex is called 3^*-vertex if it is incident to a 3-face and adjacent to a 2-vertex (for example in Figure 1, the vertex t is a 3^*-vertex). A 3-face $[rst]$ with $d(r) = d(s) = d(t) = 3$ and with a 3^*-vertex on its boundary is called a 3^*-face. Two 3-faces $[rst]$ and $[uvw]$ are called linked if there exists an edge tv which connects these two 3-faces such that $d(t) = d(v) = 3$ (see Figure 2). A vertex v is linked to a 3-face $[rst]$ if there exists an edge between v and one vertex of the boundary of $[rst]$, say t, such that $d(t) = 3$ (for example in Figure 1, the vertex v is linked to the 3-face $[rst]$). Let $n^*(v)$ be the number of 3^*-face linked to v.

![Figure 1](image1.jpg) Figure 1: The vertex t is a 3^*-vertex and the vertex v is linked to the 3-face $[rst]$

![Figure 2](image2.jpg) Figure 2: The two 3-faces $[rst]$ and $[uvw]$ are linked

2 Proof of Theorem 2

To prove Theorem 2 we proceed by contradiction. Suppose that H is a counterexample with the minimum order to Theorem 2 which is embedded in the plane. Let L be a list assignment with $|L(v)| = 3$ for all $v \in V(H)$ such that there does not exist an acyclic coloring c of H with for all $v \in V(H)$, $c(v) \in L(v)$.

Without loss of generality we can suppose that H is connected. We will first investigate the structural properties of H (Section 2.1), then using Euler’s formula and the discharging technique we will derive a contradiction (Section 2.2).
2.1 Structural properties of H

Lemma 1 The minimal counterexample H to Theorem 2 has the following properties:

(C1) H contains no 1-vertices.

(C2) A 3-face has no 2-vertex on its boundary.

(C3) A 2-vertex is not adjacent to a 2-vertex.

(C4) A 3-face has at most one 3^*-vertex on its boundary.

(C5) A 3-face $[rst]$ with $d(r) = d(s) = d(t) = 3$ is linked to at most one 3^*-face.

(C6) Two 3^*-faces cannot be linked.

![Figure 3: rst is linked to two 3^*-faces ijk and lnn](image)

![Figure 4: The two 3^*-faces rst and ijk are linked](image)

Proof

(C1) Suppose H contains a 1-vertex u adjacent to a vertex v. By minimality of H, the graph $H' = H\{u\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. To extend this coloring to H we just color u with $c(u) \in L(u)\{c(v)\}$. The obtained coloring is acyclic, a contradiction.
(C2) Suppose H contains a 2-vertex u incident to a 3-face $[uvw]$. By minimality of H, the graph $H' = H \setminus \{u\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. We show that we can extend this coloring to H by coloring u with $c(u) \in L(u) \setminus \{c(v), c(w)\}$.

(C3) Suppose H contains a 2-vertex u adjacent to a 2-vertex v. Let t and w be the other neighbors of u and v respectively. By minimality of H, the graph $H' = H \setminus \{u\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. We show that we can extend this coloring to H. Assume first that $c(t) \neq c(v)$. Then we just color u with $c(u) \in L(u) \setminus \{c(t), c(v)\}$. Now, if $c(t) = c(v)$, we color u with $c(u) \in L(u) \setminus \{c(v), c(w)\}$. In the two cases, the obtained coloring is acyclic, a contradiction.

(C4) Suppose H contains a 3-face $[rst]$ with two 3*-vertices s and t. Suppose that t (resp. s) is adjacent to a 2-vertex v (resp. x) with $v \neq r, s$ by (C2) (resp. $x \neq r, t$). Let u (resp. y) be the other neighbor of v (resp. x) with $u \neq r, s$ (resp. $y \neq r, t$). By the minimality of H, $H' = H \setminus \{v\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. We show now that we can extend c to H. If $c(u) \neq c(t)$, we color then v with a color different from $c(u)$ and $c(t)$ and the coloring obtained is acyclic. Otherwise, $c(u) = c(t)$. If we cannot color v, this implies without loss of generality $L(v) = \{1, 2, 3\}$, $c(u) = c(t) = c(x) = 1$, $c(r) = 2$ and $c(s) = c(y) = 3$. Observe that necessarily $L(t) = \{1, 2, 3\}$ (otherwise we can recolor t with $\alpha \in L(t) \setminus \{1, 2, 3\}$ and color v properly i.e v receives a color distinct of those of these neighbors). For a same reason $L(s) = \{1, 2, 3\}$ and $L(x) = \{1, 2, 3\}$. Now, we recolor t with the color 3, s with the color 1 and x with the color 2, then we can color v with the color 2. It is easy to see that the coloring obtained is acyclic.

(C5) Suppose H contains a 3-face $[rst]$ incident to three 3-vertices such that two of them are linked to two 3*-faces $[ijk]$ and $[lmn]$. Suppose $[ijk]$ and $[lmn]$ are linked to $[rst]$ respectively by the edges sj and tl. Call y the third neighbor of i, x the third neighbor of r, and p the third neighbor of m. Suppose that the 2-vertex u (resp. v) is adjacent to k and z (resp. n and w). For example, H contains the graph depicted by Figure 3. By the minimality of H, $H' = H \setminus \{v\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. We show now that we can extend c to H. If $c(u) \neq c(n)$, we color then v with a color different from $c(u)$ and $c(n)$ and the coloring obtained is acyclic. Otherwise, $c(u) = c(n)$. If we cannot color v, this implies without loss of generality $L(v) = \{1, 2, 3\} = L(l) = L(m)$, $c(w) = c(n) = c(t) = c(p) = 1$, and by permuting the colors of l and m, we are sure that $L(r) = \{1, 2, 3\} = L(s)$ and $c(x) = c(j) = 1$, then by permuting the colors of r and s, we are sure that $L(i) = \{1, 2, 3\} = L(k)$, $c(y) = c(u) = 1$, and $c(z) \in \{2, 3\}$. Let $\alpha = \{2, 3\} \setminus \{c(z)\}$. We recolor k, s, l, v with α and m, r, i with $c(z)$. The coloring obtained is acyclic.

(C6) Suppose H contains a 3-face $[rst]$ incident to three 3-vertices such that one vertex is linked to a 3*-face, say s is linked by the edge sj to the 3*-face $[ijk]$ and one vertex is a 3*-vertex, say t. Call y the third neighbor of i, x the third neighbor of r. Suppose that the 2-vertex u (resp. v) is adjacent to k and z (resp. t and w). For example, H contains the graph depicted by Figure 4. By the minimality of H, $H' = H \setminus \{v\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. We show now that we can extend c to H. If $c(u) \neq c(t)$, we color then v with a color different from $c(w)$ and $c(t)$ and the coloring obtained is acyclic. Otherwise, $c(w) = c(t)$. If we cannot color v, this implies without loss of generality $L(v) = \{1, 2, 3\} = L(r) = L(s)$, $c(w) = c(t) = c(x) = c(j) = 1$, and by permuting the colors of r and s, we are sure that $L(i) = \{1, 2, 3\} = L(k)$, $c(y) = c(u) = 1$, and $c(z) \in \{2, 3\}$. Let $\alpha = \{2, 3\} \setminus \{c(z)\}$. We recolor k, s, v with α and r, i with $c(z)$. The coloring obtained is acyclic.

\[\square\]

Lemma 2 Let H be a connected plane graph with n vertices, m edges and r faces. Then, we have
the following:
\[\sum_{v \in V(H)} (11d(v) - 26) + \sum_{f \in F(H)} (2r(f) - 26) = -52 \]
(1)

Proof
Euler’s formula \(n - m + \ell = 2 \) can be rewritten as \((22m - 26n) + (4m - 26\ell)) = -52. The relation \(\sum_{v \in V(H)} d(v) = \sum_{f \in F(H)} r(f) = 2m \) completes the proof. \(\square \)

2.2 Discharging procedure

Let \(H \) be a counterexample to Theorem 2 with the minimum order. Then, \(H \) satisfies Lemma 1.

We define the weight function \(\omega : V(H) \cup F(H) \rightarrow \mathbb{R} \) by \(\omega(x) = 11d(x) - 26 \) if \(x \in V(H) \) and \(\omega(x) = 2r(x) - 26 \) if \(x \in F(H) \). It follows from Equation (1) that the total sum of weights is equal to -52. In what follows, we will define discharging rules (R1) and (R2) and redistribute weights accordingly. Once the discharging is finished, a new weight function \(\omega^* \) is produced. However, the total sum of weights is kept fixed when the discharging is achieved. Nevertheless, we will show that \(\omega^*(x) \geq 0 \) for all \(x \in V(H) \cup F(H) \). This leads to the following obvious contradiction:

\[0 \leq \sum_{x \in V(H) \cup F(H)} \omega^*(x) = \sum_{x \in V(H) \cup F(H)} \omega(x) = -52 < 0 \]

and hence demonstrates that no such counterexample can exist.

The discharging rules are defined as follows:

(R1.1) Every \(\geq 3 \)-vertex \(v \) gives 2 to each adjacent 2-vertex.

(R1.2) Every \(\geq 4 \)-vertex \(v \) gives 9 to each incident 3-face and 1 to each linked 3*-face.

(R2.1) Every 3*-vertex \(v \) gives 5 to its incident 3-face.

(R2.2) Every 3-vertex \(v \), different from a 3*-vertex, which is not linked to a 3*-face, gives 7 to its incident 3-face (if any).

(R2.3) Every 3-vertex \(v \), different from a 3*-vertex, linked to a 3*-face gives 1 to each linked 3*-face and gives 6 to its incident 3-face (if any).

In order to complete the proof, it suffices to prove that the new weight \(\omega^*(x) \) is non-negative for all \(x \in V(H) \cup F(H) \).

Let \(v \in V(H) \) be a k-vertex. Then, \(k \geq 2 \) by (C1).

- If \(k = 2 \), then \(\omega(v) = -4 \) and \(v \) is adjacent to two \(\geq 3 \)-vertices by (C3). By (R1.1), \(\omega^*(v) = -4 + 2 \cdot 2 = 0 \).

- If \(k = 3 \), then \(\omega(v) = 7 \). Since \(H \) contains no 4-cycles, \(v \) is incident to at most one 3-face. Assume first that \(v \) is not incident to a 3-face. Then by (R1.1) and (R2.3), \(v \) gives at most 3 times 2. Hence, \(\omega^*(v) \geq 7 - 3 \cdot 2 \geq 1 \). Assume now that \(v \) is incident to a 3-face. If \(v \) is a 3*-vertex, then \(\omega^*(v) = 7 - 5 + 2 = 0 \) by (R1.1) and (R2.1). If \(v \) is linked to a 3*-face then \(\omega^*(v) \geq 7 - 6 + 1 = 0 \) by (R2.3). If \(v \) is not adjacent to a 2-vertex and not linked to a 3*-face then \(\omega^*(v) = 7 - 7 = 0 \) by (R2.2).

- If \(k \geq 4 \), then \(\omega(v) = 11k - 26 \). Observe by (C1), (C2) and definitions of \(n^*(v) \) and of linked vertices that:

\[m_3(v) \leq \left\lfloor \frac{k}{2} \right\rfloor \quad \text{and} \quad k - 2m_3(v) \geq n_2(v) + n^*(v) \]
\[k \geq 2m_3(v) + n_2(v) + n^*(v) \quad (2) \]

It follows by (R1.1), (R1.2) and Equation (2) that:

\[
\begin{align*}
\omega^*(v) &= 11k - 26 - 9m_3(v) - n^*(v) - 2n_2(v) \\
&\geq 11k - 26 - 9m_3(v) - \frac{9}{2}n^*(v) - \frac{9}{2}n_2(v) \\
&\geq 11k - 26 - \frac{9}{2}k \\
&\geq \frac{13}{2}k - 26 \\
&\geq 0
\end{align*}
\]

Suppose that \(f \) is a \(k \)-face. Then, \(k = 3 \) or \(k \geq 13 \) by hypothesis.

- If \(k \geq 13 \), then \(\omega^*(f) = \omega(f) = 2k - 26 \geq 0 \).
- If \(k = 3 \), then \(\omega(f) = -20 \). Suppose \(f = [rst] \). By (C2), \(f \) is not incident to a 2-vertex; hence, \(d(r) \geq 3, d(s) \geq 3, d(t) \geq 3 \). By (C4) \(f \) is incident to at most one 3*-vertex. Now, observe that if one of the vertices \(r, s, t \) is a \(\geq 4 \)-vertex, then by (R1.2) (R2.1) (R2.2) (R2.3) \(\omega^*(f) \geq -20 + 9 + 5 + 6 = 0 \). So assume \(d(r) = d(s) = d(t) = 3 \) and let \(r_0, s_0, t_0 \) be the other neighbors of \(r, s, t \), respectively. Suppose that \(f \) is a 3*-face and let \(r \) be its unique 3*-vertex. By (C6) none of \(s \) and \(t \) are linked to a 3*-face. Moreover \(s_0 \) and \(t_0 \) give 1 to \(f \) by (R1.2) and (R2.3). Hence \(\omega^*(f) = -20 + 5 + 2 \cdot 7 + 2 \cdot 1 = 1 \). Finally assume that \(f \) is not a 3*-face. By (C5) at most one of \(r, s, t \) is linked to a 3*-face. Hence \(\omega^*(f) \geq -20 + 6 + 2 \cdot 7 = 0 \), by (R1.2), (R2.2) and (R2.3).

We proved that, for all \(x \in V(H) \cup F(H) \), \(\omega^*(x) \geq 0 \). This completes the proof of Theorem 2.

References

