Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable

Hervé Hocquard, Mickael Montassier

To cite this version:

HAL Id: hal-00402807
https://hal.archives-ouvertes.fr/hal-00402807
Submitted on 8 Jul 2009
Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable

Hervé Hocquard and Mickaël Montassier
LaBRI, Université Bordeaux I, 33405 Talence Cedex, France

June 4, 2009

Abstract

An acyclic coloring of a graph G is a coloring of its vertices such that: (i) no two adjacent vertices in G receive the same color and (ii) no bicolored cycles exist in G. A list assignment of G is a function L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there exists an acyclic coloring ϕ of G such that $\phi(v) \in L(v)$ for all $v \in V(G)$. If G is acyclically L-list colorable for any list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$, then G is acyclically k-choosable. In this paper, we prove that every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.

1 Introduction

A proper coloring of a graph is an assignment of colors to the vertices of the graph such that two adjacent vertices do not use the same color. A k-coloring of G is a proper coloring of G using k colors; a graph admitting a k-coloring is said to be k-colorable. An acyclic coloring of a graph G is a proper coloring of G such that G contains no bicolored cycles; in other words, the graph induced by every two color classes is a forest. A list assignment of G is a function L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of available colors. Let G be a graph and L be a list assignment of G. The graph G is acyclically L-list colorable if there is an acyclic coloring ϕ of G such that $\phi(v) \in L(v)$ for all $v \in V(G)$. If G is acyclically L-list colorable for any list assignment L with $|L(v)| \geq k$ for all $v \in V(G)$, then G is acyclically k-choosable. The acyclic choice number of G, $\chi^a_c(G)$, is the smallest integer k such that G is acyclically k-choosable. Borodin et al. [1] first investigated the acyclic choosability of planar graphs proving that:

Theorem 1 [1] Every planar graph is acyclically 7-choosable.

and put forward to the following challenging conjecture:

Conjecture 1 [1] Every planar graph is acyclically 5-choosable.

In 1976, Steinberg conjectured that every planar graph without cycles of lengths 4 and 5 is 3-colorable (see Problem 2.9 [7]). This problem remains open. In 1990, Erdős suggested the following relaxation of Steinberg’s Conjecture: what is the smallest integer i such that every planar graph without cycles of lengths 4 to i is 3-colorable? The best known result is $i = 7$ [2]. This question is also studied in the choosability case: what is the smallest integer i such that every planar graph without cycles of lengths 4 to i is 3-choosable? In [12], Voigt proved that Steinberg’s Conjecture can not be extended to list coloring; hence, $i \geq 6$. Nevertheless, in 1996, Borodin [4] proved that every planar graph without cycles of lengths 4 to 9 is 3-colorable; in fact, 3-choosable. So, $i \leq 9$.

In this paper, we study the question of Erdős in the acyclic choosability case:
Problem 1 What is the smallest integer i such that every planar graph without cycles of lengths 4 to i is acyclically 3-choosable?

Note that it is proved that every planar graph without cycles of lengths 4 to 6 is acyclically 4-choosable [10]. Also, the relationship between the maximum average degree of G (or the girth of G) and its acyclic choice number was studied (see for example [9, 8, 5]).

Our main result is the following:

Theorem 2 Every planar graph without cycles of lengths 4 to 12 is acyclically 3-choosable.

Hence, in Problem 1, $6 \leq i \leq 12$.

Section 2 is dedicated to the proof of Theorem 2. Follow some notations we will use:

Notations Let G be a planar graph. We use $V(G)$, $E(G)$ and $F(G)$ to denote the set of vertices, edges and faces of G respectively. Let $d(v)$ denote the degree of a vertex v in G and $r(f)$ the length of a face f in G. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. $\geq k$-vertex, $\leq k$-vertex). We use the same notations for faces: a k-face (resp. $\geq k$-face, $\leq k$-face) is a face of length k (resp. at least k, at most k). A k-face having the boundary vertices $x_1, x_2, ..., x_k$ in the cyclic order is denoted by $[x_1x_2...x_k]$. For a vertex $v \in V(G)$, let $n_i(v)$ denote the number of i-vertices adjacent to v for $i \geq 1$, and $m_3(v)$ the number of 3-faces incident to v. A 3-vertex is called a 3^*-vertex if it is incident to a 3-face and adjacent to a 2-vertex (for example in Figure 1, the vertex t is a 3^*-vertex). A 3-face $[rst]$ with $d(r) = d(s) = d(t) = 3$ and with a 3^*-vertex on its boundary is called a 3-face. Two 3-faces $[rst]$ and $[uvw]$ are called linked if there exists an edge tv which connects these two 3-faces such that $d(t) = d(v) = 3$ (see Figure 2). A vertex v is linked to a 3-face $[rst]$ if there exists an edge between v and one vertex of the boundary of $[rst]$, say t, such that $d(t) = 3$ (for example in Figure 1, the vertex v is linked to the 3-face $[rst]$). Let $n^*(v)$ be the number of 3*-face linked to v.

![Figure 1](image1.png)

Figure 1: The vertex t is a 3^*-vertex and the vertex v is linked to the 3-face $[rst]$

![Figure 2](image2.png)

Figure 2: The two 3-faces $[rst]$ and $[uvw]$ are linked

2 Proof of Theorem 2

To prove Theorem 2 we proceed by contradiction. Suppose that H is a counterexample with the minimum order to Theorem 2 which is embedded in the plane. Let L be a list assignment with $|L(v)| = 3$ for all $v \in V(H)$ such that there does not exist an acyclic coloring c of H with for all $v \in V(H)$, $c(v) \in L(v)$.

Without loss of generality we can suppose that H is connected. We will first investigate the structural properties of H (Section 2.1), then using Euler’s formula and the discharging technique we will derive a contradiction (Section 2.2).
2.1 Structural properties of \(H \)

Lemma 1 The minimal counterexample \(H \) to Theorem 2 has the following properties:

(C1) \(H \) contains no 1-vertices.

(C2) A 3-face has no 2-vertex on its boundary.

(C3) A 2-vertex is not adjacent to a 2-vertex.

(C4) A 3-face has at most one 3*-vertex on its boundary.

(C5) A 3-face \([rst]\) with \(d(r) = d(s) = d(t) = 3 \) is linked to at most one 3*-face.

(C6) Two 3*-faces cannot be linked.

Proof

(C1) Suppose \(H \) contains a 1-vertex \(u \) adjacent to a vertex \(v \). By minimality of \(H \), the graph \(H' = H\setminus\{u\} \) is acyclically 3-choosable. Consequently, there exists an acyclic \(L \)-coloring \(c \) of \(H' \). To extend this coloring to \(H \) we just color \(u \) with \(c(u) \in L(u)\setminus\{c(v)\} \). The obtained coloring is acyclic, a contradiction.
Lemma 2 Let H be a connected plane graph with n vertices, m edges and r faces. Then, we have

(C2) Suppose H contains a 2-vertex u incident to a 3-face $[uvw]$. By minimality of H, the graph $H' = H \setminus \{u\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. We show that we can extend this coloring to H by coloring u with $c(u) \in L(u) \setminus \{c(v), c(w)\}$.

(C3) Suppose H contains a 2-vertex u adjacent to a 2-vertex v. Let t and w be the other neighbors of u and v respectively. By minimality of H, the graph $H' = H \setminus \{u\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. We show that we can extend this coloring to H. Assume first that $c(t) \neq c(v)$. Then we just color u with $c(u) \in L(u) \setminus \{c(t), c(v)\}$. Now, if $c(t) = c(v)$, we color u with $c(u) \in L(u) \setminus \{c(v), c(w)\}$. In the two cases, the obtained coloring is acyclic, a contradiction.

(C4) Suppose H contains a 3-face $[rst]$ with two 3*-vertices s and t. Suppose that t (resp. s) is adjacent to a 2-vertex v (resp. x) with $v \neq r, s$ by (C2) (resp. $x \neq r, t$). Let u (resp. y) be the other neighbor of v (resp. x) with $u \neq r, s$ (resp. $y \neq r, t$). By the minimality of H, $H' = H \setminus \{v\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. We show now that we can extend c to H. If $c(u) \neq c(t)$, we color then v with a color different from $c(u)$ and $c(t)$ and the coloring obtained is acyclic. Otherwise, $c(u) = c(t)$. If we cannot color v, this implies without loss of generality $L(v) = \{1, 2, 3\}$, $c(u) = c(t) = c(x) = 1$, $c(r) = 2$ and $c(s) = c(y) = 3$. Observe that necessarily $L(t) = \{1, 2, 3\}$ (otherwise we can recolor t with $\alpha \in L(t) \setminus \{1, 2, 3\}$ and color v properly, i.e. v receives a color distinct of those of these neighbors). For a same reason $L(s) = \{1, 2, 3\}$ and $L(x) = \{1, 2, 3\}$. Now, we recolor t with the color 3, s with the color 1 and x with the color 2, then we can color v with the color 2. It is easy to see that the coloring obtained is acyclic.

(C5) Suppose H contains a 3-face $[rst]$ incident to three vertices such that two of them are linked to two 3*-faces $[ijk]$ and $[l mn]$. Suppose $[ijk]$ and $[l mn]$ are linked to $[rst]$ respectively by the edges sj and tl. Call y the third neighbor of i, x the third neighbor of r, and p the third neighbor of m. Suppose that the 2-vertex u (resp. v) is adjacent to k and z (resp. n and w). For example, H contains the graph depicted by Figure 3. By the minimality of H, $H' = H \setminus \{v\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. We show now that we can extend c to H. If $c(w) \neq c(n)$, we color then v with a color different from $c(w)$ and $c(n)$ and the coloring obtained is acyclic. Otherwise, $c(w) = c(n)$. If we cannot color v, this implies without loss of generality $L(v) = \{1, 2, 3\} = L(l) = L(m)$, $c(w) = c(n) = c(t) = c(p) = 1$, and by permuting the colors of l and m, we are sure that $L(r) = \{1, 2, 3\} = L(s)$ and $c(x) = c(j) = 1$, then by permuting the colors of r and s, we are sure that $L(i) = \{1, 2, 3\} = L(k)$, $L(y) = c(u) = 1$, and $L(z) \in \{2, 3\}$. Let $\alpha = \{2, 3\} \setminus \{c(z)\}$. We recolor k, s, l, v with α and m, r, i with $c(z)$. The coloring obtained is acyclic.

(C6) Suppose H contains a 3-face $[rst]$ incident to three 3-vertices such that one vertex is linked to a 3*-face $[ijk]$ and one vertex is a 3*-vertex, say t. Call y the third neighbor of i, x the third neighbor of r. Suppose that the 2-vertex u (resp. v) is adjacent to k and z (resp. t and w). For example, H contains the graph depicted by Figure 4. By the minimality of H, $H' = H \setminus \{v\}$ is acyclically 3-choosable. Consequently, there exists an acyclic L-coloring c of H'. We show now that we can extend c to H. If $c(w) \neq c(t)$, we color then v with a color different from $c(w)$ and $c(t)$ and the coloring obtained is acyclic. Otherwise, $c(w) = c(t)$. If we cannot color v, this implies without loss of generality $L(v) = \{1, 2, 3\} = L(r) = L(s)$, $c(w) = c(t) = c(x) = c(j) = 1$, and by permuting the colors of r and s, we are sure that $L(i) = \{1, 2, 3\} = L(k)$, $c(y) = c(u) = 1$, and $c(z) \in \{2, 3\}$. Let $\alpha = \{2, 3\} \setminus \{c(z)\}$. We recolor k, s, v with α and r, i with $c(z)$. The coloring obtained is acyclic.

□
\[\sum_{v \in V(H)} (11d(v) - 26) + \sum_{f \in F(H)} (2r(f) - 26) = -52 \]

Proof

Euler’s formula \(n - m + f = 2 \) can be rewritten as \((22m - 26n) + (4m - 26f) \) = -52. The relation \[\sum_{v \in V(H)} d(v) = \sum_{f \in F(H)} r(f) = 2m \] completes the proof. \(\square \)

2.2 Discharging procedure

Let \(H \) be a counterexample to Theorem 2 with the minimum order. Then, \(H \) satisfies Lemma 1.

We define the weight function \(\omega : V(H) \cup F(H) \rightarrow \mathbb{R} \) by \(\omega(x) = 11d(x) - 26 \) if \(x \in V(H) \) and \(\omega(x) = 2r(x) - 26 \) if \(x \in F(H) \). It follows from Equation (1) that the total sum of weights is equal to -52. In what follows, we will define discharging rules (R1) and (R2) and redistribute weights accordingly. Once the discharging is finished, a new weight function \(\omega^* \) is produced. However, the total sum of weights is kept fixed when the discharging is achieved. Nevertheless, we will show that \(\omega^*(x) \geq 0 \) for all \(x \in V(H) \cup F(H) \). This leads to the following obvious contradiction:

\[0 \leq \sum_{x \in V(H) \cup F(H)} \omega^*(x) = \sum_{x \in V(H) \cup F(H)} \omega(x) = -52 < 0 \]

and hence demonstrates that no such counterexample can exist.

The discharging rules are defined as follows:

(R1.1) Every \(\geq 3 \)-vertex \(v \) gives 2 to each adjacent 2-vertex.

(R1.2) Every \(\geq 4 \)-vertex \(v \) gives 9 to each incident 3-face and 1 to each linked 3*-face.

(R2.1) Every 3*-vertex \(v \) gives 5 to its incident 3-face.

(R2.2) Every 3-vertex \(v \), different from a 3*-vertex, which is not linked to a 3*-face, gives 7 to its incident 3-face (if any).

(R2.3) Every 3-vertex \(v \), different from a 3*-vertex, linked to a 3*-face gives 1 to each linked 3*-face and gives 6 to its incident 3-face (if any).

In order to complete the proof, it suffices to prove that the new weight \(\omega^*(x) \) is non-negative for all \(x \in V(H) \cup F(H) \).

Let \(v \in V(H) \) be a \(k \)-vertex. Then, \(k \geq 2 \) by (C1).

- If \(k = 2 \), then \(\omega(v) = -4 \) and \(v \) is adjacent to two \(\geq 3 \)-vertices by (C3). By (R1.1), \(\omega^*(v) = -4 + 2 \cdot 2 = 0 \).

- If \(k = 3 \), then \(\omega(v) = 7 \). Since \(H \) contains no 4-cycles, \(v \) is incident to at most one 3-face. Assume first that \(v \) is not incident to a 3-face. Then by (R1.1) and (R2.3), \(v \) gives at most 3 times 2. Hence, \(\omega^*(v) \geq 7 - 3 \cdot 2 \geq 1 \). Assume now that \(v \) is incident to a 3-face. If \(v \) is a 3*-vertex, then \(\omega^*(v) = 7 - 5 - 2 = 0 \) by (R1.1) and (R2.1). If \(v \) is linked to a 3*-face then \(\omega^*(v) \geq 7 - 6 - 1 = 0 \) by (R2.3). If \(v \) is not adjacent to a 2-vertex and not linked to a 3*-face then \(\omega^*(v) = 7 - 7 = 0 \) by (R2.2).

- If \(k \geq 4 \), then \(\omega(v) = 11k - 26 \). Observe by (C1), (C2) and definitions of \(n^*(v) \) and of linked vertices that:

\[m_3(v) \leq \left\lfloor \frac{k}{2} \right\rfloor \quad \text{and} \quad k - 2m_3(v) \geq n_2(v) + n^*(v) \]
\[\begin{align*}
k \geq 2m_3(v) + n_2(v) + n^*(v) \quad (2)
\end{align*}\]

It follows by (R1.1), (R1.2) and Equation (2) that:

\[\begin{align*}
\omega^*(v) &= 11k - 26 - 9m_3(v) - n^*(v) - 2n_2(v) \\
&\geq 11k - 26 - 9m_3(v) - \frac{9}{2}n^*(v) - \frac{9}{2}n_2(v) \\
&\geq 11k - 26 - \frac{9}{2}k \\
&\geq \frac{13}{2}k - 26 \\
&\geq 0
\end{align*}\]

Suppose that \(f \) is a \(k \)-face. Then, \(k = 3 \) or \(k \geq 13 \) by hypothesis.

- If \(k \geq 13 \), then \(\omega^*(f) = \omega(f) = 2k - 26 \geq 0 \).
- If \(k = 3 \), then \(\omega(f) = -20 \). Suppose \(f = [rst] \). By (C2), \(f \) is not incident to a 2-vertex; hence, \(d(r) \geq 3, d(s) \geq 3, d(t) \geq 3 \). By (C4) \(f \) is incident to at most one \(3^* \)-vertex. Now, observe that if one of the vertices \(r, s, t \) is a \(\geq 4 \)-vertex, then by (R1.2) (R2.1) (R2.2) (R2.3) \(\omega^*(f) \geq -20 + 9 + 5 + 6 = 0 \). So assume \(d(r) = d(s) = d(t) = 3 \) and let \(r_0, s_0, t_0 \) be the other neighbors of \(r, s, t \), respectively. Suppose that \(f \) is a \(3^* \)-face and let \(r \) be its unique \(3^* \)-vertex. By (C6) none of \(s \) and \(t \) is linked to a \(3^* \)-face. Moreover \(s_0 \) and \(t_0 \) give \(1 \) to \(f \) by (R1.2) and (R2.3). Hence \(\omega^*(f) = -20 + 5 + 7 + 2 = 1 \). Finally assume that \(f \) is not a \(3^* \)-face. By (C5) at most one of \(r, s, t \) is linked to a \(3^* \)-face. Hence \(\omega^*(f) \geq -20 + 6 + 2 \cdot 7 = 0 \), by (R1.2), (R2.2) and (R2.3).

We proved that, for all \(x \in V(H) \cup F(H) \), \(\omega^*(x) \geq 0 \). This completes the proof of Theorem 2.

References

