HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

A new protein binding pocket similarity measure based on comparison of 3D atom clouds: application to ligand prediction

Abstract : Motivation: Prediction of ligands for proteins of known 3D structure is important to understand structure-function relationship, predict molecular function, or design new drugs.\\ Results: We explore a new approach for ligand prediction in which binding pockets are represented by atom clouds. Each target pocket is compared to an ensemble of pockets of known ligands. Pockets are aligned in 3D space with further use of convolution kernels between clouds of points. Performance of the new method for ligand prediction is compared to those of other available measures and to docking programs. We discuss two criteria to compare the quality of similarity measures: area under ROC curve (AUC) and classification based scores. We show that the latter is better suited to evaluate the methods with respect to ligand prediction. Our results on existing and new benchmarks indicate that the new method outperforms other approaches, including docking. Availability: The new method is available at http://cbio.ensmp.fr/paris/ Contact: mikhail.zaslavskiy@mines-paristech.fr
Complete list of metadata

Cited literature [30 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00402627
Contributor : Mikhail Zaslavskiy Connect in order to contact the contributor
Submitted on : Thursday, July 9, 2009 - 2:57:42 PM
Last modification on : Wednesday, November 17, 2021 - 12:30:46 PM
Long-term archiving on: : Wednesday, September 22, 2010 - 12:52:07 PM

Files

bpockets.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00402627, version 2
  • ARXIV : 0907.1531

Citation

Brice Hoffmann, Mikhail Zaslavskiy, Jean-Philippe Vert, Véronique Stoven. A new protein binding pocket similarity measure based on comparison of 3D atom clouds: application to ligand prediction. 2009. ⟨hal-00402627v2⟩

Share

Metrics

Record views

2867

Files downloads

306