A new protein binding pocket similarity measure based on comparison of 3D atom clouds: application to ligand prediction

Abstract : Motivation: Prediction of ligands for proteins of known 3D structure is important to understand structure-function relationship, predict molecular function, or design new drugs.\\ Results: We explore a new approach for ligand prediction in which binding pockets are represented by atom clouds. Each target pocket is compared to an ensemble of pockets of known ligands. Pockets are aligned in 3D space with further use of convolution kernels between clouds of points. Performance of the new method for ligand prediction is compared to those of other available measures and to docking programs. We discuss two criteria to compare the quality of similarity measures: area under ROC curve (AUC) and classification based scores. We show that the latter is better suited to evaluate the methods with respect to ligand prediction. Our results on existing and new benchmarks indicate that the new method outperforms other approaches, including docking. Availability: The new method is available at http://cbio.ensmp.fr/paris/ Contact: mikhail.zaslavskiy@mines-paristech.fr
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00402627
Contributeur : Mikhail Zaslavskiy <>
Soumis le : jeudi 9 juillet 2009 - 14:57:42
Dernière modification le : vendredi 27 octobre 2017 - 17:36:02
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 12:52:07

Fichiers

bpockets.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00402627, version 2
  • ARXIV : 0907.1531

Collections

Citation

Brice Hoffmann, Mikhail Zaslavskiy, Jean-Philippe Vert, Véronique Stoven. A new protein binding pocket similarity measure based on comparison of 3D atom clouds: application to ligand prediction. 2009. 〈hal-00402627v2〉

Partager

Métriques

Consultations de la notice

211

Téléchargements de fichiers

487