A Numerical Exploration of Compressed Sampling Recovery

Abstract : This paper explores numerically the efficiency of L1 minimization for the recovery of sparse signals from compressed sampling measurements in the noiseless case. This numerical exploration is driven by a new greedy pursuit algorithm that computes sparse vectors that are difficult to recover by L1 minimization. The supports of these pathological vectors are also used to select sub-matrices that are ill-conditionned. This allows us to challenge theoretical identifiability criteria based on polytopes analysis and on restricted isometry conditions. We evaluate numerically the theoretical analysis without resorting to Monte-Carlo sampling, which tends to avoid worst case scenarios.
Type de document :
Article dans une revue
Linear Algebra and its Applications, Elsevier, 2010, 432 (7), pp.1663-1679. <10.1016/j.laa.2009.11.022>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00402455
Contributeur : Gabriel Peyré <>
Soumis le : vendredi 27 novembre 2009 - 14:46:13
Dernière modification le : mercredi 28 septembre 2016 - 16:14:50
Document(s) archivé(s) le : samedi 26 novembre 2016 - 16:40:45

Fichier

DossalPeyreFadili-LAA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Charles Dossal, Gabriel Peyré, Jalal M. Fadili. A Numerical Exploration of Compressed Sampling Recovery. Linear Algebra and its Applications, Elsevier, 2010, 432 (7), pp.1663-1679. <10.1016/j.laa.2009.11.022>. <hal-00402455v2>

Partager

Métriques

Consultations de
la notice

1756

Téléchargements du document

764