A Numerical Exploration of Compressed Sampling Recovery

Abstract : This paper explores numerically the efficiency of L1 minimization for the recovery of sparse signals from compressed sampling measurements in the noiseless case. This numerical exploration is driven by a new greedy pursuit algorithm that computes sparse vectors that are difficult to recover by L1 minimization. The supports of these pathological vectors are also used to select sub-matrices that are ill-conditionned. This allows us to challenge theoretical identifiability criteria based on polytopes analysis and on restricted isometry conditions. We evaluate numerically the theoretical analysis without resorting to Monte-Carlo sampling, which tends to avoid worst case scenarios.
Type de document :
Article dans une revue
Linear Algebra and its Applications, Elsevier, 2010, 432 (7), pp.1663-1679. 〈10.1016/j.laa.2009.11.022〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00402455
Contributeur : Gabriel Peyré <>
Soumis le : vendredi 27 novembre 2009 - 14:46:13
Dernière modification le : vendredi 13 octobre 2017 - 19:38:04
Document(s) archivé(s) le : samedi 26 novembre 2016 - 16:40:45

Fichier

DossalPeyreFadili-LAA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Charles Dossal, Gabriel Peyré, Jalal M. Fadili. A Numerical Exploration of Compressed Sampling Recovery. Linear Algebra and its Applications, Elsevier, 2010, 432 (7), pp.1663-1679. 〈10.1016/j.laa.2009.11.022〉. 〈hal-00402455v2〉

Partager

Métriques

Consultations de
la notice

1792

Téléchargements du document

791