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ABSTRACT

This paper proposes a new class of algorithms to compute

the projection onto the set of images with a total variation

bounded by a constant. The projection is computed on a

dual formulation of the problem that is minimized using ei-

ther a one-step gradient descent method or a multi-step Nes-

terov scheme. This yields iterative algorithms that compute

soft thresholding of the dual vector fields. We show the con-

vergence of the method with a convergence rate of O(1/k)
for the one step method and O(1/k2) for the multi-step one,

where k is the iteration number. The projection algorithm can

be used as a building block in several applications, and we il-

lusrtate it by solving linear inverse problems under total vari-

ation constraint. Numerical results show that our algorithm

competes favorably with state-of-the-art TV projection meth-

ods to solve denoising, inpainting and deblurring problems.

Index Terms— Total variation, projection, duality, forward-

backward splitting, inverse problems.

1. INTRODUCTION

Total variation is a well known image prior introduced by

Rudin, Osher and Fatemi [1]. For a discrete image f ∈ R
N of

N = n × n pixels, the discrete total variation reads ||f ||TV =
||∇f ||1, where the ℓ1 of a vector field u = (u1, u2) ∈ R

N×2

is defined as

||u||1 =
∑

i,j

√

u1[i, j]2 + u2[i, j]2,

and the discrete gradient

∇f [i, j] = (f [i + 1, j] − f [i, j], f [i, j + 1] − f [i, j]),

with Neumann boundary conditions. The adjoint of the gradi-

ent is ∇∗ = −div, where the discrete divergence of a vector

field u ∈ R
N×2 is div(u) = u1[i, j]−u1[i−1, j]+u2[i, j]−

u2[i, j − 1], with Neumann boundary conditions.

The total variation is used as a regularization to denoise

an image f0 by solving the strongly convex problem [1]

min
f∈RN

1

2
||f − f0||

2 + λ||f ||TV . (1)

The regularization weight λ should be tuned to match the

noise level contaminating f0. Several algorithms have been

proposed to solve this problem, see for instance [2, 3].

TV projection for denoising. Much less work has focused

on denoising an image f0 by projecting it on a total variation

ball of radius τ < ||f0||TV, which requires to solve

f⋆ = argmin
f∈RN , ||f ||TV6τ

||f − f0||. (2)

Such a formulation might be preferable over (1) when little

is known about the noise level perturbing f0, but when an

estimate τ of the total variation of the clean image is known.

Computing the solution of (2) with a fast algorithm is thus

important for a denoising application [4].

An iterative projected sub-gradient method was intro-

duced in [4]. We here propose a different algorithm that is

based on a dual formulation of the primal projection problem.

This bears similarities with Chambolle’s algorithm [2] that

solves the primal regularization (1) using a dual projection.

Our dual problem is then solved using two first-order iterative

schemes: one-step forward-backward splitting revitalized in

[6], and accelerated multi-step Nesterov scheme [7]. These

two algorithms require only the computation of a soft thresh-

olding applied to the dual vector fields at each iteration.

TV projection for inverse problems. Total variation projec-

tion might be useful as a proxy to solve more challenging in-

verse problems. Popular inverse problems such as inpainting

and deblurring have been the subject of a flurry of research

activity. These inverse problems can be regularized with a to-

tal variation constraint [4]. Sections 4.2 and 4.3 are devoted to

show how these constrained inverse problems can be solved

efficiently using a projected gradient descent iteration, whose

projector is computed with our algorithm.

2. TV PROJECTION ALGORITHM

2.1. Dual Total Variation Projection

The goal of this paper is to solve the primal projection

problem (2). Obviously f⋆ = f0 if τ > ||f0||TV. The follow-

ing proposition, whose proof can be found in [5], shows that



the primal constraint problem (2) is recast as a penalized dual

optimization.

Proposition 1. For any f ∈ R
N , the primal solution is re-

covered as f⋆ = f0 − div(u⋆) where u⋆ is the solution of

min
u∈RN×2

1

2
||f0 − div(u)||2 + τ ||u||∞ . (3)

where ||u||∞ = max
i,j

√

u1[i, j]2 + u2[i, j]2.

2.2. First Order Schemes and Proximal Operator

As ||f0 − div(u)||2 is differentiable with Lipschitz-conti-

nuous gradient, and the set of solutions is not empty (by coer-

civity), (3) can be solved using first order algorithms, which

are extension to non-differentiable functionals of the gradient

descent. This paper considers a forward-backward iteration

[6] (that is a special case of splitting schemes for maximal

monotone operators), and a multi-step algorithm due to Nes-

terov [7].

Both algorithms requires the resolution of the Moreau-

Yosida regularization of the functional κ|| · ||∞, which is the

unique minimizer of the convex problem

proxκ||·||∞(u) = argmin
v∈RN×2

1

2
||u − v||2 + κ||v||∞. (4)

Proposition 2, whose proof can be found in [5], shows that

this proximal operator can be computed explicitly using a soft

thresholding Sλ applied to the dual vector field u for a well

chosen value of λ. Computing the precise value of λ for a

given vector field u ∈ R
N×2 requires the computation of or-

dered norms d[0] 6 d[1] 6 . . . 6 d[N − 1], and of cumulated

ordered norms

{d[t]}N−1
t=0 = {||u[i, j]||}n−1

i,j=0, D[s] =
N−1
∑

t=s+1

dr[t]. (5)

Proposition 2. For u ∈ R
N×2, we have proxκ||·||∞(u) =

u − Sλ(u) where

Sλ(u)[i, j] = max

(

1 −
λ

||u[i, j]||
, 0

)

u[i, j] (6)

and λ > 0 is computed as

λ = d[t] + (d[t + 1] − d[t])
D[t + 1] − κ

D[t + 1] − D[t]
(7)

where d and D are defined in (5), and where t is such that

D[t + 1] 6 κ < D[t].

2.3. Forward-backward Total Variation Projection

An iteration of the forward-backward projection algo-

rithm (with descent step-size sequence µ > 0) to solve (3)

reads

u(k+1) = proxµτ ||·||∞

(

u(k) + µ∇
(

f0 − div(u(k))
))

(8)

where the proximal operator for κ = µτ is computed thanks

to Proposition 2.

Theorem 1, whose proof can be found in [5], ensures

that the primal sequence (f (k))k∈N obtained from the dual

(u(k))k∈N one converges to a solution of (2) at a rate O(1/k).

Theorem 1. Suppose that µ ∈ (0, 1/4) and u(0) ∈ R
N×2.

There exists C > 0 such that

||f (k) − f⋆||2 6 C/k,

where f (k) = f0 − div(u(k)) and u(k) is defined in (8).

2.4. Nesterov Total Variation Projection

Y. Nesterov proposed in [7, 8] a multi-step scheme to op-

timize the sum of a smooth convex functional with Lipschitz

gradient and a convex non-differentiable functional whose

structure is simple (which means that its proximal operator

can be computed explicitly).

The dual problem (3) fits into this framework. Algo-

rithm 1 details the step of Nesterov scheme to minimize (3).

Following [3], the algorithm uses the proximal operator of

|| · ||∞.

Theorem 2, whose proof can be found in [5], ensures that

the sequence (f (k))k∈N converges to a solution of (2) at a rate

O(1/k2).

Theorem 2. Let µ ∈]0, 1/4[ and u(0) ∈ R
N×2. There exists

C > 0 such that the sequence f (k) defined in Algorithm 1

satisfies

||f (k) − f⋆||2 6 C/k2.

A major distinction between our work and the one of [3, 8]

is that the non-differentiable part of our dual problem does not

have a bounded domain, which is required in [3] to exhibit the

convergence speed on the primal iterates.

3. INVERSE PROBLEMS

Image acquisition devices provide p 6 N noisy and de-

graded measurements

y = Φf0 + ε ∈ R
p , (9)

of an image f0 ∈ R
N , where ε is an additive noise. The

linear operator Φ typically accounts for some blurring, sub-

sampling or missing pixels so that the measured data y only

captures a fraction of the information originally contained in



Algorithm 1: Nesterov total variation projection.

Initialization : u(0) ∈ R
N×2, A0 = 0, ξ(0) = 0, µ < 1/4.

Main iteration:
while ||u(k+1) − u(k)|| > η do

1. First proximal computation:

υ(k) = proxAkτ ||·||∞
(u(0) − ξ(k)) ,

where the proximal operator is computed as
detailed in Proposition 2 with κ = Akτ .

2. Let ak =
“

µ +
p

µ2 + 4µAk

”

/2 and

ω(k) = Aku(k)+akυ(k)

Ak+ak

.

3. Second proximation computation:

ω̃(k) = ω(k) −
µ

2
∇

“

f0 − div(ω(k))
”

,

u(k+1) = proxµτ/2||·||∞
(ω̃(k)) ,

where the proximal operator is computed as
detailed in Proposition 2 with κ = µτ/2.

4. Update Ak+1 = Ak + ak and

ξ(k+1) = ξ(k) + ak∇
“

f0 − div(u(k+1))
”

.

5. k ← k + 1, define f (k) = f0 − div(u(k)).

Output: f⋆ = f0 − div(u(k+1)).

the original image f0 that one wishes to recover. This is in

general an ill-posed inverse problem.

If the noise has a known bounded norm, it is possible to

solve the constrained optimization problem

min
f∈RN

||f ||TV subject to ||Φf − y|| 6 σ , (10)

where σ is related to the noise norm ||ε||. On the contrary,

if little is known about the noise ε, but one has some prior

guess τ of the total variation of the image, it is preferable to

consider the (equivalent) problem

f⋆ = argmin
f∈RN

||Φf − y||2 subject to ||f ||TV 6 τ, (11)

where the minimum is not necessarily unique unless Φ is in-

jective.

3.1. Projected Gradient Descent

Given the structure of (11), we suggest a projected gradi-

ent descent iteration to solve it. Formally, the iteration is

f (ℓ+1) = Proj||·||TV6τ

(

f (ℓ) + γℓΦ
∗(y − Φf (ℓ))

)

, (12)

where Proj||·||TV6τ is the projector on the TV ball of radius τ .

The following theorem, whose proof can be found in [5],

ensures the convergence of this iteration even if Proj||·||TV6τ

is not computed exactly but using the inner-iteration in (8).

Let aℓ ∈ R
N be an error term that models the inexact compu-

tation of Proj||·||TV6τ at iteration ℓ.

Theorem 3. Suppose that 0 < infℓ γℓ 6 supℓ γℓ < 2/||Φ||2,

where ||Φ|| is the spectral norm of Φ, and
∑

ℓ∈N
||aℓ|| < ∞.

Then f (ℓ) converges to a minimizer f⋆ of (11).

Bringing together (12) and the TV projection iteration (8),

leads to our TV projection algorithm to solve inverse prob-

lems.

Although problem (11) could be solved with a Nesterov

scheme, there is no proof of stability for such a scheme. This

is the main reason why this article considers only a projected

gradient descent.

4. NUMERICAL EXAMPLES

4.1. Denoising

We first tested our total variation algorithm for denoising,

where y = f0 + ε is an image of N = 5122 pixels con-

taminated by an additive white Gaussian noise (AWGN) ε of

standard deviation 0.06||f0||∞.

Fig. 1 shows projections f⋆ computed with our algo-

rithm for a decreasing value of the constraint τ , so that

only the strongest edges are present in the projected image.

Fig. 2(a) compares the convergence speed of our one-step

and multi-step dual projection algorithms summarized with

the sub-gradient projection method of [4]. The one-step algo-

rithm converges slightly faster compared to the sub-gradient

projection. Moreover, and as predicted by our convergence

analysis, the multi-step projection algorithm clearly outper-

forms the two other methods. Fig. 2(b) shows the evolution

of the total variation of f (k).

4.2. Inpainting

Inpainting aims at restoring an image f0 from which a set

of pixels is missing. It corresponds to the inversion of (9)

where Φ acts as a binary mask. In this case, ||Φ|| = 1 and

we use γℓ ≡ 1 for the projected gradient descent. Fig. 3,

top, shows an example of damaged image y of N = 5122

pixels, with 70% of randomly removed pixels. The noise is

AWGN with ||ε|| = 0.05||f0||. The total variation constraint is

set to τ = 0.6||f0||TV. The number of inner iterations for the

projection step in (12) is controlled by setting the convergence

tolerance of (8) to 10−2. Roughly between 10 to 20 inner

iterations of dual projections are required to maintain the total

variation constraint at each outer iteration ℓ. Fig. 4(a) shows

the decay in log scale of the residual error, that exhibits a

linear convergence speed.

4.3. Deblurring

We finally illustrate our algorithm on a deblurring prob-

lem where Φ is a convolution by a unit-mass Gaussian kernel

of width 4 pixels. Thus ||Φ|| = 1. The noise is again AWGN

with ||ε|| = 0.02||f0||. We use a gradient step-size γℓ ≡ 1.9
in the iteration (12). The total variation constraint is set to



Original f0 f⋆ with ||f0||TV/||f⋆||TV = 2

f⋆ with ||f0||TV/||f⋆||TV = 4 f⋆ with ||f0||TV/||f⋆||TV = 8

Fig. 1. Examples of total variation projections computed with our algo-

rithm.
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Fig. 2. Decay with k of (a) the error log10(||f (k) − f⋆||/||f⋆||) and (b)

of the total variation error ||f (k)||TV/τ − 1 for the dual projection (8) (solid

line) and the sub-gradient projection [4] (dashed line). Here τ = ||f0||TV/4.

τ = 0.6||f0||TV. Fig. 4(b) shows the decay in log scale of the

residual error.

Conclusion

This paper proposes a new class of algorithms to compute

the projection of an image on a total variation ball. The algo-

rithm solves an unconstrained dual formulation of the prob-

lem, and uses iterative soft thresholding on the gradient field.

These schemes are quite general, and extends to any posi-

tively 1-homogeneous functional for which the dual can be

easily computed. It also generalizes to arbitrary dimension.

A projected gradient descent uses this projection to solve lin-

ear inverse problems under a total variation constraint. Addi-

tional structural constraints could also be incorporated as well

using for instance Douglas-Rachford splitting iteration.
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and deblurring (b).

tImages ANR grant ANR-08-EMER-009. We warmly thank

Pierre Weiss for discussions during preparation of this manuscript.

5. REFERENCES

[1] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Phys. D, vol. 60, no. 1-4, pp. 259–268, 1992.

[2] A. Chambolle, “An algorithm for total variation minimization and ap-
plications,” Journal of Mathematical Imaging and Vision, vol. 20, pp.
89–97, 2004.
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[5] J. Fadili and G. Peyré, “Total variation projection with first order
schemes,” Preprint Hal-00380491, 2009.

[6] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” SIAM Journal on Multiscale Modeling and Simula-
tion, vol. 4, no. 4, 2005.

[7] Y. Nesterov, “Gradient methods for minimizing composite objective
function,” Preprint UCL, 2007.

[8] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math.
Program., vol. 103, no. 1, Ser. A, pp. 127–152, 2005.


