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THE SPACES Hn(osp(1|2),M) FOR SOME WEIGHT MODULES M

DIDIER ARNAL, MABROUK BEN AMMAR AND BECHIR DALI

Abstract. We entirely compute the cohomology for a natural and large class of osp(1|2)
modules M . We study the restriction to the sl(2) cohomology of M and apply our results
to the module M = Dλ,µ of differential operators on the super circle, acting on densities.

1. Introduction

The simplest Lie superalgebra is the algebra osp(1|2). For such an algebra, the notion of
Cartan subalgebra and weight module is well known (see section 2 for definitions and nota-
tions). In this paper, we consider such a weight module M , with moreover the assumption
that one of the odd element (noted here A) acts through a surjective map.

This generalizes the notion of ℓ ↓ modules for sl(2) [8], a class of modules admitting
a finite dimensional and nontrivial extension, but our main motivation is the study of
deformations of some actions of vector fields on the supercircle or the superspace R

1|1,
this theory was developped by Ovsienko and many other authors and some conjectures
about the cohomology of natural modules coming from the action of osp(1|2) on differential
operators on densities were presented (see [4, 3, 5]). The first cohomology group for this
module was computed by Basdouri and Ben Ammar [2], it was conjectured that the second
cohomology group would be generated by cup-product of nontrivial 1 cocycles, that the 2
cocycles whose sl(2) restriction is trivial are trivial, and so one.

In this paper, we first entirely determine the cohomology for our osp(1|2) module M and
prove that the restriction map is one to one from Hn(osp(1|2),M) to Hn(sl(2),M). Then
we apply this to the module of the differential operators on densities, computing completely
their cohomologies and explicitely describing the cocycles.

2. Definitions and notations

First, we define the Lie superalgebra osp(1|2) and the module M . We define the super-
algebra g = osp(1|2) as the real algebra whose basis is (H,X, Y,A,B). The elements H, X
and Y are even (with parity 0, or in g0) and the elements A, B are odd (with parity 1, or
in g1), the bracket is graded antisymmetric, we denote this property by

[U, V ] = −(−1)UV [V,U ].
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The commutation relations are :

[H,X] = X, [H,Y ] = −Y, [X,Y ] = 2H,
[H,A] = 1

2A, [X,A] = 0, [Y,A] = −B,
[H,B] = −1

2B, [X,B] = A, [Y,B] = 0,
[A,A] = 2X, [A,B] = 2H, [B,B] = −2Y.

The bracket satisfies the graded Jacobi identity

(−1)UW [[U, V ],W ] + (−1)V U [[V,W ], U ] + (−1)WU [[W,V ], U ] = 0.

We consider the subalgebra RH as the Cartan subalgebra of osp(1|2), its adjoint action is
trivially split, with roots 0, ±1

2 , ±1.
The even subalgebra g0 of osp(1|2) is of course the simple Lie algebra sl(2). From the

relations, it is clear that, as a graded Lie algebra, osp(1|2) is generated by its odd part
g1 = Span(A,B).

We consider here a special class of osp(1|2) modules M . We first suppose M is a complex
Z2 graded vector space M0 ⊕ M1 (the elements of Mi are said homogenous with parity i)
and the H action is diagonalized on M , that is we decompose M (and thus M0 and M1)
into weight spaces Mα (resp. Mα

i ) :

M =
⊕

α∈Σ

Mα, Hvα = αvα, ∀vα ∈ Mα.

(Σ ⊂ C is the set of weights).
If V is a H-invariant vector subspace, then V itself can be decomposed in V =

⊕
α∈Σ V α

with V α = Mα ∩ V . For instance, each Mi can be decomposed.
The commutation relations imply directly

AMα
i ⊂ M

α+ 1

2

i+1 , XMα
i ⊂ Mα+1

i ,

BMα
i ⊂ M

α− 1

2

i+1 , Y Mα
i ⊂ Mα−1

i .

Then we add the condition that the action of A is onto (or equivalently X is onto). This
conditions implies that M does not have any minimal weight vector v, with weight α0.
Indeed, if such a vector exists, the relation v = Aw = A

∑
β∈Σ wβ (wβ ∈ Mβ) implies

Hv = α0v =
∑

β HAwβ =
∑

β(β + 1
2)Awβ =

∑
β α0Awβ ,

or Awβ = 0 if β 6= α0 −
1
2 , and 0 6= v = Awα0−

1

2

, therefore α0 −
1
2 ∈ Σ, which is impossible.

Then our modules M are infinite dimensional.
For sl(2), the simple modules for which X are onto are the modules ℓ ↓. It is well known

that these modules are the only (with the ‘symmetric’ case ℓ ↑) sl(2)-modules admitting
finite dimensional nontrivial extensions for some values of ℓ (see [8]).

We now consider the cohomology groups Hn(osp(1|2),M) of these modules. A n cochain
is a mapping f from osp(1|2)n to M which is n linear and graded antisymmetric:

f(U1, . . . , Ui, . . . , Uj , . . . , Un) = −(−1)UiUjf(U1, . . . , Uj , . . . , Ui, . . . , Un).

Defining the graded sign εU (σ) for a permutation σ ∈ Sn acting on the elements Ui as the
product ε(σ)ε(τ) of the usual sign ε(σ) of σ by the sign of the induced permutation τ on
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the set of indices i for odd elements Ui, we have :

f(Uσ(1), . . . , Uσ(n)) = εU (σ)f(U1, . . . , Un).

Due to this property, we use the following notation:

U1 · · ·Un =
1

n!

∑

σ∈Sn

εU (σ)(Uσ−1(1) ⊗ · · · ⊗ Uσ−1(n))

and for any σ ∈ Sn,

f(U1 . . . Un) = εU (σ)f(Uσ−1(1) ⊗ · · · ⊗ Uσ−1(n)) = εU (σ)f(Uσ−1(1), . . . , Uσ−1(n)).

The cochain f is homogeneous with parity f if f(gi1 ⊗ · · · ⊗ gin) ⊂ Mf+
P

ij . The space

of n cochain is denoted Cn(osp(1|2),M), or Cn if no confusion is possibe.
On such a cochain f , the coboundary operator is defined, using the Koszul rule for signs,

by the relation (see [7] for instance):

(∂f)(U0, . . . , Un) =

n∑

i=0

(−1)i(−1)Ui(f+U0+···+Ui−1)Uif(U0, . . . , ı̂, . . . , Un)+

+
∑

0≤i<j≤n

(−1)i+j(−1)Ui(U0+···+Ui−1)(−1)Uj(U0+···+ı̂+···+Uj−1)f([Ui, Uj ], U0, . . . , ı̂, . . . , ̂, . . . , Un).

If f is a n cochain, ∂f is a n + 1 cochain with the same parity f , we can verify directly
that ∂ ◦ ∂ = 0 (or we can use a shift on degree and usual cohomology computations). The
n cocycles are the n cochains such that ∂f = 0, the n coboundaries are the cochains in the
image of ∂, we put as usual

Zn = ker(∂ : Cn −→ Cn+1), Bn = ∂(Cn−1), Hn(osp(1|2),M) = Zn/Bn.

Hn(osp(1|2),M) is the nth cohomology group for the module M .

3. The cohomology

3.1. osp(1|2) cohomology. The cohomology is described by the following

Theorem 3.1. (The groups Hn(osp(1|2),M))
Let us denote by ker A (respectively ker B) the subspaces of M , kernel of the morphism

v 7→ Av (respectively v 7→ Bv) in M . Then we have the following linear isomorphisms:

(i) H0(osp(1|2),M) = ker A ∩ ker B.

(ii) H1(osp(1|2),M) ≃ (ker A ∩ ker B) ⊕ ((ker A)−
1

2 /B((ker A)0)).

(iii) H2(osp(1|2),M) ≃ (ker A)−
1

2 /B((ker A)0).
(iv) Hn(osp(1|2),M) = 0 if n > 2.

The realization of these isomorphisms will be explicitly detailed in the proof. Before to
prove this theorem, we shall give some preliminary results.

First we say that a n cochain f is reduced if f(AU2 · · ·Un) = 0 for any U2, . . . , Un in
{A,H,B, Y }. Observe that if f is reduced then we have also f(XU2 · · ·Un) = 0 for any
U2, . . . , Un in {A,H,B, Y }, since

0 = (∂f)(A2U2 · · ·Un) = −f([A,A]U2 · · ·Un) = −2f(XU2 · · ·Un).
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Proposition 3.2. (Each cochain is cohomologous to a reduced one)
Let f be a n cochain. Then there exists a n − 1 cochain g such that f − ∂g is reduced.

Proof. If n = 0, any cochain is reduced and there is nothing to do. Suppose now n > 0,
Recall that the vectors X,A,H,B, Y are root vectors with respective weight 1, 1

2 , 0,−1
2 ,−1.

Define the weight of U1 ⊗ · · · ⊗ Un as the sum of the weights of the vectors Ui.
First, we kill f(An). Indeed, if g0 is the n − 1 cochain such that g0(U1 . . . Un−1) = 0

except if U1 = · · · = Un−1 = A and g0(A
n−1) = v where v is such that nAv = (−1)ff(An)

then (∂g0)(A
n) = f(An) and f0 = f − ∂g0 vanishes on An. If n = 1, the proposition is

proved.
Now, by induction, we suppose there is gk such that fk = f−∂gk vanishes on any product

of the form An−kUn−k+1 · · ·Un with Uj ∈ {A,H,B, Y }.
Suppose n − k > 1 and consider a k + 1 product of the form Un−k · · ·Un. If one of the

Ui is A, fk vanishes on An−k−1Un−k · · ·Un, if there is no such Ui, but if Ui = Uj = H,

then fk vanishes on An−k−1Un−k · · ·Un. The monomial T with maximal weight for which
fk(A

n−k−1T ) could be not zero is thus HBk and its weight is w(T ) = −k
2 .

By induction, we can suppose f ′
k vanishes for any monomial of the form An−kS and

any monomial of the form An−k−1T with w(T ) > ℓ (ℓ ≤ −k
2 + 1

2). We choose now

gℓ
k+1(U1 · · ·Un−1) = 0 except if U1 . . . Un−1 = An−k−2Un−k · · ·Un and w(Un−k · · ·Un) = ℓ

and Uj ∈ {H,B, Y }. Then for such a monomial,

0 = gℓ
k+1([A,A]An−k−3Un−k · · ·Un) = gℓ

k+1([A,Uj ]A
n−k−2Un−k · · · ̂ · · ·Un)

= gℓ
k+1([Ui, Uj ]A

n−k−1Un−k · · · ı̂ · · · ̂ · · ·Un)

and

(∂gℓ
k+1)(A

n−k−1Un−k · · ·Un) = (−1)g
ℓ
k+1(n − k − 1)Agℓ

k+1(A
n−k−2Un−k · · ·Un).

We can then choose the value of gℓ
k+1 such that f ′

k − ∂gℓ
k+1 vanishes on any monomial of

the form An−k−1T with w(T ) ≥ ℓ.
By induction, we prove there is g′ such that f ′ = f − ∂g′ is reduced.

Proposition 3.3. (Localization for cocycles)
Suppose than f is a n reduced cocycle. Then

(i) If n > 0, f = 0 if and only if f(Bn) = 0.
(ii) If n > 1, any reduced cocycle vanishing on HBn−1 is a coboundary.

Proof. (i) With the antisymmetry condition on f , the only possibly non vanishing terms
for f are monomials containing B (as odd vector) and H and Y as even vector, but each
of them at most one time. f(U1 · · ·Un) = 0 except if U1 · · ·Un is HBn−1 or Bn or Y Bn−1

and, if n > 1, HY Bn−2.
Now, the cocycle relation allows us to compute these vectors with the only knowledge of

f(Bn) :

(∂f)(ABn) = (−1)fAf(Bn) +
∑n

i=1(−1)i(−1)(i−1)f([A,B]Bn−1)

= (−1)fAf(Bn) − 2nf(HBn−1) = 0,



THE SPACES Hn(osp(1|2), M) FOR SOME WEIGHT MODULES M 5

and

(∂f)(Bn+1) =
∑n

i=0(−1)i(−1)f+iBf(Bn) +
∑

0≤i<j≤n(−1)i+j(−1)i+j−1f([B,B]Bn−1)

= (n + 1)
[
(−1)fBf(Bn) + nf(Y Bn−1)

]
= 0,

(∂f)(HBn) = Hf(Bn) +
∑n

i=1(−1)i(−1)f+i−1Bf(HBn−1)+

+
∑n

j=1(−1)j(−1)j−1f([H,B]Bn−1)+

+
∑

1≤i<j≤n(−1)i+j(−1)i+jf([B,B]HBn−2)

= (H + n
2 id)f(Bn) − n

[
(−1)fBf(HBn−1) + (n − 1)f(HY Bn−2)

]
= 0.

Thus a reduced cocycle f is completely determined by the vector f(Bn), especially f = 0
if and only if f(Bn) = 0.

(ii) Suppose now f(HBn−1) = 0 and n > 1. Then our computation proves that f(Bn)
is in the kernel of A. We define a n − 1 cochain g by putting g(U1 · · ·Un−1) = 0 except for

g(Y Bn−2) =
1

n(n − 1)
f(Bn).

Then
(∂g)(Bn) = n(n − 1)g(Y Bn−2) = f(Bn).

and

(∂g)(AU1 · · ·Un−1) = (−1)gAg(U1 · · ·Un−1)+

+
∑n−1

j=1 (−1)j(−1)Uj(g+1+U2+···+Uj−1)Ujg(AU1 · · · ̂ · · ·Un−1)+

+
∑n−1

j=1 (−1)j(−1)Uj(U1+···+Uj−1)g([A,Uj ]U1 · · · ̂ · · ·Un−1)+

+
∑

1≤i<j≤n−1(−1)i+j(−1)Ui(1+U1+···+Ui−1)+Uj(1+U1+···̂ı···+Uj−1)

g([Ui, Uj ]AU1 · · · ı̂ · · · ̂ · · ·Un−1)

=
∑n−1

j=1 (−1)j(−1)Uj(U1+···+Uj−1)g([A,Uj ]U1 · · · ̂ · · ·Un−1).

This is non vanishing only if [A,Uj ] = B and U1 · · · ̂ · · ·Un−1 = Y Bn−3 or [A,Uj ] = Y
and U1 · · · ̂ · · ·Un−1 = Bn−2. In the first case, we are computing ∂g(AY 2Bn−3), but, the
antisymmetry condition on ∂g gives ∂g(AY 2Bn−3) = 0. In the second case there is no such
Uj. Thus ∂g vanishes on any monomial AU1 . . . Un−1.

Now f − ∂g is a cocycle vanishing on any AU2 · · ·Un and on Bn, thus f = ∂g.

Proof of Theorem 3.1.

(i) If n = 0, there is no coboundaries, the cocycles are the vector f ∈ M such that
(∂f)(U) = (−1)fUUf = 0 for any U in osp(1|2) these vectors are in ker A ∩ ker B. Con-
versely, since A and B generate osp(1|2) as an algebra, each vector in ker A ∩ ker B is 0
cocycle.

(ii) Suppose n = 1. We saw that up to a coboundary, f is vanishing on A and X. Thus
f(H) belongs to ker A since

(∂f)(AH) = (−1)fAf(H) = 0.

Let us now decompose f(H) on weight vectors :

f(H) =
∑

α∈Σ vα, Hvα = αvα, Avα = 0.
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Put g =
∑

α6=0
1
α
vα. Then (∂g)(A) = (−1)gAg = 0 and (∂g)(H) = Hg =

∑
α6=0 vα. The 1

cocycle f ′ = f − ∂g is reduced and satisfies f ′(H) ∈ ker A ∩ ker H. Now

0 = (∂f ′)(HB) = Hf ′(B) − (−1)fBf ′(H) +
1

2
f ′(B) = (H +

1

2
id)f ′(B) − (−1)fBf ′(H).

The first term is in
⊕

α6=− 1

2

Mα, the second one in B(ker H) ⊂ M− 1

2 . Thus these two terms

vanish. Therefore f ′(H) is in ker A ∩ ker B. We now suppose f(H) ∈ ker A ∩ ker B. Then
(H + 1

2 id)f(B) = 0.

On the other hand, we have Af(B) = 2(−1)f f(H). Thus f(B) is in the affine space

of solutions for these two last equations. The corresponding linear space is (ker A)−
1

2 .
But we can still add a coboundary ∂g to f with Ag = Hg = 0, then f(B) becomes
f(B)+(−1)gBg. That means, we can impose to look for solution in an affine space parallel

to (ker A)−
1

2 /B(ker A ∩ ker H).

To be more precise, let us choose a supplementary space V to (ker A)−
1

2 in M− 1

2 and a

supplementary space W to B((ker A)0) in (ker A)−
1

2 :

M− 1

2 = (ker A)−
1

2 ⊕ V = B((ker A)0) ⊕ W ⊕ V.

Up to a coboundary, f(H) belongs to ker A∩ker B and f(B) to W ⊕V . Write f(B) = w+v,
we get Af(B) = Av = 2(−1)f f(H). This relation characterizes v since A|V is one-to-one.
We associate to f the vector (f(H), w) in (ker A ∩ ker B) ⊕ W.

Conversely, let u be in ker A∩ker B, homogeneous with parity u and v the unique vector
in Vu+1 such that Av = 2(−1)uu. Choose any w in W and define a map f : osp(1|2) −→ M
by putting f(A) = f(X) = 0, f(H) = u, f(B) = v + w, and f(Y ) = −(−1)fB(v + w).
Then we verify directly that

(∂f)(AX) = (∂f)(AA) = (∂f)(AH) = 0

(∂f)(AB) = (−1)fA(v + w) − 2u = (−1)fAv − 2u = 0,

(∂f)(AY ) = −AB(v + w) − (v + w) = −(AB + BA)(v + w) − (v + w)

= −(2H + id)(v + w) = 0.

The map ∂f is then a reduced 2 cocycle and moreover, we have

∂f(B2) = (−1)f 2Bw + 2(−(−1)f Bw) = 0.

Thus ∂f = 0, that is, f is a 1 cocycle.
Now, suppose f is a coboundary, then there is g such that

Ag = 0 and f(H) = u = Hg.

This implies H2g = Hu = 0, thus g ∈ (ker A)0 and u = 0, thus v = 0 and f(B) =
w = (−1)gBg ∈ B((ker A)0) ∩ W , thus w = 0. Conversely, if v = 0 and w = (−1)gBg
with g ∈ (ker A)0, then f ′ = f − ∂g is a reduced 1 cocycle such that f ′(B) = 0, thus
f ′ = 0 and f is a coboundary. Thus, the map f 7→ (u,w) realizes an isomorphism between
H1(osp(1|2),M) and (ker A ∩ ker B) ⊕ W.

We proved (ii) since W ≃ (ker A)−
1

2 /B((ker A)0).
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(iii) Suppose n ≥ 2 and f is a reduced n cocyle. Since

0 = (∂f)(AHBn−1) = (−1)fAf(HBn−1),

we get as above: f(HBn−1) is in ker A.
We decompose f(HBn−1) =

∑
vα with (H−αid)vα = Avα = 0. Define the n−1 cochain

g by g(U1 . . . Un−1) = 0 except for g(Bn−1) and g(Y Bn−2) and

g(Bn−1) =
∑

α6=−n−1

2

1
α+ n−1

2

vα, (−1)gAg(Y Bn−2) = g(Bn−1).

Then ∂g is a n cocycle, the only non vanishing terms in ∂g(AU2 · · ·Un) are Ag(Y Bn−2)
and g([A,Y ]Bn−2). Both happen only if U2 . . . Un = Y Bn−2 and

(∂g)(AY Bn−2) = (−1)gAg(Y Bn−2) − g(Bn−1) = 0.

Thus f ′ = f − ∂g is a reduced n cocycle and f ′(HBn−1) = v−n−1

2

∈ (ker A)−
n−1

2 . From

now on, we suppose f is a reduced n cocycle such that f(HBn−1) ∈ (ker A)−
n−1

2 .
Suppose now n = 2.
If f(HB) is in B(ker A ∩ ker H), we put g(X) = g(A) = 0 and (−1)gBg(H) = f(HB)

with Ag(H) = Hg(H) = 0, then we choose g(B) such that Ag(B) = (−1)g2g(H) and g(Y )
such that Ag(Y ) = (−1)gg(B). Then f − ∂g is a 2 cocycle vanishing on AX, AA, AB and
AY and on HB. We saw that f − ∂g is then a coboundary. Thus, f is a coboundary.

Conversely, let w be a vector in (ker A)−
1

2 /B((ker A)0) (or in the supplementary space

W for B((ker A)0) in (ker A)−
1

2 ). Then

ABw = −w = (AB + BA)w,
−2Bw = 2HBw = (AB + BA)Bw,
AB2w = −2Bw − BABw = −Bw.

We put f(XU) = f(AU) = 0, for any U , f(HB) = w, put f(B2) = −4(−1)fBw,
f(HY ) = −(−1)fBw, and f(Y B) = 2B2w. The 3 cocycle ∂f vanishes on A2U for any U ,
we consider it on AHB, AB2, AY B and AY H.

(∂f)(AHB) = (−1)fAw = 0,
(∂f)(AB2) = −4ABw − 2f([A,B]B) = 4w − 4w = 0,
(∂f)(AHY ) = −ABw + f([A,Y ]H) = w − w = 0,
(∂f)(AY B) = (−1)fAf(Y B) − f([A,Y ]B) + f([A,B]Y )

= (−1)f
[
2AB2w + 4Bw − 2Bw

]
= 0.

∂f is a reduced 3 cocycle, we moreover have

(∂f)(B3) = (−1)f3Bf(B2) − 3f([B,B]B) = −12B2w + 6f(Y B) = 0.

Thus ∂f = 0, f is then a reduced 2 cocycle. Now if f = ∂g, then

w = f(HB) = ∂g(HB) =
(
H + 1

2 id
)
g(B) − Bg(H).

Let g(B) =
∑

α uα, g(H) =
∑

α xα and g(A) =
∑

α yα where uα, xα and yα are in Mα,
then we get

w =
∑

α6=− 1

2

(
(α + 1

2)uα − Bxα+ 1

2

)
− Bx0.
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But w is in W , thus, (α + 1
2)uα − Bxα+ 1

2

= 0 if α 6= −1
2 and then w = −Bx0. Moreover,

we have

0 = f(HA) = (H − 1
2 id)g(A) − Ag(H) =

∑
α6= 1

2

(
(α − 1

2)yα − Axα− 1

2

)
− Ax0.

Thus, Ax0 = 0, therefore x0 ∈ (ker A)0 and w = −Bx0 ∈ W ∩ B((ker A)0) = {0}, this
implies f = 0.

We proved the point (iii).
(iv) Suppose n > 2. We saw that any n cocycle f can be choosen such that f is reduced

and f(HBn−1) ∈ (ker A)−
n−1

2 . We define g by g(U1 . . . Un−1) = 0 except

g(HY Bn−3) = −
1

(n − 1)(n − 2)
f(HBn−1)

and g(Y Bn−2), choosen such that

Ag(Y Bn−2) − 2(n − 2)g(HY Bn−3) = 0.

Then (∂g)(AHBn−2) = 0 and if U2 . . . Un 6= HBn−2, then the only non vanishing terms
in (∂g)(AU2 . . . Un) have the form ±g([A,Uj ]U2 . . . ̂ . . . Un) with [A,Uj ] = Y , which is
impossible, or [A,Uj ] = B, this means Uj = Y , but there is another index i 6= j with Ui = Y
and this is still impossible or [A,Uj ] = H, this means Uj = B and U2 . . . Un = HBn−2,
which is impossible. Thus f − ∂g is reduced and vanishes on HBn−1, it is a coboundary, f
is a coboundary, Hn(osp(1|2),M) = 0.

3.2. Restriction to sl(2). We keep our notations.

Lemma 3.4. (Characterization for B((ker A)0))

Let w be a vector in M such that w ∈ (ker A)−
1

2 and Bw ∈ Y ((ker X)0). Then w is in
B((ker A)0).

Proof. We suppose Bw = B2v, with Hv = A2v = 0. Thus ABv + BAv = 0 and

2HBv = −Bv = AB2v + BABv, ABw = AB2v = −Bv − BABv.

But
2Hw = (AB + BA)w = ABw = −w.

Or w = B(v + ABv). But

2HAv = (AB + BA)Av = ABAv = Av.

Finally:
A(v + ABv) = Av + A2Bv = Av − ABAv = 0.

This proves our lemma.
Let f be a n cochain for osp(1|2). Its restriction f |sl(2) to sl(2)n is a n cochain for the sl(2)

module M . If f is a cocycle (resp. a coboundary), f |sl(2) is a cocycle (resp. a coboundary).
The map f 7→ f |sl(2) defines a map ϕ from Hn(osp(1|2),M) to Hn(sl(2),M).

Proposition 3.5. (Restriction of osp(1|2) cocycle and triviality)
A n cocycle f for osp(1|2) is a coboundary (a trivial cocycle) if and only if its restriction

f |sl(2) is a sl(2) coboundary. Or: ϕ is one to one.
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Proof. We just consider n ≤ 2 and f choosen as in Theorem 3.1.
A 0 cocycle is a vector f in ker A ∩ ker B, it is trivial if and only if f = 0.
A 1 cocycle is cohomologous to a cocycle f such that:

f(A) = f(X) = 0, f(H) = u ∈ (ker A)0,

f(B) = v + w ∈ V ⊕ W, f(Y ) = −(−1)fB(v + w).

Here V is a supplementary space for (ker A)−
1

2 in M− 1

2 , W a supplementary space for

B((ker A)0) in (ker A)−
1

2 , and v is the only vector in V such that Av = 2(−1)fu. We saw
that f is characterized by u and w.

Suppose there is g in M such that (f − ∂g)|sl(2) vanishes, thus Hg = f(H) = u, since u

is in M0, this relation forces u = 0, therefore v = 0. Now Xg = f(X) = 0, Hg = f(H) = 0
and Y g = f(Y ) = −(−1)fBw. Our lemma says that w is in B((ker A)0), thus w = 0, f = 0.

A 2 cocycle is cohomologous to a cocycle f such that:

f(AU) = f(XU) = 0, f(HB) = w ∈ W, f(BB) = −4(−1)fBw,

f(HY ) = −(−1)fBw, f(Y B) = 2B2w.

And f is characterized by w.
Suppose there is g in C1(sl(2),M) such that (f − ∂g)|sl(2) vanishes, put:

g(X) =
∑

α xα, g(H) =
∑

α hα, g(Y ) =
∑

α yα, (xα, hα, yα ∈ Mα).

We get

f(XH) = Xg(H) − Hg(X) − g([X,H]) =
∑

α6=1((−α + 1)xα + Xhα−1) + Xh0 = 0,

f(HY ) = Hg(Y ) − Y g(H) − g([H,Y ]) =
∑

γ 6=−1((γ + 1)yγ − Y hγ+1) − Y h0 = −(−1)fBw.

Since Bw is in M−1, this implies Hh0 = Xh0 = 0 and Y h0 = (−1)fBw. Our lemma says
that w is in B((ker A)0), therefore w = 0 and f = 0.

Remark 3.6. In the same way as for Theorem 3.1, it is easy to compute the cohomology
for the sl(2) module M . Here it is:

H0(sl(2),M) = ker X ∩ ker Y, H1(sl(2),M) ≃ (ker X ∩ ker Y ) ⊕ (ker X)−1/Y ((ker X)0),

H2(sl(2),M) ≃ (ker X)−1/Y ((ker X)0), H>2(sl(2),M) = 0.

4. Application to Dλ,µ

4.1. Differential operators on weighted densities.

We define the superspace R
1|1 in terms of its superalgebra of functions, denoted by

C∞(R1|1) and consisting of elements of the form:

F (x, θ) = f0(x) + f1(x)θ,

where x is the even variable, θ is the odd variable (θ2 = 0) and f0(x), f1(x) ∈ C∞(R). We
consider the contact bracket on C∞(R1|1) defined on C∞(R1|1) by:

{F,G} = FG′ − F ′G + 1
2η(F )η(G),
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where η = ∂
∂θ

+ θ ∂
∂x

and η = ∂
∂θ

− θ ∂
∂x

. Let Vect(R1|1) be the superspace of vector fields on

R
1|1:

Vect(R1|1) =
{

F0∂x + F1∂θ | Fi ∈ C∞(R1|1)
}

,

where ∂θ stands for ∂
∂θ

and ∂x stands for ∂
∂x

. We can realize the algebra osp(1|2) as a

subalgebra of Vect(R1|1):

osp(1|2) = Span(X1, Xx, Xx2 , Xxθ, Xθ).

where, the vector field XG is defined for any G ∈ C∞(R1|1) by

XG = G∂x + 1
2η(G)η.

Here, we have (−Xx,X1,−Xx2 , 2Xθ,Xxθ) = (H,X, Y,A,B). The bracket on osp(1|2) is
then given by [XF , XG] = X{F, G}.

We denote by Fλ the space of all weighted densities on R
1|1 of weight λ:

Fλ =
{

F (x, θ)αλ | F (x, θ) ∈ C∞(R1|1)
}

(α = dx + θdθ).

The action of osp(1|2) on Fλ is given by

XG(Fαλ) = ((G∂x +
1

2
η(G)η)(F ) + λG′F )αλ.

Any differential operator A on R
1|1 defines a linear mapping from Fλ to Fµ for any λ by:

A : Fαλ 7→ A(F )αµ, µ ∈ R, thus, the space of differential operators becomes a family of
osp(1|2) modules denoted Dλ,µ, for the natural action:

XG · A = XG ◦ A − (−1)AGA ◦ XG.

For more details see, for instance [1, 2, 3, 5]

4.2. Cohomology.

Let us consider the osp(1|2)-module Dλ,µ of differential operators on densities on R
1|1.

We put here p = µ − λ and choose the following basis for Dλ,µ :

am,k = xm∂k
x , bm,k = xmθ∂θ∂

k
x , cm,k = xmθ∂k

x, dm,k = xm∂θ∂
k
x − xmθ∂k+1

x .

(Here, m and k are natural integral numbers), we say that am,k and bm,k are even vectors
(see below) and cm,k and dm,k are odd vectors.

In fact they are weight vectors for the action of H:

Ham,k = (k − m − p)am,k Hbm,k = (k − m − p)bm,k

Hcm,k = (k − m − p − 1
2)cm,k Hdm,k = (k − m − p + 1

2)dm,k.

Similarly, a direct computation give the following relations for the A and B actions on
these vectors :

A am,k = mcm−1,k, A bm,k = dm,k,
A cm,k = am,k, A dm,k = mbm−1,k

and

Bam,k = (m − 2k + 2p)cm,k − kdm,k−1, Bbm,k = dm+1,k − (2λ + k)cm,k,
Bcm,k = am+1,k + kbm,k−1, Bdm,k = (m − 2k + 2p − 1)bm,k + (2λ + k)am,k.
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From these formulas (or directly), we can compute the X and Y actions, getting:

Xam,k = mam−1,k, Xbm,k = mbm−1,k,
Xcm,k = mcm−1,k, Xdm,k = mdm−1,k,

and

Y am,k = (2k − 2p − m)am+1,k + k(2λ + k − 1)am,k−1 + kbm,k−1,
Y bm,k = (2k − 2p − m)bm+1,k + k(2λ + k)bm,k−1,
Y cm,k = (2k − 2p − m − 1)cm+1,k + k(2λ + k − 1)cm,k−1,
Y dm,k = (2k − 2p − m + 1)dm+1,k + k(2λ + k)dm,k−1 − (2λ + 2k + 1)cm,k.

From these formulas, we immediately get

ker A ∩ ker B =





Span(a0,0) if p = 0,
Span(d0,k) if p = k + 1

2 , k ∈ {0, 1, 2, . . . } and 2λ + k = 0,
0 elsewhere.

and

(ker A)−
1

2 =





Span(a0,k) if p = k + 1
2 , k ∈ {0, 1, 2, . . . },

Span(d0,k) if p = k + 1, k ∈ {0, 1, 2, . . . },
0 elsewhere.

Moreover, if p = k + 1
2 , (ker A)0 = Span(d0,k), B((ker A)0) = Span(a0,k) if 2λ + k 6= 0, 0 if

it is not the case. Similarly, if p = k+1, then B((ker A)0) = B(Span(a0,k+1)) = Span(d0,k).
Now we deduce :

Proposition 4.1. (The cohomology for Dλ,µ)
The dimensionalities for the cohomology groups Hn(osp(1|2),Dλ,µ) are:

(i) dim(H0(osp(1|2),Dλ,µ)) =





1 if λ = µ,

1 if λ = −k
2 and µ = k+1

2 , k ∈ {0, 1, 2, . . . },
0 in the other cases.

(ii) dim(H1(osp(1|2),Dλ,µ)) =





1 if λ = µ,

2 if λ = −k
2 and µ = k+1

2 , k ∈ {0, 1, 2, . . . },
0 in the other cases.

(iii) dim(H2(osp(1|2),Dλ,µ)) =

{
1 if λ = −k

2 and µ = k+1
2 , k ∈ {0, 1, 2, . . . },

0 in the other cases.

(iv) dim(Hn(osp(1|2),Dλ,µ)) = 0.

We refind here the results of [2] for the H1.
To be more precisey, in the following, we give explicit basis for these cohomology groups

(i) H0(osp(1|2),Dλ,λ) = Span(id) and H0
(
osp(1|2),D− k

2
, k+1

2

)
= Span(∂θ∂

k
x − θ∂k+1

x ).

(ii) The space H1(osp(1|2),Dλ,λ) is spanned by the cohomology class of the reduced 1
cocycle hλ defined by:

hλ(X) = hλ(A) = 0, hλ(H) = −id, hλ(B) = θ · and hλ(Y ) = −2x · .
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While the space H1
(
osp(1|2),D− k

2
, k+1

2

)
is spanned by the cohomology classes of

the reduced 1 cocycles fk and f̃k defined respectively by:

fk(X) = fk(A) = 0, fk(H) = ∂θ∂
k
x − θ∂k+1

x , fk(B) = θ∂θ∂
k
x and fk(Y ) = 2xfk(H),

f̃k(X) = f̃k(A) = f̃k(H) = 0, f̃k(B) = ∂k
x and f̃k(Y ) = −2k∂θ∂

k−1
x + 2θ(k + 1)∂k

x .

(iii) A similar realization of H2
(
osp(1|2),D− k

2
, k+1

2

)
is easy, we prefer to give an explicit,

nontrivial, reduced 2 cocycle as a cup product. Let

Ωk(U, V ) = (fk ∨ h− k
2

)(U, V ) := fk(U) ◦ h− k
2

(V ) − (−1)UV fk(V ) ◦ h− k
2

(U).

Since fk and h− k
2

are cocyles, a direct computation shows that Ωk is a 2 cocycle, it

is nontrivial since its restriction to sl(2) × sl(2) is nontrivial:

Ωk(Xf ,Xg) = −(−1)kω(f, g)(k∂θ∂
k−1
x − (k + 1)θ∂k

x)

where ω is the Gelfand-Fuchs cocycle defined by ω(f, g) = f ′g′′ − g′f ′′.
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