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Statistics of resonance states in open chaotic systems: Arpgbative approach

Charles Polt, Dmitry V. Savin? Olivier Legrand! and Fabrice Mortessaghe

!Laboratoire de Physique de la Matiere Condensée, CNRS B5ER2,
Université de Nice-Sophia Antipolis, 06108 Nice cedexranée
2Department of Mathematical Sciences, Brunel Universitybridige, UB8 3PH, United Kingdom
(Published 5 October 2009 iRhys. Rev. E 80, 046203 (2009))

We investigate the statistical properties of the complsgmarameter which characterizes uniquely complex-
ness (nonorthogonality) of resonance eigenstates of dpesstic systems. Specifying to the regime of weakly
overlapping resonances, we apply the random matrix theottyet effective Hamiltonian formalism and derive
analytically the probability distribution of the complesss parameter for two statistical ensembles describing
the systems invariant under time reversal. For those wifld Spectra, we consider a Hamiltonian character-
ized by a picket-fence spectrum without spectral fluctuestia' hen, in the more realistic case of a Hamiltonian
described by the Gaussian orthogonal ensemble, we reveaiscuss the role of spectral fluctuations.

PACS numbers: 05.45.Mt, 03.65.Nk, 05.60.Gg

. INTRODUCTION ported in the literature recentlf/ [2P,|41] 2] 23]. Compdsen
of eigenvectors appear as residues offmeatrix at resonance

ositions and the understanding of their properties is itmds

ortant for many applications. For example, nonorthogonal

. . : ity of resonance eigenstates yields the enhancement (the so
theoretical points of view (see Refs[l [E’ 3] for recent '€ called Petermann factor) of the line width of a lasing mode

views). Openness may be due to various physwal mechanlsni}? open resonators [[L9] and influences branching ratios of nu
such as bulk absorption, coupling to the environment thinoug clear cross-section EZS]. It features also in the glerti

physical channels as well as dissipative or radiative beund - . NN
o . escape from the scattering regi¢n|[26] as well as in dissipat
ary conditions. Whatever the mechanism, openness reaults P g reginl[26]

spectral broadening ranging from the perturbative regime Ohu'?ait: ma(l: h(jro;g:crsepsggznns; ectral and eigenvector statistics
non-overlapping (isolated) resonances to the so-calleEr pap P 9

son regime of strong overlap. These mechanisms and the&ja?#i?tgr:}gz'sl—lgfrn;'tz? ::%r;?)?i? vTaa\}gcsess?eenign\?vergszﬁg?sve d
related spectral effects have been experimentally stuidied limit displa stime-?eversal svmmetr 'IyRS In this o
various context: in microwave cavitie§ [4,[5,[6[], 8], iniept play y y (TRS). abe,

. o . imodes correspond to the complex-valued eigenvectors
cal microcavities 9|E 1(], 11 , and in elastodynamics -1 1, 13 quasimo . . " :
I] ] y 11 of H.s. To characterize this complexness, it is convenient

The most salient feature of open systems is the set of regp introduce [1p[38] the ratio of the variances of the imag-
onances which are quasibound states embedded in the cARary and real parts of the eigenvector as a single statistic
tinuum. A natural way to address them analytically is viaparameter, hereafter called the complexness paranfefer [23
the energy-dependent scattering matik). Following the  One should note that this parameter is characteristic of the
Heidelberg approach [1.4], the poles (i.e., resonancespdt  degree of non-orthogonality of the complex modes and, there
matrix turn out to be the complex eigenvalues of an effectiveore, is closely connected to the Petermann factor mertdione
non-Hermitian Hamiltoniart{.g¢, whereas the bi-orthogonal gpgye [Zp]. Other studies have considered the phase yigidit
eigenvectors of the latter determine the corresponding:-res another related parameter, introduced to characterizdehe
nance states (quasimodes). Universal properties of rasena gree to which a general scattering wave function is complex
scattering in the chaotic regime can then be analyzed by aF?E,]. Both parameters are straightforwardly deducemhfr
plying random matrix theory (RMT) that amounts to replacingone another when the phase rigidity is calculated for a sin-
the actual non-Hermitian Hamiltonian with an RMT ensembleg|e eigenvector_ The main advantage of Considering the com-
of the appropriate symmetry clags][15]. The main advantagglexness parameter is to reveal a physical connection ketwe
of such an approach is that it treats on equal footing both thgpatial and spectral statistif$ [5] 23].
spectral and scattering characteristics of open chadiesys In what follows, we study the probability distribution of
as vyeII as that itis flexible enqugh to incorporate other impe ¢ complexness parameter for a generic weakly open chaotic
fections of the system, e.g., disorder and losBes [3]. system and its connection with the distribution of resoeanc

By now, complex eigenvalues of such non-Hermitian ran-widths within the RMT approach. At the first stage, we derive
dom matrices have been studied quite systematiy|ﬂ6, 17an expression for the complexness parameter in the weak cou-
@]. However, the statistical properties of the correspondpling regime and establish a general relation between @s av
ing (left and right) eigenvectors are less understood. &uitage and width fluctuations. Then accounting for the esdentia
a substantial progress in this direction has been achieyed Istatistical feature of spectra in chaotic systems, narspig-
Schomerugt al. [@], who studied mainly the systems with tral rigidity, we investigate the case of a system whoseetlos
broken time-reversal symmetry. Other analytical resdtsaf  limit is described by a pure picket-fence spectrum. An ex-
few physically interesting particular cases have also lseen act analytic prediction for the probability distributior the

In the domain of wave or quantum chaﬂs [1], open systemg
are currently actively investigated both from experiméeatal



complexness parameter is derived, depending on only twmto complex quasimodes of its open counterpart. In order
parameters: the number of open scattering channels and th@ measure their complexness, we define the complexness pa-
mean resonance width. Finally, we consider the more realist rameterg? as follows:

case of systems modeled by the Gaussian orthogonal ensem- o

ble (GOE). We derive an analytic expression for the probabil 2 _ M (4)

ity distribution of the complexness parameter in this cagk a " Xi(Reyy)?

discuss the effect of spectral fluctuations. where!, is thei-th component of the eigenvector (we note

that the complexness parameter can be equivalently defined b

means of the left eigenvectors). It is worth noting here ihat

contrast to the related Petermann fac@ [19], which is @€ffin

for a fixed value of the given resonance width, no additional

constraints are imposed (ﬂ (4). In chaotic systefhseveals

strong mode-to-mode fluctuations, which we describe thnoug
Open wave systems are commonly described using the s@s probability distribution function to be derived below.

called projection formalisn{[25, B0]. The exterior couplis

modeled byM scattering channels connectedYdevels of a

Il. EFFECTIVE HAMILTONIAN FORMALISM

A. Scattering approach

closed system. The coupling to the environment turns modes, B. Statistical assumptions
with a infinite life time, into resonances, with a finite lifene.
Being initially introduced in nuclear physics, this forrisah Within the RMT approach, the universal statistical prop-

has been later applied successfully to wave billiafdp [8L] f erties of closed chaotic systems with preserved TRS are de-
which antennas anq absorption can be described by scatterigcriped by GOE|]1]. In this ensemble the joint probability
channels[[32]. In this approach, the resonance part ofthe distribution, P({£;}), of the levels (the eigenvalues &f) is

matrix is given by: induced by a Gaussian distribution of the random real sym-
1 metric H with zero mean. The exact expression foi{ E; })
S(E)=1- z‘V"WM (1) is well known to have the following form:
~Heg
N 2
whereV is the coupling matrix of siz&/ x M, the elements P({E;}) x H |En — Em|exp (—TW ZEZ) (5)
V¢ of this matrix couple the:-th level to thec-th scattering n>m n

channel. The poles df are given by the eigenvalues®ha.  Here, we have chosen the variancébguch that it yields the
Assuming an independence of the coupling elements from,aan level spacing. = 1/N at the spectrum centef, = 0.

the energy and neglecting direct proces [14], the eféect e energy levels, as defined by Eﬁl (5), exhibit a lin-
Hamiltonian of the open systems is represented as follows: o4 |evel repulsion. As a result, the energy spectrum dis-

i _ plays spectral rigidity which restrains the spectral flatitons
Her = H — §VV1 , (2)  aroundthe mean. This important feature can approximately b
taken into account within the so-called picket-fence madel
whereH is the Hamiltonian of the closed system and the anti-equidistantly spaced IeveE|34]. The usefulness of thideho
Hermitian part%VV" describes coupling to the channels. Inis in its simplicity that allows one to treat various resoc&n
the case of the systems with preserved TRS considered belophenomena analytically, see, e.g., Re ,, 37]. Here
H is areal symmetric matrix of siz& x N andV is alsoreal. ~we employ this model to single out a contributionfodue to
As usual, the limitN" — oo is to be finally taken. fluctuations of the resonance widths.
Since H.s is a non-Hermitian operator, the eigenvalue As concerns the coupling amplitudes, the results are known
problemsH.g|tn) = En|tn) and (¥, |Heg = E,{(¢n| de-  to be model independent on statistical assumptiongbas
fine two sets of a priori independent eigenvectors, caligiltri  long as the number of open channels is small compared to
{|vn)} and left{ (,,|} eigenvectors associated to the same sethat of the levels[[3§, $9]. The coupling amplitudes may be
of eigenvaluegé&, }. These eigenvectors form a bi-orthogonal equivalently chosen as fixefl [14] or randojn]| [33]. In order
set which satisfies conditions of orthogonalitys, |1»,,) =  to preserve orthogonal invariancefdfs under (complex) or-
8,m, and completeness, ) (¥n| = 1. Making use of thogonal transformatl_onﬂBB]_, we consider tg's as real
the right eigenvectors, the diagonalizatiort6f; then reads: ~ Gaussian random variables with zero mean and

- VEVE Y = (26A/7) 00 0% = 026,0° . (6
Henceforth(- - -) stands for the statistical averaging over the
whereE,, andl’,, are, respectively, the energy and the widthensembles. The coupling constantletermines a transmis-
of then-th resonance. Due to TRS presets is a complex  sion coefficient” = 1—| (S) |*> = 4x/(1+k)? of the channels
symmetric matrix; hence, the left and right eigenvectoes ar (assumed to be statistically equivalent). The cases ef 1
related by the transpos@),| = (|¢»))” [B3]- or T = 1 correspond, respectively, to weak or perfect cou-

The coupling to continuum, as described by the imaginarypling. In the weak coupling regime considered belews 1,
part of H.s, turns real eigenfunctions of the closed systemall the resonances are almost isolated and< A.
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Ill. PERTURBATIVE APPROACH one another. We note, however, that the levélsare mutu-
ally correlated. The quantitids,,’s, unlike the original am-
A. Complexness parameter in the weak coupling regime plitudeSVnC, are also not Statistica”y independent. Although

their joint distribution can be found frorﬂ(6), the resufiex-

We now derive an expression for the complexness p(,mu,fression is quite complicateE[42], being of little praatiase

eter of the eigenvectors for weakly overlapping resonance orTactuaI calculart:onds_flfn tr;e prfesent context. h i
The matrix representation 6{.g in an arbitrary basig|n)} o overcome the difficulty of averaging over the coupling

of the Hilbert space spanned by eigenvectorflakads: amplitudes, we follow Sokolov and Zelevinsfy ]33] and treat
' an arbitrary matrix elemerit,, as a scalar products between

N g NoM M-dimensional vectord/,, and V,, of the coupling ampli-
Het = Z |n) Hyp(p| — = Z Z [n)ViVy(pl (7)  tudes{V/°} associated with the levels= n andl = p. This
n,p=1 2 n,p=1 c=1 suggests a natural parametrizationIfgy, in terms of the an-

) ) ) ) ?Iesenp between the pairs of thegé vectors,
As we focus on the weak coupling regime, the imaginary par

may be viewed as a perturbation of the Hamiltonian of the Ly =(V,-V,)=+/I,,cosb,,. (11)
closed system. The repulsion of the energy levels exhibite
by the systems under investigation allows us to consider th
eigenenergies off as nondegenerate. One can therefore ap.
ply first-order perturbation theory to obtain froﬁh (3) thgemi-
values and the eigenvectors Bf.¢ straightforwardly. The
eigenvalues readl,, — %Fn, where theF,,’s are the eigenval-

cf’he main advantage of this representation is that the angles
9np are mutually independent and also independent of

The probability distribution of any angle (fav/ > 2) can

be easily found to be given by the expression for a solid angle
in an M -dimensional spacﬂBS]:

ues ofH and the widthg",, are given by: ['(M/2) . M2
1(0) = 0. 12
; pul® = Zror - ™ (2
r, = Z(V;)Q. (8)  Notethatl',, = \/T',I', at M = 1. As concerns the lengths
c=1 of these vectors, i.e., the widttﬂ (8), these are well-kntawn

The perturbed eigenvectors ®f.g written in the eigenbasis be independent angf distributed according to

{|¢n)} of H are easily found as follows: P () — 1 M/2-1 —/2 13
GV VTI60) e 75

[n) =) =i D ﬁlw : (9)  Henceforthy,, = T, /o2 stands for the dimensionless widths.
p#n "o This distribution function has the mean val{t¢ = M and

Splitting then the real and imaginary parts|¢f,), the com- the variance 9

plexness parametd]] (4) of a given eigenvector reads var(y) = 2M = i (7)? . (14)
2 Z F%p (10) Thus the widths cease to fluctuate as the number of open chan-
I = 4(E, — Ep)?’ nels grows, with the average width being kept fixed.

p7n It is now convenient to express all the quantities in their

natural units and to consider a rescaled complexness parame

. o M c17e _
where we have introducdd,, = > ._, V,;V;7. These quan ter X,, defined as follows:

tities are responsible for the coupling and interferencthef

resonance states due to the common decay chals [33]. A%, A%Z,
In what follows, we study the statistical properties of the Xn = 54 In = In Z A(E, — E,)?’ (15)
complexness parameteEklO) féf being described by a p7n
picket-fence or belonging to GOE. It is worth noting here where we have introduced the following quantities
that expression (10) is a sum of correlated random variables 2
Zp = 7p cOS” Oy - (16)

which, therefore, does not obey the standard central Itmeit t

orem. Statistics of a similar kind of objects appears, &Q., Z, may be given a geometrical interpretation as (a square of)

the study of the parametric level dynamics (“curvatur@][4 the projection of the vectar 1V, along the direction given

and in the context of interference effects in neutron sdale by the vectoiV,,. These projections are statistically indepen-

from compound nucleug [1]. dent, as is obvious from the above discussion. The probabili
distribution of any projection follows readily from Eqq. 31
and ). Performing an integration first oveand then over

B. Rescaled parameters and their statistics 6 in the definitionP(Z) = <5(Z — 7 cos? 9)>, one finds
The complexness factoﬂlO) contains two contributions of P(Z)= #e*Z/Q . a7

distinct types, one is due to the internal levels and therothe 2rZ

is due to the coupling matrix elemerits,,. From a statis- Thus, surprisingly, the distribution &, is independent o#/,

tical point of view, these two are statistically indepenidein  being given by the Porter-Thomas law at any> 1.



C. Average of X and width fluctuations 25 T T T T
A general expression of the average value of the complex- 20} (a) GOE ¢=0.1 ]
ness parameteY can be readily found from EﬂlS) by mak-
ing use of the mutual statistical independence between the 15}k €=102 .
widths{~, }, the projection Z,, } and the level§ F,, }. Not- o)
ing that(y) = M and(Z) = 1 = (y) (cos® ), one obtains ~ 10k |
e=0.3
(X)=Mf, (18) c
where the factof depends on the statistical properties of the
energies of the closed system only, 0 . . . .
0 5 10 15 20
AQ
f= <Z 4(E, —Ep)2>' (19) sl !
v (b) Picket-fence
It is important to note that, generally, the nonzero values 6
of the complexness parameter are solely due to fluctuations i
of the resonance widths. Indeed, in the extreme case of all ~ T
the widths being equal, the anti-Hermitian part¥éfs gets o) 4+
proportional to the unit matrix and, as a result, the complex A
(biorthogonal) eigenvectors become essentially E{al 28, ol
therefore, instructive to take this explicitly into accoamd,
in view of relation [1}), bring Eq.[(38) to the form: i
0 1 1 1 1
f 0 5 10 15 20
(X) = 2var(7) . (20) var()

This expression relates the average complexness parameter
the natural measure of the width fluctuations, its variance. .
. FIG. 1: The average rescaled complexness parameter vdrsus t
Strong correlations between the complexness parametey.

d th | width Iready k Th . idth variance for the GOE and picket-fence models. The sym-
and the spectral widths are already known. e proportiong correspond to the results of numerical simulationsopered

ality between,/(X) and the average value of the fluctuat- at o7 = 1,2,3,5,10 (see the text for details). The linear depen-

ing part of damping was recently found experimentally in adence predicted by Eq|]20) is represented by the solid limehe

chaotic microwave billiard at room temperature, where thisGOE case (a), the proportionality factor is given by the tageed

was also explained heuristically using a ray picture based oexpressiory. = 3 [~ ds s~ ?Ra(s). The results obtained with three

the ergodic character of the wave systeﬂn [5]. Then this prodifferent values of the cut-o#f are shown. In the picket-fence case
. . . . A — 2 R b

portionality was established iff [23] using a two-level RMT (0). / =7 /12 as exactly given by Eq[(§3).

model and considering/ > 1 that was relevant for this ex-

periment. Expressior] (20) readily provides this featune, i _ S

view of \/m = (v) \/f/M, at anyN andM. On the other order perturbation theorﬂllS) does not yield finite moments

side, it captures fluctuation properties of the widths priype  thus demanding for the characterization of fluctuationsof

e.g., yielding the vanishingX) in the absorptive limit of Py means of its probability distribution.

many weakly coupled channels with the average total width

kept fixed, due to the vanishing varian@ (14). Therefore,

we believe that relation (PO) is a general feature of weakly IV. DISTRIBUTION FUNCTION
open chaotic systems with non-degenerate spectrum in the
perturbative regime. Figure 1 supports this suggestianutjin The probability distribution function of the rescaled com-

numerical simulations of the picket-fence and GOE modelsplexness parameté¥,, is defined as follows
(with the details being given later in the next section).

Aremark on the proportionality factgris appropriate here. Pu(X) ={(X - X,)), (21)
In the RMT limit N — oo, this factor may be represented
as followsf =  [“dss™2R,(s), whereR,(s) is the two-  where the statistical averaging over the levels, the widtits
point correlation function of the RMT. The main problem of the projections is performed with the help of Ed§. (B)] (13),
the GOE case, already mentioned|[in][[9, 23], is an ‘infraredand [1]), respectively. In the weak coupling regime, fuorcti
logarithmical divergency of due toR2(s) ~ s ats — 0. @) depends only on the numbéf of open channels.
Practically, this divergence can be regularized by intooag It is instructive first to consider the case of the completely
a cut-off at smalk, s > ¢, see Fig. 1. Without this cut-off the rigid spectrum, which may be viewed as an approximation of
expression of the complexness parameter obtained using firhe GOE spectrum where the fluctuations are neglected.



A. The picket-fence model " 01!
3K N
In this model the eigenenergies of the closed system are
equally spaced, i.ek,, — E,,+, = £kA, and the eigenvector .
components are random Gaussian variables. The complexness = 2 102
parameter is then given by “a&H
Z, 1t
Xn =) 5 (22) 4 5 6 7
k0 i
This expression does not have any divergence problems of the 0 0 1 ' > 3 4
GOE case, thus statistics §f[22) can be also characterized b
its moments. In particular, the average value is easily ddon
be exactly given by EquO), with the factfibeing ozl r-\ 10-2 |
1 w2 \
f=Y =1 (23) —~ U -
s 4k 12 =
Figure 1(b) illustrates the depender{eg) = = var(y). OLh 1073 ]
We now derive an exact expression for the probability dis- 10 14 18 23
tribution P}\’j(X ) in the picket-fence case. First we substitute ]
in the definition @1) the Fourier representation of the aelt 0
function,§(X — X,,) = [ d2eiw(X=%1) whereX,, is given 0 c 10 15 20
by Eq. [22). Then the integration over the projectighswith 0.12
the help of Eq. 7) becomes trivial, yielding ' ~ 10-2
) ) B ’l \\
dw = 1
Phi(X) = / o e /dWPM(V) 11 — - (24) 0.08} \
™ 1t ig —
oo 0 k=1 !
The infinite product here can be evaluated expliciﬂ [43]. »E(f
Making use of the explicit expressioh [13) By, (v) and ap- 0.04¢ .
plying the change of variables= 2|z|%, Eq. (24) can then be 20 25 30 35 40
cast in the following form: 1
O IT
. 1 T 0 5 10 15 20 25 30 35 40
SHpSp——
r(M/2) | 2n X
—+o0
M—1 iwX—2> iwzm . o
X dz|z| e ——— . (25)  FIG. 2: (Color online) The distribution of the rescaled cdexpess
. sinh(v/iwzm) parameter for the picket-fence modelldt= 1,5 and 10 (top, mid-

dle and bottom, respectively). The analytical reﬂ (8xlotted in
As one can easily check, this expression is properly northe solid line while the histograms correspond to numericsets
malized to unity. It is also worth noting that the integrarid o Show the tail of the distribution in a semi-log scale.
Eq. ) is an analytic function i except for the poles lo-
cated on the upper part of the imaginary axisgt= i(k/z)?,
k = 1,2,...,00. This readily implies thaP?} (X) = 0 at
X < 0identically.
The details of the subsequent calculation§>c§j(X) are
givenin Appendiﬂ\. The final expression reads:

with .J,, (z) being the Bessel function of order In the case of
an odd number of channel3/ = 2n+1,n = 0,1,.. ., this
expression can be integrated further to yield an attragtive
simple formula

pf _ M _i n;
ot 1y 2m(VX)M/2 P =m0 \"ox ) warvm @0
P = T
! s In particular, the single-channel distributia®" (X ) reads
z
X /dz mt}ﬁi/z—l@ﬁz)v (26) PP (X) 1 L (28)

- 2vX cosh?(VX)



Itis interesting now to study in details the case of the large 10-1
number of weakly open channeld > 1. In view of the N
scaling ), we consider the limiting probability distitibn 2 AN
of x = X/M defined as

102}

(X)

p(z) = lim MPy(Mz). (29)

M—oo

goe

Expression@G) is actually not very convenient for evahgat 103
this function. However, one can note that in the limit con- [ 2 10 20
sidered, the distributio®,;(v), Eq. {13), tends to the Dirac 0
distribution,5(y — M). Then, starting from Eq.[(34), the in- 0 1 2 3 4
tegration overy is trivial and the probability distribution aof
reads:

oo

1 T 1
—_ d wWwT - 30
Per(®) = 5o / we kl;[l 1+ iw/(2k2) (30)

Using the residue theorem, one readily gets:

ppf(I) — 42(_1)k+1k2672k2z (31)
k=1
and finally 0.12 T T T T T T T
\
=2 Lo @) N
Ppt(x) = =27 7T —194(0, e 32 [
ot a1 008} iy
\
whered, is a Jacobi theta functiof [43]. q;; :
The above analytical predictions concerning the average 3~

value of the complexness factor and its probability distrib 0.04t

tion have been checked through numerical simulations 6f ran 40 60 8¢
dom matrices, see Figs. 1 and 2. Numerical simulations are

based on the diagonalization of the effective Hamilton@)'] ( 0 ) - .

viewed as a random non-Hermitian matrix. We have consid- 0 5 10 15 20 25 30 35 40

ered resonances in the bulk onlg. resonances with a large
number of neighbors on the left and on the right of the spec-
trum. This restriction is introduced to neglect the edgectf

whose Qontrlbutlon tend§ to yam_shﬂts—» o0 . FIG. 3: (Color online) The distribution of the rescaled cdexpess
The picket-fence Hamiltonian is built such that the eigenen parameter for the GOE model &f — 1, 5 and 10 (top, middle and

ergies are equally spaced and the eigenvectors are randQitom, respectively). The analytical res{i](35) is shawthe solid
Gaussian variables. This is readily done by following a proc  |ine and compared to thaﬂZS) of the picket-fence case @ththe)
dure adapted fron] [}}4] where the authors used it to generatghile the histograms correspond to numerical simulatiohsets
the POE ensemble. Thus, in a basis deduced from its eigeshow the tail of the distribution in a log-log scale.

basis through an arbitrary orthogonal transformatibmwith

random Gaussian variables, the Hamiltoniaris given by:

X

B. The GOE model

H = Odiag{E, }O! (33)
The probability distribution in the GOE case can be found
whereE,, = n/N, such tha\ = 1/N, and by making use of group integration methods and results ob-
tained in [1P]. Outlining the details of the computation ip-A
(Oij) =0, (0%)=1/N (34)  pendix[B, we state the final result here:

Statistics were performed with 100 matrices of size
1000%x1000. In order to make the calculated distributions in-
sensitive to edge effects, 100 levels at each end of the spec-
trum were discarded. In all the simulations the mean splectra To check our findings, the same kind of humerical simula-
width is kept fixed and equal td") /A = 1072, tions as in the picket-fence model have been performed. The

M 1+7%(3+ M)/(4X)

goe
Par(X) = 50xe T w2 @

(35)




closed Hamiltoniard now belongs to GOE, its elements be- may be considered as a sensitive probe of the crossover from
ing defined by their first two moments: localized to extended states in open disordered sylerkls [47

_ 4/(N7T2)a ) :]
)= {2/<N7r2>, it Y

where N is the size of the matrix. Like in the picket-fence
case, the normalization is chosen such that 1/N. Statis-
tics were obtained with 150 matrices of size 18Q@00.
Only levels neal = 0 for which spacings deviate less than
5% fromA were kept. The agreement between numerical an
analytical results is flawless, as shown in Fig. 3.

The comparison between the probability distributionXof
in the picket-fence model and for GOE illustrates the effett
the fluctuations of the spectrum on the complexness parame-
ter. The maximum of both distributions are close to eachrothe
This is mainly due to the spectrum rigidity in both ensembles
But at largeX the statistical weight is larger for GOE than
for the picket-fence model. This difference is introducegd b
the behavior of the levels at small distance: the spacing of We first note that the integrand of EquZS) is a symmet-
two eigenenergies can be very small, the corresponding comic function in z that allows us to restrict the-integration to
tribution to the complexness parameter is large, then the tathe positive axis. Then we deform the contour of integration
of Py (X) is larger for GOE than for the picket-fence model. overw from the real to imaginary axis by putting = iw.
This feature is most explicitly seen by comparing the correPerforming after that the scaling transformations of the-in
sponding limiting distributions ad/ > 1. The distribution ~ gration variables, first — z/4/Q and therf2 — Q/X, and
é) of x is easily obtained from Eq|Z|35) and reads interchanging the order of integrations oweand(2, we may
cast Eq.@S) in the following form

(Hij) =0, (H;

j

Acknowledgments

We are grateful to H.-J. Sommers for his instructive advice
and help with evaluating Eq|]26). One of us (D.V.S.) ac-
(ﬁlnowledges gratefully the generous hospitality of LPMC in

ice and the financial support of University of Nice during
his stay there. The partial financial support by BRIEF grant

(D.V.S.) is also acknowledged.

APPENDIX A: DERIVATION OF EQS. (2@ AND (

2 2

v T 7T2
Peoc(®) = 5173 (1 * E) P <_8_a:) 50

: . I ¢ o XM/21 T gy M
In contrast to the asymptotic exponential behavior in the PP (X) = / :
picket-fence case,:(z) o e~ 2%, see Eq.[(@1), the tail of the [(M/2) sinh(rrz)
distribution (37) follows a power-law decayoc () o< 272, i
. / gQ*M/?emxzz/Q. (A1)
(3
V. CONCLUSION A

In this paper, we have studied the statistics of complexrg calculate here the last integral og&rwe expand —X="/2
wavefunctions associated to the resonances of weakly dpengtg 3 series and evaluate the result termwise

wave chaotic systems with the preserved time-reversal sym-
metry. More specifically, in the perturbative regime, wedav e
considered the case of the completely rigid spectra defined % (—X22)* /

aQ
through the picket-fence model and that of the GOE display- Z o S (MR 0

ing spectral fluctuations. One of the key features of thidystu k=0 —ico 2

relies on the proportionality between the average of the-com > [~ (VX 2)2]k
plexness parameter and the variance of the resonance widths = Z 7 , (A2)
which we believe is valid for generic nondegenerate spectra k=0 RIT(S + k)

We have also derived the exact probability distributionhaf t

complexness parameter in these two cases. where we have Useﬂqjii;; %Qwesz = 1/T(v). Making

To check the validity of the present results, recent exper
iments in elastodynamics are available. In particularhi t
case of vibrating plates, a complete knowledge of the eige
functions can be obtained through noninvasive measuremen
[@] even for moderate overlap of resonances. Indeed, the
understanding of the statistics of eigenfunctions beydrwd t . o ; .
perturbative regime still remains an open problem. (We notdstructive first to start me ';he case of = L which turns
that some relevant interesting numerical results for mvene out to play the .central role in this calculatlon.. We_ may use
billiards with large openings were recently reporfed [46]-  the known relation/_, /5 (z) = /2z/mcos(z)/z in this case
nally, one should also note that the complexness paramet#3], thus (VX 2)'/2J_; »(2vXz) = ﬁ cos(2vX z), that

now use of the well-known series representation for the @ess

function @], one can immediately recognize the r.h.s. of
to be equal to(v X 2)!=M/27), 5 1 (2v/Xz). Collect-

g all the factors together, we finally arrive at Em(26).

Further progress is possible in the case of ddd It is
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allows us to perform the integration in E(EAl) analytigall and{FE, } are taken from the GOE. They found the following
expression folP (A, B):

) “+100

dQ 2
dz——F— / —Q_l/Qeﬂ_XZ /92 \/ 1+7T2A2/l<& = 242
h i — S (1+72 A% /K?)
) sin _wo T P(A,B) = 12 57z (B3)
/dZZCOS (2vXz) 1 1 . (A3) We note that the above expressign](B3) was obtained in
sinh(2m)y/m — 4y7 cosh®(VX) [@] for the particular case of one open channel. The key fact

0 which allows us to apply this result to oW -channel case is

Taking now into account the (omitted) factb{/w/—X, weob- the representatloﬂlS) in terms of projections with thérdis

bution (L}). The later corresponds to the Gaussian digimibu
tain PP (X), Eq. (2B). ﬂ
The general case of odtl = 2n + 1 may be reduced (ZE) W'th # = 1andixa, = Z,, thus giving a connection
to that of M = 1 conS|dered above, if one notices that the X = WB Correspondlngly, the distribution function &f

term 2 /QM/2¢=X=*/2 in the integrand of Eq[(A1) can be in the GOE case can be found from
generated by a differentiation with respectXoas follows:

oe 7T2
2\" 2z _X22/Q o\" =z _X22/0 Pi(X) = <5(X - ZVB)> (B4)
<5> 012¢ - (_ﬁ> 012 ' by averaging overl, B and~. Substituting the explicit form
(A4)  (B3), itis convenientfirst to integrate of that yields
Substituting this representation into Efj. A1) and chaggin
the order of the integrations and differentiation there see o
that the resulting integral is already given by EE(AB) that PE°(X) = V2 / )7/ge,a7/2
12
0

readily yields the expressiop {27) of SEc. I}V A.

APPENDIX B: DERIVATION OF EQ. (35) / dA(1 + 72 A%)e~ (/27 A% (B5)
We use the recent result by Schomeatsal. [@], who
calculated the joint probability distributioR(A, B) of with @ = 72/4X. The Gaussian integration overis now
straightforward and gives
A= ; 7 E B=A ; BB (B1) N
pFN p7n PgOC( ) / M/2 )67(1+a)%7
where {«,,} are the statistically independent real Gaussian 240 M/2 A

variables distributed according to
where we have substituted expressiEI (13)Par(y). The

2\ ™ —71'20¢2/(2nA) e H : :
p(ag,) 2HA%Q)e » (B2)  remaining integration yields Ecﬂ35).
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