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g turbulent flows on wall shear stress components were investigated in a straight
trusive electrochemical method. Experiments were made using a new pulsation
ch allows high amplitude pulsations in addition to a perfect stability of the instal-
ation frequency equal to 2.86 Hz is used, above which fluid inertia dominates over
field.
pulsating flows induce an increase of local velocity gradient at the wall pipe. This
the periodic renewal of the boundary layers. Spectral analysis showed high increas-
tion energy for the different pulsating conditions in comparison with a steady flow.
nvolving a recirculation flow induced a modification in the energy dissipation cas-
plained by the redistribution of eddies size near the wall.
1. Introduction

In chemical engineering, flow under a steady pressure gradient
is generally used in production processes. However, non-steady
flows are sometimes applied, and flow fluctuations can be divided
into two categories: pulsating flow in which the pressure gradient
fluctuates around a non-zero mean value and oscillating flow in
which the periodically time-averaged pressure gradient is null.
The pulsating flow effects can be beneficial in many applications.
Examples are extraction pulsating columns (Grassmann and Tuma,
1978), pulsed combustor for both civil and military uses, recipro-
cating engines, ramjet and cooling systems for nuclear reactors
(Wang and Zhang, 2005).

Several studies with conflicting results were carried out on the
effect of the oscillatory motion of the flow on mass and heat trans-
fer (Gomaa and Al Taweel, 2004; Grassmann and Tuma, 1978;
Mackley and Stonestreet, 1995). Indeed, Brunold et al. (1989) and
Howes et al. (1991) showed that pulsating flows can promote cha-
otic mixing in a tube, in which radial velocity components are sig-
nificant. Gbadebo et al. (1999) found that heat transfer was
enhanced at medium frequencies of pulsation and reduced at both
higher and lower frequencies within their experimental ranges.
x: +33 2 40 17 26 18.
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Pérez-Herranz et al. (1999) analysed mass and momentum transfer
in an annular electrodialysis cell involving laminar oscillating flow,
they found that pulsating flow allows to enhance mass transfer due
to the increase of the local velocity gradient at the surface. These
authors also showed that the increase in turbulence level by flow
pulsation plays a relevant role in convective mass and heat transfer
between a solid wall and a liquid. In the other hand, Martinelli et
al. (1943) experimentally studied heat transfer, and reported that
the frequency has no direct effect on the Nusselt number. In addi-
tion, Mao and Hanratty (1985, 1986) found that imposed oscilla-
tions on a turbulent flow have no effect on the time-mean
velocity gradient at the wall. However, only small amplitudes of
imposed oscillations are used in their experiments.

Thus, the variety of results found in the literature seems to be
related to the type of pulsations generator and to the mean flow
rate used during experiments. Unfortunately, in many papers,
some important parameters were not considered, especially the
amplitude of the oscillations (AI-Haddad and AI-Binally, 1989;
Gbadebo et al., 1999).

Experimental studies on pulsating turbulent flows were actively
conducted and most of the works have been carried out for fully
developed flows with small oscillating velocity amplitudes (Wang
and Zhang, 2005). Indeed, the use of high pulsation amplitude is
not possible due to the competition between the fluid inertia under
high Reynolds number and the harmonic variation of the flow
velocity.



Nomenclature

A dimensionless amplitude
C ultrasound velocity (m/s)
D diffusion coefficient of the reacting species (m2/s)
E fluctuation energy (s�2)
f frequency of the pulsations (Hz)
fe emitted ultrasounds frequency (s�1)
fD Doppler frequency (s�1)
fmax maximum frequency characterizing hydrodynamic fluc-

tuations (s�1)
IðtÞ instantaneous limiting current (A)
le equivalent probe length (m)
Pe Péclet number (dimensionless)
Remax maximum Reynolds number (dimensionless)
Ren average Reynolds number (dimensionless)
Rep pulsating Reynolds number (dimensionless)

ShðtÞ Sherwood number (dimensionless)
SlevðtÞ wall shear stress using the ‘‘Levêque solution” (s�1)
SsobðtÞ wall shear stress using Sobolik et al. (1987) method

(s�1)
S; sðtÞ average value and fluctuating velocity gradients (s�1)
VðtÞ; vs instantaneous and average velocities (m/s)
vmax maximum velocity (m/s)
vp amplitude of the pulsations (m/s)
Wss power spectral density of the shear rate fluctuations

(s�1)

Greek symbols
g dynamic viscosity of the fluid (Pa s)
h Doppler angle
sw mean wall shear stress (Pa)
The increase in mean wall shear stress presents a beneficial ef-
fect in many industrial applications, notably in cleaning in place
processes of food industry equipment (Lelièvre et al., 2002). In
addition, it was shown that the bacterial removal from a surface
needs the contribution of both the fluctuating component and
the mean value of shear rate (Blel et al., 2007; Jensen et al.,
2005; Lelièvre et al., 2002). Consequently, the use of pulsating
flows to enhance cleaning efficiency has to be studied. In the first
part of this paper, we analysed the magnitude of the local wall
shear stress (mean and fluctuating values) in a tube submitted to
pulsatile flow generated by a pulsations system allowing to test
various pulsating conditions (amplitude, frequency and mean fluid
velocity) under turbulent flow conditions. Doppler ultrasonic
velocimetry technique has been used in order to define specific
pulsation parameters for each pulsation conditions. Local wall
shear stress values were obtained by an electrochemical technique,
which has been proven to be well suited for the study of wall tur-
bulence. Spectral analysis allowed to put forward pulsations effects
on fluctuation energy of the shear rate. Influences of the amplitude
and the frequency of pulsations, in addition to the mean fluid
velocity, on the wall boundary layer are discussed.

2. Materials and methods

2.1. Pulsation generation system

Pulsating flows can be produced by reciprocating pumps or by
steady flow pumps coupled with pulsing generator like bellows
or piston apparatus (Gillham et al., 2000). Differences in pulsation
parameters, especially the amplitude and the frequency are ob-
served in these systems. The bellows apparatus always generates
forward and reverse pulsations. The piston apparatus is designed
in order to generate more reproducible pulsations with known dis-
placement – time profiles, and also has the ability to operate in for-
ward – pulsing – only mode (Gillham et al., 2000).

This section deals with the development of a system used to
generate fluid pulsations of different amplitude, velocity and fre-
quency along a test section. In this work, a new pulsations gener-
ator was used and allowed producing high amplitudes for a
turbulent flow rate at high Reynolds numbers. This system was in-
spired from Lemlich (1961) method which consists of the sudden
interruption of the flow by a solenoid valve. The interrupter flow
method presents the drawback of possible equipment damaging
due to the water hammer phenomenon. Indeed, the pressure in
the upstream equipment of the valve rises rapidly due to the decel-
eration of the liquid velocity which causes stretch of equipment
2

walls. In addition, the system is limited to low pulsation frequen-
cies and there is no net steady flow. For these reasons, the pulsa-
tions generator used in this work consists of two ways flow
(Fig. 1). The first way, containing the solenoid valve (ASCO/JOUC-
OMATIC authorized for food applications) allows the generation
of the jet fluid flow at high velocity. The second way induces a stea-
dy flow component which allows a net flow different from zero at
the exit of the pulsations unit when the solenoid valve is closed.
Thus, an attenuation of the interruption flow effect (the water
hammer phenomenon) generated by the solenoid valve on the
equipment can be obtained, ensuring a perfect stability of the
whole installation. Pulsations were generated after the adjusting
of 3 valves (Fig. 1). The amplitude of pulsations is determined by
the difference between the flow rates of automatic valves 1 and
2. Adjustment procedure consisted in opening the two valves, sole-
noid and automatic 2 (the flow rate occurs at the 2 ways) and to fix
a maximum flow rate with the automatic valve 1. In the second
step, the solenoid valve was closed (the flow rate occurs at the
way 2) and minimum flow rate was fixed by the automatic valve
2. The flow rate difference between the two automatic valves 1
and 2 should be sufficient in order to generate pulsations. The fre-
quency of pulsations was adjusted by the sum of the opening and
the closing times of the solenoid valve (time cycle).

2.2. Set-ups

Measurements of wall shear stresses were carried out in a
straight pipe (2.30 � 10�2 m in inner diameter) made of stainless
steel (2B Bright Annealed Finish; average absolute roughness
0.3 ± 0.05 lm). Three series of microelectrodes were placed inside
the pipe at the upper part, the lower one and the right side (Fig. 1).
Each circumferential position contains 18 microelectrodes con-
sisted of cross-sectioned platinum wire (0.4 mm) embedded in a
non-conducting surface. The tested section was placed down-
stream the pulsations generator after an establishment length of
the flow equal to 30 � D.

2.3. Velocity measurements inside pipes

In this study, conditions of pulsations with different amplitude
and frequency were analysed. They were characterized using
velocity measurements by Doppler ultrasonic velocimetry (DUV)
due to the high sampling and acquisition frequencies of this appa-
ratus in comparison with standard flowmeters. The flow measure-
ment system is composed of the DOP 1000 multigate ultrasonic
velocimeter and an ultrasonic transducer (the basic frequency of
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Fig. 1. Schematic diagram of the pulsation generation system and the tested section.
ultrasound is equal to 4 MHz) both from Signal Processing S.A.
(Lausanne, Switzerland). This method needs the use of microparti-
cles suspended in the liquid as tracer with average diameter
approximately equal to 80 lm. Microcapsules of oil having a den-
sity close to that of water are used in this study.

The Doppler ultrasonic technique consists in the emission of an
ultrasound beam from a transducer, the ultrasound wave being
scattered by the moving particles and partial backscattered ultra-
sound is then received by the same sensor probe.

The particle location is obtained from the time duration be-
tween the pulse emission and the echo detection. At the same time,
the velocity information, V, is derived from the Doppler shift fre-
quency (Takeda, 1995):

V ¼ CfD

2f e cosðhÞ ð1Þ

where C is the ultrasound velocity, fD the Doppler frequency, fe the
ultrasound frequency and h the Doppler angle.

This method allows to determine instantaneous velocity pro-
files and then the velocity value at specific positions of the cross-
section of the flow (Wang et al., 2003). Pulsations parameters were
determined at the center core of the pipe. Velocity measurements
were made after an establishment length of the flow equal to
30 � D. Thus, the same velocity variation at the center core is ob-
served from this position for each flow condition. At each time,
the DUV apparatus allowed registration of one-dimensional veloc-
ity profile throughout the cross-section of the flow. Temporal evo-
lution of the velocity at the central position was obtained by the
registration of some profiles with fixed repetition duration
between successive profiles corresponding to the frequency
acquisition. According to the Shannon theorem, the frequency
acquisition of the recorded profiles should be higher enough to
sample the whole frequencies range of the flow under pulsating
conditions. In this study, a frequency repetition of the recorded
profiles equal to 54 Hz was selected.

2.4. Electrochemical measurements

The electrochemical technique, described by Reiss and Hanratty
(1963), allowed the local mass transfer coefficient at the wall to be
measured non-intrusively. This method consists in measuring the
limiting diffusional current given by a redox reaction Eq. (2), in a
potential range where the current at microelectrodes, flush-
mounted inside the tested pipe, is only controlled by the diffu-
sion-convection flux of the reacting species towards the wall.
3

FeðCNÞ3�6 þ e� ! FeðCNÞ4�6 ð2Þ

The electrolytic solution was a mixture of potassium ferricya-
nide (3 � 10�3 mol/L), potassium ferrocyanide (5 � 10�2 mol/L)
and sodium hydroxide (0.5 mol/L). The density of this solution is
1028 kg/m3 and its dynamic viscosity is 0.985 � 10�3 Pa s at
22 �C. The diffusion coefficient of ferricyanide ions was measured
using a rotating disk electrode, the value obtained at 22 �C is
3.65 � 10�10 m2/s.

In practice, it exists different models used for the calculation of
the wall shear rate. Reiss and Hanratty (1963) proposed a relation
between the instantaneous limiting current, I(t), given in the
dimensionless form of the Sherwood number, Sh(t), and the shear
rate at the surface of the electrode, Slev, which is known as the
‘‘Lévêque solution”:

SlevðtÞ ¼
D

l2e

ShðtÞ
0:807

� �3

ð3Þ

where le is the equivalent length of the working electrode and D the
diffusion coefficient of the active species.

However, for high frequency fluctuating flows, the Lévêque
solution is no longer valid. Labraga et al. (2002) showed that the
concentration boundary layer is insensitive to fluctuation. Indeed,
an attenuation of the signal fluctuation and a phase shift are ob-
served (Rehimi et al., 2006). Sobolik et al. (1987) have introduced
another technique based on the correction of the wall shear rate
obtained by the Lévêque solution by adding a term deduced from
the transient response of the probe multiplied by the time deriva-
tive of the mass transfer rate, Sh(t). For high Péclet numbers, Pe,
Sobolik et al. (1987) method gives similar results as those obtained
using the inverse method applied to the diffusion-convection
equation and which remains the most rigorous technique to be
used to calculate the ‘‘true” wall shear rate (Rehimi et al., 2006).
The analytic solution of Sobolik et al. (1987) is described by the fol-
lowing equation:

SsobðtÞ ¼ SlevðtÞ þ 1:204
oShðtÞ

ot
ð4Þ

The instantaneous value of the wall shear rate, Ssob, is repre-
sented as the sum of an average value, S, and a fluctuating one, sðtÞ:

SsobðtÞ ¼ Sþ sðtÞ with sðtÞ ¼ 0 ð5Þ

The wall shear rate multiplied by the fluid viscosity, g, gives the
average local wall shear stress, sw:



sw ¼ gS ð6Þ

In order to obtain the Power Spectral Density (PSD) of the shear
rate fluctuations, Wss, and then quantify the corresponding fluctu-
ation energy, a signal processing method was applied on the fluc-
tuating component of the instantaneous value of the wall shear
rate, SsobðtÞ:. This method allows frequencies representation of
the flow energy near the wall and thereafter to give physical signi-
fication to the instantaneous signal. The signal processing was
made according Quinquis (2000) procedure which consists to di-
vide the initial shear rate signal, Ssob; into elementary windows.
Each window allowed the calculation of an elementary spectrum,
using the multiplication by a Hanning function, to avoid ‘‘lobe” ef-
fects (Bellanger, 2002) and the application of a discrete Fourier
transform. Thus, the shear rate fluctuations PSD was obtained after
the averaging of elementary spectra. The increase of elementary
spectra number allowed the attenuation of the irreproducible
peaks induced by experimental noisy conditions. Then, the integra-
tion of the spectrum was implemented in order to calculate the
fluctuation energy, s2; noted E:

s2 ¼ E ¼ 2
Z fmax

0
Wssðf Þdf ð7Þ

where fmax is the maximum frequency characterizing hydrodynamic
fluctuations.

The different steps of the spectral analysis are summarised in
Fig. 2.
Instantaneous limiting current,       : ( )tI

Application of the Sobolik 
et al. (1987) method

Instantaneous wall shear 
rate : ( ) ( )tsStSc +=
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windows (2048 points) : ( ) ( )tNsts N=

Application for each window,         : 
• Hanning function
• Discrete Fourier transform

Elementary spectrum

( )tsN
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elementary spectra 

( )fWssAverage spectrum, 

Fig. 2. Main steps in the determination of the shear rate fluctuations PSD.

Table 1
Hydrodynamic parameters for each pulsation condition

No Pulsation condition Mean velocity (m/s) Amplitude of the pul

(a) 500–500 ms (1600–2600 L/h)* 1.54 0.48
(b) 100–300 ms (1600–2600 L/h) 1.47 0.40
(c) 100–500 ms (1600–2600 L/h) 1.27 0.61
(d) 50–300 ms (1600–2600 L/h) 1.27 0.40
(e) 100–300 (1200–2600 L/h) 1.21 0.73
(f) 50–300 ms (1200–2600 L/h) 1.03 0.60
(g) 100–500 ms (1200–2600 L/h) 1.02 0.81
(h) 100–300 ms (600–2200 L/h) 0.78 0.73
(i) 100–300 ms (300–1500 L/h) 0.59 0.69
(j) Steady (2200 L/h) 1.47 0

* Opening time – Closing time (minimum flow rate – maximum flow rate).
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3. Results and analysis

3.1. Pulsations generator characterization

Velocity measurements at the center core of the pipe allow pul-
sation generator characterization for different flow rates and time
cycles, respectively regulated with the two automatic valves and
the solenoid one. Table 1 gives pulsations parameters correspond-
ing to each condition, with Reynolds numbers Remax, Rep and Ren

respectively based on the maximum velocity, vmax; the amplitude
of the pulsation, vp and the average velocity, vs. Limits of pulsation
generator system are then determined for a pulsating turbulent
flow, in addition to the perfect stability of the whole installation.
Instantaneous variations of the velocity for some pulsations condi-
tions are presented in Fig. 3. Each condition is defined by: opening
time – closing time (minimum flow rate – maximum flow rate).
The velocity evolution can be represented by a sinusoidal oscilla-
tion around a periodically time-averaged value of the mean veloc-
ity and can be formulated as follows:

VðtÞ ¼ vsð1þ A sinð2pftÞÞ ð8Þ

with the base frequency f , the average velocity vs, the dimension-
less amplitude AðA ¼ vp=vsÞ and the amplitude of the pulsations, vp.

Fig. 3 shows that the velocity evolution is closely related to both
pulsations parameters and exhibits non-harmonic variations
according to Eq. (8). Indeed, in some cases (Fig. 3a), half-periods
are not symmetric despite analogy between the opening and the
closing times of the solenoid valve. However, conditions (e) and
(h) exhibit instantaneous evolution close to the theoretical reparti-
tion according to Eq. (8). The chosen pulsations parameters allow
this velocity evolution (100 ms and 300 ms respectively for the
opening and the closing times of the solenoid valve and amplitude
pulsation, vp; equal to 0.73 m/s). Velocity analysis allows determin-
ing the maximum frequency of pulsations above which no effects
of the imposed oscillations on the time-mean velocity are ob-
served. In this case, the fluid inertia dominates over most part of
the flow-field. Thus, minimum closing and opening times respec-
tively around 300 ms and 50 ms represent limits which allow
harmonic variations of the velocity under turbulent flow rate in
addition to a perfect stability of the installation. For this reason,
maximum frequency of pulsations equal to 2.86 Hz is used. The
dimensionless amplitude, A, allows to put forward a special type
of pulsating flow with recirculation at the center core of the pipe.
This flow presents beneficial effects on mass and heat transfer
(Paek et al., 1999; Pérez-Herranz et al., 1999) when the amplitude
of the pulsations is higher than the average velocity (A > 1). This
case is shown in Fig. 3 with the pulsation condition (i). In this case,
flow at the center core of the pipe presents negative velocity val-
ues, which confirms the existence of a counter-flow recirculation
zone.
sations (m/s) Frequency of the pulsations (Hz) Remax Rep Ren

1 48210 11525 36690
2.5 44430 9530 35000
1.66 44790 14540 30250
2.86 39730 9500 30250
2.5 46170 17390 28770
2.86 38970 14450 24520
1.66 43550 19270 24280
2.5 35850 17320 18530
2.5 30510 16500 14020
0 0 0 35000
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Fig. 3. Examples of instantaneous velocity evolution at the center core of the pipe for different pulsating conditions (respectively (a), (e), (h) and (i) of Table 1).
3.2. Flow pulsations effects on wall shear stress components

Electrochemical measurements have been carried out for differ-
ent flow conditions and comparison have been made between pul-
sating conditions and steady flow at 2200 L/h (mean velocity
corresponding to 1.47 m/s for 2.30 � 10�2 m inner pipe diameter).
Local wall shear stress measurements are made on 18 microelec-
trodes sampling three circumferential positions as described in
Fig. 1. Due to the high number of data collected at each position,
variance analysis were performed separately for mean shear stress
and fluctuation energy of shear rate for the different conditions.
Three factors are studied: flow conditions (seven pulsed flows con-
ditions and a steady flow at 2200 L/h), circumferential position
measurement (upper part, lower one and right side) and axial po-
sition of the probe (Fig. 1). Analysis showed a significant difference
between the three circumferential positions which reveals the
asymmetric behaviour of the flow at the exit of the pulsation sys-
tem even for the steady flow condition (P-values < 0.0001 and
0.0002 respectively for the mean shear stress and the fluctuation
energy). This result can be explained by the non-established flow
at the tested section, despite the straight length managed down-
stream the pulsation system. In addition, a significant difference
is observed between various pulsating conditions and the steady
flow (P-values < 0.0001 for the mean shear stress and the fluctua-
tion energy). However, statistical analysis testing the response
homogeneity of probes for the different conditions showed a sig-
nificant uniformity of results for probes at the same circumferen-
tial position (P-values < 0.0001 for the mean shear stress and the
fluctuation energy). Thus, according to these results, averaging is
made for probes located at the same circumferential position. Thus,
5

the comparison of the different flow conditions is done between
those 3 measurement positions.

3.2.1. Mean wall shear stress
Fig. 4 shows wall shear stress values obtained at the three

tested circumferential positions for the different flow conditions.
Comparisons are made with the steady flow (2200 L/h). The condi-
tion (a) presents mean fluid velocity slightly greater than steady
flow one (respectively 1.54 m/s against 1.47 m/s) and the weakest
pulsation parameters of the tested range (1 Hz and 0.48 m/s
respectively for the frequency and the amplitude). High increasing
rates of shear stress in comparison with steady flow are observed
at the three circumferential locations for this condition (300%,
170% and 130% respectively on the lower, the right and the upper
parts). Instantaneous variations of the Sherwood number (Fig. 5)
present harmonic repartition with equal period around 1 s, which
corresponds to the time cycle of the solenoid valve. However, de-
spite the equal opening and closing times of the solenoid valve,
ShðtÞ evolution is not sinusoidal and presents more maximum val-
ues duration per cycle. This result allows to explain the increase of
wall shear stress values in comparison with that obtained in steady
flow (2200 L/h). Two main reasons may justify the ShðtÞ evolution:

- This variation can be induced by the frequency response of the
electrochemical probe on the mass transfer in the concentration
boundary layer. This effect can induce the attenuation and
phase lag of the wall shear fluctuation. However, previous stud-
ies showed that the frequency response effect of the probe is
not significant due to the instantaneous behaviour of the
electrochemical reaction (Deslouis et al., 1990; Mao, 1995). In
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rate, SsobðtÞ, measured at the lower part of the pipe on microelectrode N 7.
addition, the observation of the instantaneous evolution of the
wall shear rate, Ssob, allows the verification of this observation.
Fig. 5 presents a similar instantaneous variation of SsobðtÞ and
ShðtÞ. Since, SsobðtÞ can be considered as similar to the ‘‘true”
wall shear rates obtained by the inverse method applied to
the diffusion-convection equation for high Péclet numbers
(Rehimi et al., 2006), the observed variation of the mass transfer
rate, ShðtÞ; is not obtained due to the frequency response of the
microelectrode, but it would be rather due to the near probe
hydrodynamics.

- Pulsations effects on the wall boundary layer structure can
explain this ShðtÞ variation. Indeed, pulsations application on
turbulent fluid flow induces, in general, flow relaminarisation
at the center core and the modification of the boundary layer
thickness near the wall. According to Cousteix (1989), under
6

turbulent flow, the maximum of shear stress is obtained with
transitional boundary layer. Thus, the succession of harmonic
pulsations induces an increase in the local velocity gradient at
the wall maintaining high residence times and preventing the
flow establishment and the boundary layer thickening. The
increase in the mass transfer coefficient, ShðtÞ; can be explained
by the renewal of the concentration boundary layer which
induces the increase in SsobðtÞ values.

For the same average velocity than in steady flow (1.47 m/s),
the condition (b) presents increasing rates of shear stress varying
between 250% and 105% for the three circumferential positions.
However, wall shear stresses are less important in the condition
(e) (increasing rates varying between 95% and 50% respectively
at the lower and the upper parts). This condition exhibits mean
velocity lower than condition (b) and the pulsation amplitude is
more important (0.73 m/s). Fig. 6 shows an example of the ShðtÞ
evolution for the two conditions (b) and (e) at microelectrode No
3, localised at the upper part of the tested pipe and reveals similar
maximum values per cycle (Sh � 130). However, the reduction of
the mean velocity for condition (e) can explain the decrease of
the mean wall shear stress compared with condition (b). In addi-
tion, the high pulsation amplitude of condition (e) allows to obtain
harmonic and distinguishable cycles of ShðtÞ. Conditions (f) and (g)
present nearer mean flow velocity and different frequency of pul-
sations (1.03 m/s and 2.86 Hz against 1.02 m/s and 1.66 Hz respec-
tively for conditions (f) and (g)). Electrochemical measurements
show that wall shear stress values are more important for condi-
tion (f) for the three analysed positions (increasing rates varying
between 35% and 18% for condition (f) against 15% and 13% for
condition (g)). Despite a more important pulsation amplitude in
condition (g) (0.81 m/s against 0.60 m/s), the pulsations frequency
parameter remains more effective in the increase of wall shear
stress. Fig. 7 showed that for the same interval time, the condition
(f) presents more important number of ShðtÞ peaks at high value
than the condition (g) and can explain the obtained wall shear
stress.

Condition (h) presents a sinusoidal velocity variation according
to Eq. (8) and mean velocity equal to the half of the steady flow va-
lue (0.78 m/s). The amplitude of the pulsations is high enough,
which allows to get a Reynolds pulsation number close to that cal-
culated according to the mean velocity (Rep = 17,320 and
Ren = 18,530 respectively). This parameter can explain the increase
of the shear stress in comparison with steady flow, despite the low
mean velocity (increasing rates varying between 16% and 23% for
the three tested positions).
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Condition (i) corresponds to a pulsed flow with recirculation at
the center core of the pipe. This condition presents amplitude of
pulsations greater than the mean velocity. Despite the low
Reynolds number induced by this condition in comparison with
the steady flow (Re = 14,020 against Re = 35,000), high wall shear
stress values are observed under this condition which remains
close to the steady flow one. Indeed, the high amplitude of pulsa-
tions induces an important modification in the boundary layer
structure, which allows the increase in the mass transfer coeffi-
cient and explain the obtained result. The beneficial effect of this
flow pattern is already proven in many industrial applications like
the ultrafiltration in a baffled tubular membrane system (Finnigan
and Howell, 1989) and on the cleaning of whey protein soils
(Gillham et al., 2000).

To sum up, wall shear stress measurements with different pul-
sating conditions have shown an increase of mean shear values for
a wide range of mean flow velocities lower than that for steady
flow condition studied. This result has been explained by the pul-
sations effects on the wall boundary layer structure. In addition, re-
sults have illustrated the role of the mean velocity under pulsed
flow in the increase of the shear stress when the amplitude and
the frequency of the pulsations are not high enough. On the other
hand, for the same mean velocity, the frequency of the pulsations
has been proven to be more effective on the shear stress than the
amplitude parameter. Finally, the amplitude of the pulsations has
a beneficial effect on the shear stress when the mean velocity is
not high enough.
7

3.3.2. Fluctuation energy of the shear rate
In turbulent flows, instantaneous fluctuation velocities are in-

duced by individual fluid elements or eddies motion (Brodkey
and Hershey, 1988). A statistical analysis allows the characteriza-
tion of such random phenomena. However, for a pulsating flow,
the random fluctuations are masked by the harmonic pulsations
imposed at the chosen frequency and amplitude, which allows
the fluctuation flow control.

Fig. 8 presents the fluctuation energy, E, obtained by the inte-
gration of the Power Spectral Density (PSD) of the shear rate fluc-
tuations, Wss, for different flow conditions. Increasing rates are
calculated according to the steady flow. The variance analysis
showed a significant difference between the steady flow and
pulsed flow conditions (P-value < 0.0001). Fluctuation energies dif-
ference between the three analysed circumferential positions exhi-
bit the asymmetric behaviour of the flow downstream the
pulsation unit. However, for the three cases, fluctuation energy is
more important with pulsed flow.

Conditions (a) and (b) present increasing rates of the fluctuation
energy higher than 250% at the lower part and around 170% at the
right side. Spectral densities of the velocity gradient fluctuations at
the wall reveal peaks observed at the corresponding pulsations fre-
quency of each condition and at their harmonics (Fig. 9a and b). At
low frequencies, these peaks can explain the increase of the fluctu-
ation energy in comparison with the steady flow. In addition, the
superposition of pulsations induces a fluctuation energy increase
for a range of frequencies as shown in Fig. 9(a). Indeed, the begin-



0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

8.E+06

9.E+06

1.E+07

E
 (

s-2
)

0

50

100

150

200

250

300

350

In
cr

ea
si

ng
ra

te
(%

)

Increasing rate

Upper part

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

8.E+06

9.E+06

1.E+07

E
 (

s-2
)

0

20

40

60

80

100

120

140

160

180

200

In
cr

ea
si

ng
ra

te
(%

)

Increasing rate

Right side

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

8.E+06

9.E+06

1.E+07

(j)       (a) (b) (e) (f) (g) (h) (i)
Flow condition

E
 (

s-2
)

0

50

100

150

200

250

300

350

400

450

500

In
cr

ea
si

ng
ra

te
(%

)

Increasing rate

Lower part

(j)       (a) (b) (e) (f) (g) (h) (i)
Flow condition

(j)       (a) (b) (e) (f) (g) (h) (i)
Flow condition
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ning of the spectrum is not linear as observed for the steady con-
dition, but rises until a frequency around 3 Hz. However, the in-
crease of the fluctuation energy is not only due to the peaks
induced by the frequency of the pulsations and its harmonics. This
result can be verified in condition (b) which presents the same
mean velocity than the steady flow (1.47 m/s). For this condition,
pulsations induce the increase of the total energy contained in
the spectrum, which is still higher than the one observed in steady
flow, even after peaks removal (Fig. 9b). On the contrary, Mao and
Hanratty (1986) found that no significant difference of power spec-
tra is observed between the pulsed flow without peaks and the
steady condition for the same mean velocity. This disagreement
can be explained by the low amplitude of the pulsations studied
by these authors in comparison with the present study.

For the two conditions, the kinetic energy dissipation occurs
according to a regression slope value around �5/3, which shows
8

that under pulsating flows, the turbulence remains almost homoge-
neous and isotropic. Separated effects of the frequency and of the
amplitude of the pulsations can be observed respectively for condi-
tions (f) and (g). These two conditions are characterized by the high-
est frequency (2.86 Hz) and the largest amplitude (0.81 m/s).
Condition (f) presents high increasing rates of the fluctuation en-
ergy varying between 100% and 400% respectively at the right side
and the lower part of the tube. Power spectral densities for this con-
dition (Fig. 10a) exhibit a high number of peaks, corresponding to
the pulsations frequency and its harmonics. In addition, these peaks
reveal high amplitude, especially at low frequencies (under 10 Hz),
which explain the high values of the fluctuation energy.

Condition (g) also exhibits a significant increase in the total en-
ergy fluctuations in comparison with steady flow. This condition,
characterized by an important amplitude of the pulsations, high-
lights the effects of harmonics of the frequency of the pulsations
in the fluctuation energy, illustrated by the large peaks (Fig. 10b)
in comparison with the previous condition. Power spectrum super-
position between the steady flow and both pulsating conditions (f)
and (g) for the same microelectrode (No 7 at the upper part) shows
that the energy difference is observed at low frequencies (Fig. 10a
and b). Indeed, from a frequency nearly equal to 15 Hz, spectral
densities present the same regression phase shape of the turbulent
energy. This result can be induced by the same mean velocity of
the flow for these two conditions (1.03 m/s). However, the ob-
served difference at low frequency is due to pulsations parameters
variability of conditions (f) and (g).

The two conditions (e) and (h) present analogous frequency and
amplitude of pulsations, only the mean flow velocity is different. In
addition to the increase of the fluctuation energy of the two condi-
tions compared with steady flow, slightly higher values are ob-
tained with condition (h) (150%, 200% and 320% against 130%,
175% and 250% respectively at the right side, the upper and the
lower parts for conditions (h) and (e)).

This result can be explained by the closeness between the
amplitude of the pulsations and the average flow velocity for this
condition (respectively 0.73 m/s and 0.78 m/s). For this condition,
the flow may be more disturbed due to the fact that parameter A
is close to 1 corresponding to the recirculation at the center pipe.
However, despite this slight difference in the fluctuation energy
between conditions (e) and (h), the analogy of pulsation parame-
ters induces a high similarity in the power spectral densities ob-
served at the first six probes localised at the upper part of the
pipe (Fig. 11a and b).

The pulsation condition (i), characterized by the setup of a recir-
culation zone at the center core of the pipe, exhibits a significant
improvement in the fluctuation energy with increasing rates vary-
ing from 100% to 250% between the right side and the lower part of
the pipe. These important increasing rates can be explained by the
high amplitude of the pulsations, which correspond to Rep equal to
16 500. The recirculation zone establishment, due to the important
amplitude of the pulsations compared with the mean flow velocity,
induces the modification of the PSD shape (Fig. 12a). Indeed, the ki-
netic energy dissipation occurs with a regression slope higher than
�5/3 (regression slope equal to �2.54) as shown in Fig. 12b. This
result can be interpreted by sizes redistribution of eddies struc-
tures, with a fast degradation of large eddies due to the boundary
layer confinement by the center core recirculation zone. In addi-
tion, the transition to small eddies, less energetic, is faster than
in steady flow case, which explains the energy dissipation ob-
served in Fig. 12a. This rapid energy dissipation takes place at high
frequencies where the kinetic energy is not very important, which
slightly modifies the total fluctuation energy. Moreover, at low fre-
quencies, PSD shows energy levels which increase in addition to
that generated by frequency pulsations peaks and their associated
harmonics.
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and ‘‘b” for condition (g)).
To summarize, the application of harmonic pulsations to a
steady flow emphasizes an important increase in the fluctuation
energy of the velocity gradient. Three parameters were investi-
gated, the mean velocity flow, the amplitude and the frequency
of the pulsations. These three parameters significantly contribute
to the fluctuation energy increase. The amplitude and the fre-
quency of the pulsations induce considerable changes in the PSD
structure in the low frequencies range, which corresponds to the
high kinetic energy. The condition with recirculating flow at the
9

center core of the pipe reveals modifications in the dissipation en-
ergy slope induced by the redistribution of eddies sizes near the
wall in comparison with Kolmogorov cascade.

4. Conclusion

Pulsating flow effects on wall shear stress components were
analysed. Experiments were carried out using a new pulsations
generation system at high amplitude of pulsations.
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Fig. 12. Spectral densities of the velocity gradient measured with the pulsations condition (i) at different microelectrodes ‘‘a” and comparison with PSD of the steady
condition (microelectrode No 7 at the upper part) ‘‘b”.
Wall shear stress values under different pulsations conditions
(characterized by the variation of the mean flow velocity, the
amplitude and the frequency), exhibit an important increase in
the mean and in the fluctuation wall shear stress. The pulsation
generator induces shear stress increase due to the important val-
ues of the amplitude of pulsations. In addition, for pulsating condi-
tions with the same mean velocity, the frequency of the pulsations
has been proven to be more effective on the shear stress than the
amplitude parameter. On the other hand, the amplitude has a ben-
eficial effect on the shear stress values when the mean velocity is
not high enough.

Fluctuation energy measurements showed that the amplitude
and the frequency of the pulsations induce considerable changes
in the PSD structure in the range of low frequencies, which corre-
sponds to the higher kinetic energy. Recirculation flow at the cen-
ter core of the pipe induced by amplitude of the pulsations higher
than the mean velocity reveals modifications in the wall boundary
layer structure with more important dissipation energy slope in
the PSD form.

For low mean velocity of the flow, in comparison with the stea-
dy condition, high increasing rates of both mean shear stress and
fluctuation energy of the velocity gradient are obtained due to
the important amplitude of the pulsations. This result demon-
strates the interest of this flow which allows to obtain better per-
formance in comparison with the reference state.
10
Finally, for both wall shear components, the observed improve-
ments in the mean and the fluctuating value, in comparison with
the steady flow, can be explained by the pulsating flow effects on
the near-wall region, especially the boundary layer.

In future works, pulsating flow will be tested with loops con-
taining diametrical changes and complex geometries in order to
investigate pulsations effects on shear stress components of indus-
trial flow configurations.
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