An a-contrario approach for sub-pixel change detection in satellite imagery

Abstract : This paper presents a new method for unsupervised sub-pixel change detection using image series. The method is based on the definition of a probabilistic criterion capable of assessing the level of coherence of an image series relatively to a reference classification with a finer resolution. In opposition to approaches based on an a priori model of the data, the model developed here is based on the rejection of a non-structured model --- called a-contrario model --- by the observation of structured data. This coherence measure is the core of a stochastic algorithm which selects automatically the image subdomain representing the most likely changes. A theoretical analysis of this model is led to predict its performances, in particular regarding the contrast level of the image as well as the number of change pixels in the image. Numerical simulations are also presented, that confirm the high robustness of the method and its capacity to detect changes impacting more than 25% of a considered pixel under average conditions. An application to land-cover change detection is then provided using time series of satellite images.
Type de document :
Article dans une revue
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2010, 32 (11), pp. 1977-1993. 〈10.1109/TPAMI.2010.37〉
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00399698
Contributeur : Lionel Moisan <>
Soumis le : dimanche 28 juin 2009 - 23:25:20
Dernière modification le : mercredi 4 janvier 2017 - 16:23:36
Document(s) archivé(s) le : mardi 15 juin 2010 - 19:01:11

Fichier

2009-15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Amandine Robin, Lionel Moisan, Sylvie Le Hégarat-Mascle. An a-contrario approach for sub-pixel change detection in satellite imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2010, 32 (11), pp. 1977-1993. 〈10.1109/TPAMI.2010.37〉. 〈hal-00399698〉

Partager

Métriques

Consultations de
la notice

239

Téléchargements du document

218