N
N

N

HAL

open science

Porting the Mutek Operating System to ARM Platforms

Nicolas Fournel, Antoine Fraboulet, Paul Feautrier

» To cite this version:

Nicolas Fournel, Antoine Fraboulet, Paul Feautrier. Porting the Mutek Operating System to ARM

Platforms. 2006. hal-00399645

HAL Id: hal-00399645
https://hal.science/hal-00399645
Submitted on 27 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00399645
https://hal.archives-ouvertes.fr

Laboratoire de ['Informatique du

Parallélisme
o) Ecole Normale Supérieure de Lyon
i Unité Mixte de Recherche CNRS-INRIA-ENS LYON % CENTRE NATIONAL
n°5668 SaETIRQUE

HEEER
HSPI

Porting the Mutek Operating System to ARM
platforms

Nicolas Fournel
Antoine Fraboulet March 2006
Paul Feautrier

Research ReportNRR2006-12

Ecole Normale Supérieure de
Lyon

I“ 46 Allée d'ltalie, 69364 Lyon Cedex 07, France%l N R l A

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électroniquel:i p@ns- | yon. fr

Porting the Mutek Operating System to ARM
platforms

Nicolas Fournel
Antoine Fraboulet
Paul Feautrier

March 2006

Abstract

This report presents the work done on modifying the lighgheiMutek operating
system to add support for two complex Arm-based SoC ardhites. Both of these
platform use nearly the same ARMv4 core CPU model but havé&ereint memory
map and integrate different system peripherals such asuptecontroller, timer and
serial interfaces. An initial support for MMU operationsngs an identity mapping
has also been added to the hardware abstraction layer. Up®g was compulsory
to access hardware information needed to activate the dakec

Keywords: Mutek, Operating System, ARM Platform, Porting

Résumeé

Ce rapport de recherche présente les modifications faitele systeme d’exploita-
tion Iéger Mutek pour ajouter le support de deux plateforomesplexes utilisant des
processeurs ARM. Les deux plateformes possedent une nek8iviv4 du coeur de
processeur mais utilisent des adressages mémoires amslegupériphériques dif-
férents pour le contréle des interruptions, les timers tplerts de communication
série. Un support préliminaire de gestion de la mémoireigile utilisant la MMU a
projection identité a également été rajouté dans la coudhsiaction matérielle. Ce
support est nécessaire pour ajouter les fonctions d'dictivales caches de données
des processeurs.

Mots-clés: Mutek, Systemes d’exploitation, Plate-forme ARM, Adajutat

Contents

L Introductionl 3
L1 TheMutekKernbl. 3
....................... 4
(L3 Thelibeclibrant 5
[L.4 Porting Mutekto arealplatfolm 5
[2__Platforms Descriptiod 5
.1 __ARM Common Architectue 5
211 ARMOTDMICOrE oot 6
[2.1.2 Instructionand DataCaches 7
213 MMUBehaviodr 8
B2 integrator CMO22T-XA10 Platfolm 9
221 Hardware Architectllre 9
222 Memorymdp 11
2.2.3 Interruption Architecture 11
2.3 _Atmel AT91IRM9200 Platfoim 11
P31 Hardware Architectire 12
232 MemoryMap 13
i i re . . . 14
B__Mutek Modificationd 14
iC | ichs). . . oo 14
B.1.1 Exceptionhandling 14
B.1.2 FException CPU Vector Relocation 20
%Mﬂbn 21
DN . e e 22
B2 _Specific Device Drivelrs 23
B21 SerialdevicedriMer, 23
3.2.2 Interrupt Controller Device Driver o 26
B23 Timerdevicedriver 27
K__Mutek Design and Programming Modéll 29
K1 CPU Vector Relocalisation or Mapping 29
4.2 Mutek/ARM executionmofle 29
43 Mutek ProgrammingModel 30
IA_Core Toolchain compilation Scl'pl 32
[B__AT91RM9200 Idscrip] 34
lc Integrator CM922T-XA10 |dSC['DI| 36

List of Figures

11 Basic steps to compile Mutek source and applicationlcode. . . . 4

P___ARM920T/922T architectdre 6
B Bankedregistersof ARMCRU 8
M ARMvAMMU Lleveld. 9
B__ARMvAMMUIeveld. 10
mﬁbm 10
- iffectude. 11
B CMO22T-XATOMEmMOry map . . .« o o voooeee e e e 12
0 CMinterruptarchitectuke 12
[10___AT91RMO9200Q architectdre 13
1 ATOIlmemorymapovvviiie 13
[12__AT91 interruption architectdre 14
B3 _Before IRD oo 15
h4a _AtIRQraisinly. 15
(15 Firstphaseof contextstorng 6 1
[16 Switch back to supervisormade 17

1 Introduction

The Mutek operating system is available as part of theYDENT Open Embedded
System Development Environm{#{d]. The Mutek operating system is a lightweight
kernel that proposes an implementation of tteeskx threads for multiprocessor plat-
forms with shared memory on multiple memory banks.

Mutek has been developed originally farrs R3000 processors. It has then been
ported to $ARC Vv8 and preliminary support for ARM anddWeRPC is currently
available within theCVS repository. So far the Mutek kernel has only been used, to our
knowledge, within the DsYDENT framework and with the SystemC simulation plat-
form available from the 8cL B initiative [d]]. These simulation environments propose
design models and tools that can be used for hardware/gefteaesign of complex
System on Chip (SoC). These models include processorgnsyiaterconnect buses
and Network on Chip, RAM modules and some other system pergié However the
booting process and input/output peripherals availabpaesof the design libraries are
not as complex as real peripherals.

As part of our work on embedded systems we need a very lighiweperating
system to build power measurement benchmarks. This résegport presents the
modifications made to the Mutek kernel in order to boot it oe ARM Integrator
CM922T-XA10 platform [2] and on the skyeyEl[9] system sintatafor the Atmel
AT91RM200 SoC. The interested reader should note that dpiert is related to the
Research Report 2006-08 [5] on porting the Linux and uCLikernel on the same
platform.

The next section presents the original software architeatithe Mutek operating
system and its associated libraries.

1.1 The Mutek Kernel

The Mutek kernel uses a monolithic architecture in whichhiibe operating system
and application code are statically linked at compile tinTée Mutek source code
can be parameterized in a number of ways through the use girpoessor variable
definitions within the code. Once the libraries have beenpiled for a specific target
architecture the application code can be linked to the sofiwibraries in order to make
an ELF file that can be used to boot the platform and run theigijn code. Fig-
ureld presents the basic operations to build a self-corddib& file. Mutek uses a flat
memory model running in physical address mode. The apjaicabde is run within
the same memory address space as the kernel services thwisigla complete con-
trol over the memory allocation of the objects in exchangetie memory protection
mechanism that are usually available on more complex syst@hre linker script con-
figuration file { dscri pt) must be explicitly given during the linking process. This
file defines the memory mapping of all objects and sectiond wsihin the compiled
code.

The Mutek functionalities are separated into the followlibgaries

e | i bhandl er : platform specific code. The library proposes a hardwargabs
tion layer on top of which all the Mutek functionalities areilb This library
contains the platform specific assembly source code.

e | i bpt hr ead: Posix thread implementation that conforms to the Posix31D0
standard.

Application code Mutek source code

GCC GCC
cross compiler cross compiler,
libhandler.a

4
object code
libpthread.a

libc.a libdpn.a
Application

linker script

LD
static linker

ELF binary

Figure 1: Basic steps to compile Mutek source and applicatoule

e | i bc: tiny libc library that can be used by application code.

e | i bdpn: Disydent Process Network library. This library proposesimunica-
tion channel abstraction that can be used to hide hardwarsaitware commu-
nications behind a unified fifo-based communication frantéwo

In this report we will only focus on théi bhandl er library and we propose
some extension for the input output mechanisms containdteihi bc library. The
I i bpt hr ead was portable enough to remain unchanged while being usedaihex
architecture than the one it was primarily designed for. e did not modify the
[i bdpn library.

1.2 Thel i bhandl er library

Thel i bhandl er library is used to build a hardware abstraction layer. Tloidec
library regroups hardware dependant part of some commattituns used within the
Posix thread APl implementation. Amongst other

e Hardware specific type definitions and macros
e Processor bootstrap and reset code

e Software context switch

Mutual exclusion mechanism implemented using spin-locks

Interrupt controller
e Timer interface definition

The current Mutek implementation can only use the perighereailable within
the DISYDENT and ScLiB environment. These environments include an interrupt
controller, a timer and a basic serial character outputodeyCPU related functions for
ARM based SoC are presented in secfion®?.1.1. Memory magpidglevices for our
platforms are presented in sectifnd 2.2anH 2.3.

1.3 Thel i bc library

The Mutek libc is used by both the implementation of the plrkbrary and can be
used by the application code. The functionalities incluiettie| i bc library include
basic C support functions:

e nul | oc: Memory allocation for both global and local storage. Thesm-
ory allocation functions can be used on an architecture iflicit multi-bank
memory regions.

e ctype: character type handling.
e string: C string support and memory manipulation functions.

e st dl i b: standard C library functions oi () ,bsearch(),exit(),random(),
strtol ()).

e st di o: basic output text console handling.

The current version of the Mutek libc was left untouched exder the text out-
put functions such agr i nt f (). Both DISYDENT and S>CL 1B support a very sim-
ple TTY output device that can take characters on a single memorpedagegister
(__tty addr). The pseudo device is used within simulations to have atiead-
back from the application code using a terminal type emuldtbe modifications we
made in order to support a console interface that can be ussdaoserial port are
presented in the device driver sectionl 3.2.

1.4 Porting Mutek to a real platform

This report presents the work done on modifying the Mutekaesito add support
for two complex ARM-based SoC architectures. Both of thdadqgrm use nearly the
same ARMv4 core CPU model but have a different memory mapreedrate different
system peripherals such as interrupt controller, timerserdél interfaces. An initial
support for MMU (Memory Managment Unit) operations usingi@antity mapping

has also been added to the hardware abstraction layer. dppsg was compulsory to
access hardware information needed to activate the date cac

2 Platforms Description

2.1 ARM Common Architecture

The two platforms are based on an ARM processor. For the AMERO0 SoC it is
an ARM 920T and for EPXA SoC it is an ARM 922T. First of all, itiisterresting
to note that ARM 920T and ARM 922T are nearly the same procedsofact the
only difference between the two of them is their cache si2é&M 920T owns 16kB
of instruction cache and 16kB of data cache, whereas ARM 32 gets 8kB for
instruction cache and 8kB for data cache. The remainderefvlo processors is
strictly identical. They have the same core, ARM9TDMI anel ame MMU, ARMv4
MMU. The global architecture of the CPU is thus the same ferttto platforms and
is depicted in figurgl2.

‘ Instruction Path

External
Instruction Instruction IPA[31:0]

coprocessor
interface cache MMU

Virtual Addresses t IMVA[31:0] T

R13 Physical Addresses
ID[31:0]

|
IVA[31:0] |)

Trace AMBA AHB1

Interface ARMOTDMI CP15 bus —
port CPU Core

interface

DVA[31:0] | [}
| 1}

Write
DDI[31:0] buffer

R13
DMVA[31:0] DPA[31:0 ‘ Physical Addresses
Virtual Addresses 1

Data Data Write back
Cache MMU PA TAG RAM WBPA[31:0]
JTAG
| DINDEX[5:0] 1

Data bus
Address bus

Data Path

Figure 2: ARM 920T/922T architecture

2.1.1 ARMOTDMI Core

We will give in this section more details about the ARM9TDMire included in our
two target CPUs.

Instruction Set Architecture (ISA): ARM9TDMIis a RISC CPU core, whose pipeline
is divided into five stages : Fetch, Decode, Execute and tvemllamd Store stages. This
core fully implements the ARM 32 bit instruction set untivigion 4. It also imple-
ments the reduced 16 bits instruction set called Thumb. vesrent ARM technologies
like DSP instructions or Java accelerations instructidagélle) are not supported by
this core.

Execution Modes: ARM processors have different execution modes. There are 6
modes in older processors (ARMv3, and before) : User, SugzanAbort, Undefined,
IRQ and FIQ modes. In more recent processors (ARMv4 and alzoseventh mode
appeared called System mode. Among these modes five aretiexcepdes and only
one is an unprivileged mode. Indeed, User mode is the nonealiion mode, since it

is unprivileged, and Supervisor, Abort, Undefined, IRQ ai@ &re exception mode.
The System mode is the only privileged mode which is not aregttan execution
mode.

Exceptions: As we just said, there are five exception execution modeghmitioes
not mean that the processor has only five exception typescinthere are 6 different
exceptions : Reset, Abort, Undefined, SWI, IRQ and FIQ. Hezevzore details about
these exceptions.

Reset is raised when the reset input of the processor igedsébort regroup in-
struction fetch abort and data access memory abort, whiemaihat an error occured

while accessing the memory for instruction reading or datess. Undefined excep-
tion occurs when an unknown instruction is executed on thd.dme three remaining
types are interruption exceptions. The first, SWI, repressoftware interruptions, the
second, IRQ, normal hardware interruptions and the thii@, fast hardware interrup-
tions.

For most of the exception types, the mapping of their exeautiode is obvious.
For the remainder, Reset and SWI are executed in Supervisde.m

Let us give a few details about how the CPU behave when an #anepises. On
exception assertion, the instruction execution is stogpetthe processor jumps to the
CPU Vector regrouping all software exception handlers. @sal the program counter
is updated with a value obtained by adding the CPU vector f&s@0000000 or
OxFFFFO000 depending on the CPU configuration) and an offset dependetiteo
type of exception. For exemple if the CPU vector bas@x®0000000 and an IRQ
occured, the CPU program counter jumps to the addie€9000018. At this ad-
dress we generally find a jump instructidnifranch) to the real handler address.

Register file: The final point of the core description is the register file. MMRPUSs
have a 16 general purpose register fil® to r 15. An extra registeiCPSR (Cur-
rent Processor Status Register) is available, it represbatcurrent processor status.
Among the 16 registers mentioned before, one is the progoamter PC), r 15. Two
other registers are used for special purposés as stack pointerSP), andr 14 as
link return LR). Which means that when executingla (branch and link) instruction,
the return address (address of tHieplus 4) is stored il R=r 14.

In fact ARM CPUs do not have only 16 general purpose registecsone status
register, but 32 general purpose registers and 6 statusteegi On top of these 17
registers (0 to r 15 andCPSR), there are banked registers. The banked registers are
available in exception execution modes. For general perposs,they are available re-
place the normal registers in the 16 registers scope of tiie BBnked status registers
give access to an extra register, the saved CPU statusee(@BSR). Figure[3 shows
all banked registers in a gray filled box. For example, wheming in IRQ mode, the
r 13=SP andr 14=LR registers available are notl3 andr 14 of the User/System
mode, butr 13_irqgandr14_irq.

On mode switching, from user (or exception) to exception eytiteCPSRis saved
in the SPSR of the target execution mode, as well as Btgis copied in theLR of the
exception mode.

2.1.2 Instruction and Data Caches

The ARM 920T and the ARM 922T have seperated instruction @ta caches. Their
size is 16 kB in the 920T and 8kB in the 922T. As far as the writifdy is concerned,
its size is 16 words in the two processors.

These caches are virtually addressed, which means tha¢ ¢iaels are indexed
by virtual addresses. On top of that, the data cache can enlysbed when MMU is
activated. In fact the control bits, which indicates if theche and the write buffer
must be used for a memory region, are part of the page tabliegnBetween the two
processors, only one parameter changes, the size of thelsdtee ARM 920T they
are 128 lines deep and in the ARM 922T they are 64 lines deays, The 920T caches
are made of 512 lines and the ARM 922T caches are made of 2&5 lirhe line size

Privileged Modes
‘ Exception Modes
|
User System Supervisor Abort Undefined Interrupt Fast interrupt
ro ro
rl rl
r2 r2
r3 r3
r4 r4
5 5
r6 r6
r7 r7
r8 r8 r8_fiq
r9 r9 r9_fiq
r10 r10 r10_fig
ril ril r1l_fiq
ri2 ri2 r12_fig
r13 sp r13 sp rl3 svc r13 abt r13 und r13 irg r13 fig
rl4lr ri4lr rl4_svc rl4_abt ri4_und rl4_irg r14 fiq
rl5 pc rl5 pc
cpsr cpsr
- - [spsrsvc | [spsrabt | [spsrund] [spsrirg] [spsr fig]
[] Bankedregister

Figure 3: Banked registers of ARM CPU

is 8 words (32 bytes) for the two of them and they are organized-way associative
way.

2.1.3 MMU Behaviour

The MMU integrated in the ARM 920T and in the ARM 922T are themeaARMv4
MMU. We will give here more details about the behaviour o§thiMU.

First of all, we must underline the fact that instruction alada have their own TLB
(Translation Look-aside Buffer), translation cache. Bh€kBs have a 64 entry width.

In the ARMv4 MMU, memory can be accessed through four difiepage or sec-
tion sizes : 1kB (tiny page), 4kB (small page), 64kB (larggga 1 MB (section).
These pages and sections are accessible through one orayetable walking de-
pending on page-mapped or section-mapped access.

Translation base: the translation starts when TLB contains no translatiorafwir-
tual memory address. Then the translation table base (Td@)eas gives the location
in physical memory of the first stage table. This registenithe configuration copro-
cessor CP15.

Level 1: Translation Table. The first stage table is also called translation table. It is
4096 entries long, which means that its size is 16 kB. Eaaly @nthis table represents

1MB of virtual memory. There are four different entry typeghis table as can be seen
on Figurd®.

TTB

l:l—_" Translation table
i Section

index |

-
12 bits | © ' 1MB
! index |
¥ 20 bits |

01 ¥

o=

11 L
Fine page

table base

Coarse page
table base

Figure 4: ARMv4 MMU level 1

The first type is the section descriptor. As we said beforenorg is accessible
through section. Obviously these sections have a size of 1Alinformations about
domain protection, cache and write buffer are present gfitst level entry.

The two following types of entries are page entries. Theeehap different types
of page table : coarse grained and fine grained. The first é&tey in these case only
gives the base address of the corresponding second level pag

The fourth type is undefined and generates an error.

Level 2: Page tables. At this level, we have two different types of page table, the
coarse grained and the fine grained page table. As their nadieates, the first type
describes its 1Mo region with big pages and the second otheswitller pages.

The page size can have three different sizes : 1kB (tiny pag® (small page),
64kB (large page). Coarse grained page table entries cgrdeatribe small or large
page. However, Fine grained page table entries can dedarihemall or large page
entries. This difference is due to the following fact: ceagsained page table divides
its 1IMB in 4kB blocks, so it has only 256 entries. When a larggepdescriptor is set,
it is repeated on the 16 contiguous blocks descriptionsfikergrained page table the
situation is the same, but it divides its 1MB in 1kB blockdgil 024 entries). If a small
or a large page description is set the description is redematall the blocks descriptor
the page contains. The figule 5 summarize this second lesetigéon relations.

To conclude, figurEl6 give an global view of the two level paj#e organisation.

2.2 Integrator CM922T-XA10 Platform

We will have a closer look on the pecularities of the two mlatis presented before.
The first platform to be detailed is the ARM Integrator/CM 322A10 in standalone
mode. This platform is based on an Altera Excalibur EPXAI®thle remainder of
this section we will only talk about EPXA10 hardware detasisce Integrator/CM has
only few hardware embedded on board. A more detailled desaniof the platform is
available in[5], the following parts will only underline njoa aspects.

2.2.1 Hardware Architecture

Before going any further, here is a global overview of thediaare architecture of
the EPXA10 as it is integrated on the CM 922T-XA10. The figurdepictes this

Large page

. —_—
Coarse grained PT i 64 kB
index
index 3 00 b= 16 bits |
8 bits | '
|
v 01—
10—
Small page
i1m=
i 4kB
index !
12 bits 1
Fine grained PT v‘
.
index | o
10 bits |
\ 01—
Tiny page
10—
A index ! e
11 10bits !
A\

Figure 5: ARMv4 MMU level 2

TTB

l:l—_,‘ Translation table Section

) i \

mde)v(! 00 imMB !

12 bits 1 index
% Large page ; 20 bits

01

Coarse grained PT i 64kB
index
16 bits |

10 |
index | 00 [~
8bits !

11
' 01—

4096 entrées

101

Small page

11>

]
index

|
12 bits 1
Fine grained PT ;

4kB

256 entries

| Tiny page

index | oor=
10 bits | 1kB

01—

| index
1 10 bits
\

o

11

1024 entries

Figure 6: Global MMU access diagramm

architecture. CM 922T-XA10 specific hardware is implemdritethe FPGA of the
EPXAL10.

This SoC (System-On-Chip) contains all required hardwarméke an Operat-
ing System (OS) boot on it. Indeed, hardware pieces negefwauns are serial port
(UART), timer and interrupt controller. To conclude, it igeresting to underline that
we have different types of memory available on the CM 922THRAMain memory

10

Serial Interface Flash SDRAM

A A

Interrupt
Controller

Watchdog
Timer

| CPU |

‘ AHB1

\ \
Y vl \ \ \ \ \
AH Bbrld‘::Bz

AHB2 ‘

Memory

SP SRAM
Controller

l l [N
{ [|

SP SRAM DP SRAM DP SRAM

‘ UART ‘ ‘ EBI ‘

| PLD—Stnpel ‘ Stripe-PLD ‘
‘ bridge ‘ | bridge |
Embedded Stripe f

I

Configuration
Logic

‘ Timer

AHB3

AHB default
slave

interface

status and AHB-APB
control brid
registers ridge

A
APB

! 1 |
v v \
reset 1CS307 1CS307
control interface

A

CMPLD

Y Y

Figure 7: CM 922T-XA10 architecture. Bold blocks are bus teess

(DRAM) is embedded on the board (128 MB). We also have sta#iMR usable as
Scratch PADs. This static RAMs are Single port and Dual paticsRAMS (SP / DP
SRAM) and are integrated in the EPXA10. On top of that, CM 3XA1L0 board also
integrates an SSRAM chip (2MB).

2.2.2 Memory map

All stripe peripherals are controlled by registers mappethemory. These registers
are regrouped in a register bank, the stripe register bam& défault mapping address
of this bank iSOXx0B0O00000. Another control and status register bank corresponding
to the CM peripherals is mapped@t 10000000.

The remaining of the memory map contains memories mappilagliFSDRAM,
SP SRAM and DP SRAM). Figuf@ 8 gives a full overview of this noeynmap.

2.2.3 Interruption Architecture

EPXA10 embed an interruption controller (ITC) linked to theerruption wires (INT_nIRQ
and INT_nFIQ). This ITC gathers all interruptions requdstsn all hardware of the
platform and raises an IRQ or a FIQ on the CPU. All sourcesiaked to the ITC by
only one wire, then the ITC must know if it must raise an IRQ &t1@. It has inter-
ruption priorities for each source, and decide regardirtislevel. The highest level
(Ox3F) corresponds to fast interruptions.

2.3 Atmel AT91RM9200 Platform

The second platform is an Atmel AT91RM9200. This is a SoC {&ysOn-Chip) used
in many embedded commercial products such as PDA (PersagitgdlDAssistant).

11

OXFFFFFFFF

Eg:i 0x0F800000
0xOF000000

Undefined
0x0B004000
Bus error Stripe Registers 0X0B000000

Undefined
DPSRAM1 0x08110000
DPSRAMO 0x08100000
s 0x08020000
S 0 0x08000000

SDRAM1
0x04000000

0x10800000
CM Registers
0x10000000 SDRAMO
Stripe

0x00000000

Figure 8: CM 922T-XA10 memory map

INT_nFIQ Bits Name
31:17 Reserved
ARM core INT_nIRQ 16 FASTCOMMSINT
15 COMMRX
14 COMMTX
13 AHB12INT
12 S2PLDINT
11 EBIINT
Q 10 PLLINT
o |9 TIMERINT1
218 TIMERINTO
" |7 UARTINT
6 EXTINT
5 INT_PLD5
4 INT_PLD4
3 INT_PLD3
2 INT_PLD2
1 INT_PLD1
0 INT_PLDO

Figure 9: CM interrupt architecture

2.3.1 Hardware Architecture

The figurdID gives a rapid overview of the global hardwarbigecture of the AT91RM9200.
As you can realize the main difference between this ardhitecand the CM922T-
XA10 one, is the fact that the CPU is connected to an AMBA SysBais (ASB) and
that the peripherals are only accessible through a bridge (@nnected to the ASB
bus), since they are connected by an AMBA Peripheral Bus (APB

Main Memory (SDRAM) is linked to the SDRAM controller in thexgansion Bus
Interface (EBI).

12

USB Interface

SDRAM Flash
A A A
Y Y Y
Internal
EBI CPU USB Host Mmemories
ASB
PMC ASB-APB Interrupt RTC
bridge Controller
APB
. Ethernet . .
UARTI[0:3] ‘ System Timer ‘ MAC ‘ ‘ SSC[0:2] ‘ USB Device Timer Counter ‘ MCI ‘
A A A A
Y y Y Y

Serial Interface Ethernet Interface USB Interface MMC Interface

Figure 10: AT91RM9200 architecture. Bold blocks are busteras

2.3.2 Memory Map

As for CM 922T-XA10, all peripherals can be controlled thari& memory mapped
registers. These registers are regrouped in the last 256fl¢ti2 @ddress space.
The remainder of the physical address space is assignednomes or left unde-

fined.

Siher OXFFFFFFFF
Peripherals -
0xF0000000 peripherals | o errFrEOD
System Timer
OxFFFFFDOO
Other
peripherals
OxFFFFF200
AIC
Undefined OxFFFFF000
Reserved or
Other
peripherals
OxFFFD0000
USART3
OxFFFCCO000
USART2
OxFFFC8000
USART1
OxFFFC4000
USARTO
OxFFFCO0000
SMC Reserved or
Other
peripherals
0xF0000000
0x30000000
SDRAM
0x20000000
Flash
0x10000000
Internal memories

Figure 11: AT91 memory map

13

2.3.3 Interruption architecture

AT91RM9200 also integrates an interruption controllei@)Tits behavior and integra-
tion is very close to the EPXA10 one. In fact it is linked to theerruption exception
wires (INT_nIRQ and INT_nFIQ). The main difference is thaterruption source of
the ITC can gather multiple hardware sources. For examplece 1 is System inter-
ruptions, it regroups System timer interruption, real tioheck and so on. On top of
that, FIQ managment is completely different since all sesraf this ITC raises IRQ
except one, source 0, which is specialized to raise FIQ.

INT_nFIQ Bits Name
31:25 | AIC_IRQ[0:6]
ARM core INT_nIRQ 24 ETH_MAC
23 USB_HP
22 TC5
21 TC4
20 TC3
19 TC2
18 TC1
17 TCO
16 ssc2
15 ssci
14 SSco
13 SPI
12 TWI
11 USB_DP
Q |10 MCI
o [9 USART3
£ 8 USART2
a7 USART1
6 USARTO
5 INT_PIOD
4 INT_PIOC
3 INT_PIOB
2 INT_PIOA
1 SYS_IRQ
0 FIQ

Figure 12: AT91 interruption architecture

3 Mutek Modifications

Porting Mutek to these two real platforms needs to be madadndifferent phases.
The first phase is to ensure that CPU specific routines arableand works fine, and
second phase is to port hardware specific drivers.

3.1 Mutek on ARM (generic implementations)

To make Mutek work on real ARM, we had to modify its managmédmb@eptions, its
semaphore implementation, and add a cache activatiomeouti

3.1.1 Exception handling

One of the most meticulous thing to do when implementing agrajing system is
undoubtlessly the context save and restore while intezdipy an exception.

ARM architecture is well designed from this point of view. A& mentionned
before, when an exception occurs, the CPU changes of opgmatbde from normal
operating mode to exception mode. In the ARM implementatioMutek, the system
is always running in supervisor mode. The main advantaghisfrhode is the pos-
sibility of executing every instructions (privileged orthoFor the sake of simplicity,

14

we assume that only interruptions can occur (IRQ). FifuisH@vs the context be-
fore IRQ happens. Note that context register value will beked with a “*” in the
following steps.

Supervisor Interrupt Main memory
ro*
rx @ current_ctxt_ _ __
r2*
r3*
r4*
r5*
r6*

0x00000000

CPU Vector

ri1*

ri2* ____sp_svc*
r13 svc* [r13irq | -
r14_svc* | r4irg |
r15 pc*

cpsr*

! ‘
[spsr_svc* | [[spsrirg | 1 | OXFFFFFFFF

Thread stack

Figure 13: Before IRQ

When an interruption occurs, the CPU switches from superwisode to IRQ
mode. The CPU runs then in IRQ mode, and IRQ and FIQ are didalle avoid
the PC* register value loss, this register is saved in a bdinggister named LR _irg.
For the same reason CPSR is saved in SPSR_irg (Saved ProSésss Register).
LR_irg and SPSR_irq are banked registef.(sectiolZTH Register file).

Supervisor Interrupt Main memory 0x00000000
ro*
rix @ current_ctxt_ _ __ CPU Vector
r2*
r3*
r4*
r5*
r6*
7
rg*
ro*
rio*
ri1*
rizx ____sp_svc*
} r13_svc* } r13_irg -
rl4_svc* 14 _irq = pc*
s pc | =0x00000018 Thread stack
\ cpsr = IRQ_mode I
[spst_svc* | [spsr_irg | = cpsr* 1 | OXFFFFFFFF

Figure 14: At IRQ raising

As you can realize from figulledL4, registers rO* to r12* are clodnged and are
accessible in IRQ mode, we can save them as they are. Theeredi8_svc* and
rl4 svc* also called SP_svc* and LR_svc* are banked, theynat accessible any
more. Finally the CPSR* is saved in SPSR_irqg.

Before passing the control to the C function responsible@iRQ managment, we
must take care of storing all the registers, more precialy talue before IRQ occurs
(i.e. all value marked with a “*”). To allow an easier context restonve will store the
context of a thread in its own stack. The trouble is that weshavaccess to the current
top position of the stack (SP_svc*). The solution is to stibtack into supervisor
mode, but we have to save the two register value which woulddt®therwise. Figure

15

I3 give an overview of the PC* and CPSR* storing process. Yau also find the
assembly code of this step.

Supervisor Interrupt Main memory
0x00000000
ro* CPU Vector
rl @ current_ctxt _ _ __
r2* pc*
r3* cpsr*
rax 1 2 4
15*
re*
7
rg*
19+
r10*
ri1*
ri2* ____sp_svc*
[r13_svc* | r13_irq
| 14 sve* | r14_irg Thread stack
rl5 pc
cpsr J 3 I
[spsr_svc* | [spst_irg | OXFFFFFFFF
| RQ Handl er:
@
@Junp here fromexception ... sp and |Ir banked. :-(
@
| dr rl13, =current_ctxt @1 oad tenporary save address
sub lr, Ir, #4
str lr, [r13], #4 @ Save | ast PC
nrs rl4, spsr
str ri4, [rl13], #4 @ Save | ast CPSR

Figure 15: First phase of context storing : the saved regift€* and CPSR*

SP_irq (r13_irg) could have been used as a pointer on the t&,sbut we will
not use it like this. We use it like an empty general purposggster. This register
allows us to store the PC* and CPSR* value at a known positionain memory, just
behind the CPU vector.

Once the two saved registers are stored in memory, we cachshatk to supervi-
sor mode, to retrieve the final memory address of context sBlve procedure to get
back to supervisor mode is simple, it is a read-modify-wséquence (figullel6). The
modification is only an execution mode modification, then @ will continue to
run with IRQ and FIQ disabled.

Now we can store register values in the stack of the prochssad). To do so we
only need to allocate the context size in the stack (by rentpthiis size to the value
of the stack pointer), and write the thirteen first registerheir right place (see figure
L2).

Last registers to be saved are SP_svc* (it is not yet availdduit it is SP_svc plus
context size), LR_svc* (it is still in place), PC* and CPSRhdse ones are stored in
memory, but not at the right address). Figlré 18 gives a iinr of the actions
needed to bring these values in the registers rl to r4.

Once SP_svc* to CPSR* are placed in registers rl to r4, we $t@m in memory
(figurel1D).

Now we have saved all registers. SP_svc points now to theftsack, just before
our saved context. We can safely pass control to the C fumtioharge of identifying

16

Supervisor Interrupt Main memory
ro*
rix @ current_ctxt_ ___
r2* pc*
r3* cpsr*
r4* I I
r5*
r6*
r7*
rg*
rg*
rio*
riix

ri2* ____sp_svc*
[r13_svc* | r13_irq -

[ria sve* | r14_irg Thread stack
r15 pc
cpsr i |

[spsr_svc* | [spsrirg | w | OXFFFFFFFF

0x00000000

CPU Vector

nrs rl4, cpsr
bi c rl4, rl4, #PSR_MODE MASK @cl ear execution node
orr ril4, rl4, #PSR_SVC MODE @ set supervisor node
nmsr cpsr, rl4

Figure 16: Switch back to supervisor mode

Interrupt Supervisor Main memory
ro*
rwx @ current_ctxt_ _ __
r2* pc*
r3* cpsr*
r4* I I
r5* ; | e __ Sp_sVC
r6* ro*
r7* :
rg* ri2x
ro*
rio*
ri1*
ri2* ____sp_svc*
[r13irg | r13_svc | =sp_svc* - CTXT_SZ
| r4irg | r14_svc*
r15 pc

cpsr | |

[spsr_irq | [_spst_sve* | w | OXFFFFFFFF

0x00000000

CPU Vector

Thread stack

@ Push context in thread stack

sub sp, sp, #CTXT_SI ZE @ CTXT size allocation
stma sp, {r0-r12} @save r0 though r12

Figure 17: First registers storing : r0* to r12*

the source of interruption and launching the right intetiphandler. This part of
software is platform dependant, so it will be detailled lfiertin this report. The situ-
ation before passing control to C function calleglst eml nt er r upt () is depicted

17

Interrupt Supervisor Main memory

0x00000000
0
rl =sp_svc + CTXT_SZ @ current_ctxt_ _ _ CPU Vector
2 ~ =sp_svc* - pc*
r3 cpsr*
r4 I I
5 ; |wo___ Sp_sVC
6 ro*
17 :
8 ri2x
r9
r10
ril
ri2 ____sp_svc*
[ri3irgq | r13_svc
[rdig | EISSVo— Thread stack
r15 pc
cpsr | |
[spsr_irq | [_spst_sve* | 1 | OXFFFFFFFF
I dr r0, =current_ctxt @Il oad tenporary save address
add rl, sp, #CTXT_SIZE @ SP before I RQ
nov r2, Ir @just for stm
ldma rO0, {r3, r4} @ grab back pc and cpsr.
Figure 18: Last register retrieving : from phase one
Interrupt Supervisor Main memory 0x00000000
0
rl =sp_svc* @ current_ctxt_ _ _ _ CPU Vector
r2 =Ir_svc*
3 = pc*
r4 = cpsr* | |
5 | e SP_SVC
6 ro*
7
8 ri2*
9
rlo
ril
ri2 ____sp_svc*
[r3irg | r13_svc
‘ r4%ig ‘ r14_sve Thread stack
rl15 pc
cpsr ! !
[spsrirg | [spsr_sve | 1 | OXFFFFFFFF

add r5, sp, #SP_OFF
stma r5, {rl-r4}

Figure 19: Last registers storing : SP*, LR*, PC* and CPSR*

by figure[20.

Last step in the exception handling is to restore a contdrtrbgetting back to the
process interrupted. Note that this process is not nedlyssa one interrupted just
before, more precisely, this is not the case when the intéomu source is the timer.
In the last case it is likely to be a preemption tick. In thetoes process, we must
underline the fact that we first need to read the CPSR valugpahd in the SPSR
register. The restore action and control passing is madaenrtstruction, 4 dmi a.
Since we load the CP value and as we put g all values are moved to the registers
and the SPSR value is moved to the CPSR register. This meatribétexecution mode

18

Interrupt Supervisor Main memory

0x00000000
0
CPU Vector
rl @ current_ctxt_ _ _ _
r2
r3
r4 !
i i
5 ____sp_svc
6 ro*
r7
8 ri2*
r9 sp_svc*
ri0 Ir_svc*
r11 pc*
r12 cpsr* ____ sp_svc*
[r13irg | r13_svc -
| r4irg | :14; pscvc Thread stack
cpsr ! !
n ! !
[spsr_irq | [spsr_sve | L | OXFFFFFFFF

@Junp and link to I T Handl er
bl System nt err upt

Figure 20: Context ready

is updated (IRQ and FIQ are re-enabled). The reason why wipumhodifications in
SPSR and not directly in CPSR is that we would have enabledAiRIFIQ exceptions
in the current mode by modifying directly CPSR. By doing dir€ PSR modifications,
the context restore process could be interrupted and stapm unpredictable state.
The instruction described before allow to make all actioitbout being interrupted.
The full action sequence is shown on fighré 21.

Interrupt Supervisor Main memory
0x00000000
10 CPU Vector
rl @ current_ctxt_ ___
r2
3 —
r4 I I
5 ; |wo___ Sp_sVC
6 ro*
17 :
8 ri2*
r9 sp_svc*
| rio | Ir_svc*
r11 pc*
ri2 cpsr* ____sp_svc*
[r13irg | r13_svc -
[rdig | T S Thread stack
r15 pc
cpsr | |
[spsr_irq | [_spsr_sve | 1 | OXFFFFFFFF
| dr r3, [sp, #PSR _OFF]
nsr spsr_cxsf, r3 @ put cpsr in SPSR
ldma sp, {rO-ri5~ @restore Context

Figure 21: Restore process

19

3.1.2 Exception CPU Vector Relocation

We have a full exception handling routine which saves theedrbefore passing con-
trol to higher level interruption handler. The CPU vectathis location where the CPU
jumps when an exception occurs. As we mentionned beforé, yae of exception

has its own offset. The vector looks like this :

excep:

UUgUUUUU
o

(7]
c
o
7]

reset
Undef i ned_Handl er
SW _Handl er

Pref et ch_Handl er
Abort Handl er

| RQ_Handl er
FI Q Handl er
pc, Ir, #4

@ 0x00 reset

@ 0x04

@ 0x08

@ 0x0C

@ 0x10

@ 0x14 not assigned
@ 0x18

@ 0x1c

The CPU vector must be placed in memory at add@e<30000000. In a simu-
lation environment like Skyeye, there are no problem to loademory an executable
file at addres®x 00000000 but on a real platform like CM 922T-XA10, the software
used to load programs in memory does not allow this kind abactOur solution to
tackle this trouble is to use a code relocation routine whighies the CPU vector from
an alternate position in memory to thg 00000000 address region.

The relocator code is simple and integrated in our programadw. Here is the

algorithm :

except _rel oc:
stnfd
adr
adr
nov

1: cnp
ldrlt
strit
bl t

2: I dnfd
nov

sp!,{r0-r12,1r}
r0, b table
r2, _e table
rl, #0

ro, r2

r3, [r0], #4
r3, [rl], #4
1b
sp!,{r0-r12,1r}
pc, Ir

@ excep_vect

| ocation : 0x00000000

_b_tabl eand_e_t abl e represents the addresses of the beginning and the end
of the CPU vector. It should also include the low level handkscribed before.
Full source is here :

| RQ_Handl er:
@
@ Junp here fromexception ...
@
| dr r13, =current_ctxt
sub lr, Ir, #4
str lr, [r13], #4
nrs rl4, spsr
str ri4, [r13], #4

sp and I r banked. :-(

@ave | ast PC

@ave | ast CPSR

@Switch to SVC node | RQ di sabl ed

nrs rl4, cpsr
bi c rl4, rl4, #PSR_MODE_NMASK
orr rl4, rl4, #PSR_SVC MODE

nmsr cpsr, rl4

@ === mmmmm e e

@ Push context in thread stack

@ === mmmm i m e e

sub sp, sp, #CTXT_SI ZE @thus we can store sp imedi ately
stma sp, {r0-r12} @save r0 though r12

| dr r0, =current _ctxt

add rl, sp, #CTXT_SIZE @ SP before I RQ

nmov r2, Ir @just for stm

ldma rO0, {r3, r4} @ grab back pc and cpsr.

str sp, [rO]
add r5, sp, #SP_OFF
stma r5, {rl-r4}

@Junp and link to I T Handl er
bl Syst em nt er r upt

| dr r3, [sp, #PSR_OFF]
nsr spsr_cxsf, r3 @ put cpsr in SPSR
ldma sp, {rO-ri15» @restore Context

3.1.3 Spinlocks Implementation

The implementation of the semaphores is based on spinlbciertunately these spin-
locks were not working due to little implementation mistakén short, the previous
implementation was based on multiglen() calls, to include the assembly langage
of the spinlock. On top of that some relative jumps was madiése instructions.
Unfortunatelyasm() adds some instructions before and after the assembleugastr
tions given in arguments. Thus the asm sequence was nofyeitaetsame than the
one written in the C file, some instructions were insertedrafatives branches did not
jump to the right place.

We took the decision to reimplement the spinlocks. This pdémentation is really
simple. Like the previous, this one is based on the atomiuinogon swp (swap),
which allows us to read the value of the spin-lock and repiabg another value in
one non interruptible instruction. To implement spinlotdgaaithm, the value written is
1 and the value read must be 0 to continue. If it is not the caseepeat the swap until
itis a 0. To avoid relative branches error to occur in therfeitwe used labeled jumps,
then the assembler is in charge of putting the right addreisel branch instruction.
And finally, we put all assembly instruction in one unicagen() call.

To release the spinlock we only need to write a 0 at the spimieemory address.

Here is the source code :

#defi ne SEM _LOCK(senaddr) \
do { \
asn(\

21

stmdb sp!, {r4-r6} @ \'n" \
nov re, % @oad the semaddr in a reg\n” \
mn r5, #1 @oad 1 \n" \
"1 swp r4, r5, [r6] @ \n" \
" cnp r4, #0 @ \n" \
bne 1b @ oop \n" \
ldma sp!, {r4-r6} @ \'n" \
r'r"(semaddr):tr4","r5","r6"); \

} while(0)
define SEM UNLOCK(senaddr) \
do { \
asn(\
" mov r6, %0 @ \n" \
mov r5, #0 @ \n" \
str r5, [r6] @ \n" \
r'r"(semaddr):tr4","r5","r6"); \

} while(0)

3.1.4 Caches Activation

Instruction and Data caches can be activated thanks to eotoegister in the config-
uration coprocessdtP15 registerc1l. For instruction cache, no particular attention
is needed before activation. But as far as the data cachexceowed, we have to be
careful because some part of the address space must nothesl@w buffered (when
written). For example, these parts correspond to the memapped physical regis-
ters. We can tell the CPU where (on which part of the addremsejfo use or not data
cache and write buffer. This information is placed in thegéw section) table entries.
The only mean to use the data cache is thus to activate the MMU.

In our case, we do not need a complex memory mapping, as thasatein the
Linux kernel. We decided to use an identity mapping (it isdlisethe early deflation
stage of the Linux kernel). In that aim, we choose to build gepdirectory filled with
only section description(f. sectiorlZI13). We only put cache-able and buffer-able
informations on the 128 first section descriptors since we fzen amount of 128 Mo

of main memory.

__setup_nmu:
bi c
bi c
| *

r3,
r3,

r3, #Oxff
r3, #0x3f00

* |Initialise the page tables,
* bits for the RAM area only.

x/
nov
nov
add
nov
orr
add

orrhs
cnp

ro,
r8,
ro,
ri,
ri,
r2,
ri,
ri,
ri,

r3

#0x0

r8, #0x08000000
#0x12

rl, #3 << 10
r3, #16384

r8

rl, #0x0c

r9

22

@Al'ign the pointer

turning on the cacheabl e and bufferable

@start of RAM
@ a reasonabl e RAM si ze

@if virt > start of RAM
@ set cacheabl e, bufferable
@if virt > end of RAM

bi chs rl, rl, #0xOc @cl ear cacheabl e, bufferable

str rl, [r0], #4 @1:1 mapping
add rl, rl, #1048576

teq ro, r2

bne 1b

Once the page directory is built, last actions are to actitreg MMU, the instruction
and data caches. To avoid bad surprises, we invalidate tBs @hd caches, since they
could contain expired translations and cache lines.

__cache_on:
nmov r12, Ir
bl __setup_nmu @bui l d page tables
nmov r0, #0
ncr pl5, 0, r0, c7, cl10, 4 @drain wite buffer
ncr pl5, O, r0, c8, c7, O @flush |,D TLBs
ncr pl5, 0, r0, c7, ¢c7, O @i nval i date caches
nrc pl5, 0, r0, c1, cO, O @get control reg
orr r0, r0, #0x5000 @ enabl e | -cache enabl e,

@ RR cache repl acenent

orr r0, r0, #0x0005 @ enabl e D- Cache and MW
m/n rl, #0
ncr pl5, 0, r3, c2, c0, O @1 oad page tabl e pointer
ncr pl5, 0, r1, c3, cO0, O @1 oad donmai n access contr ol
ncr pl5, 0, r0, c1, cO, O @1 oad control register
mv ro, #0
ncr pl5, 0, r0, c8, c7, O @flush |,D TLBs
nov pc, ri2

3.2 Specific Device Drivers
3.2.1 Serial device driver

First device to require a driver implementation is the demi@rface for character ter-
minal printings. Once this driver is developped, we will l#eato know if Mutek is
effectively working.

Driver API: This driver proposes to the remainder of Mutek the followfgctions
(consol e. h):

void init();

inline void witec(const char c);
inline void wites(const charx s);
inline char readc();

The function names help to understand their aim. We will rie¢ gnore details
about these.

23

ARM Integrator CM922T-XA10: Inthe platform specific part of the driver we must
implement functions introduced above :

void uart00_init();
inline void uart00_witec(const char c);
inline void uart00_wites(const charx s);
inline char uart00_readc();

The function names are quite expressive, but we will giveesdetails.uar t 00
is the name given to the UART device driver in the Linux kernéke keep the same
name, but there are no particular reason.

On top of defining these functions, the driver also needs finel¢he register loca-
tions and usage. A structure describe the registers mapkatis :

struct cnB22t xalO uart 00

{

/+* 1/Oregister

* %/
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

| ong rsr;

| ong rds;

I ong rd;

| ong tsr;
long td;

| ong fecr;

| ong ier;

| ong i ec;

| ong isr;
long iid;

| ong nt;

| ong ncr;

| ong nsr;

I ong div_|o;
| ong di v_hi

[+ UARTOO Receive Status Register =/

/* UARTOO Received Data Status =/

/* UARTOO Received Data =*/

[+ UARTOO Transmit Status Register */

/+* UARTOO Transmit Data */

[+ UARTOO FI FO Control Register =/

[+ UARTOO I nterrudpt-Enable Set and C ear =*/

[+ UARTOO Interrupt Status Register =/

/* UARTOO Interrupt 1D */
[UARTOO Mbde- Configuration =/

/* UARTOO Divisor =/

The implementation of the function described before is kiglependent on this
structure. For exemple, here is the implementation of thetfanwr i t ec() :

#defi ne TX_READY() ((CMP22TXAL10_UARTOO BASEP- >tsr & Ox1F) < 16)

inline void uart00_putc(const char c)

{

//unsi gned int status
/* Wait until there
whi | e(! TX_READY());
/+* Send the character =*/
CMD22TXA10_UARTO0_BASEP- >td = (unsigned int)c;

}

s space in the FIFO /

inline void uart00_witec(const char c)

{

if (c ==

uart 00 _

"\n")
putc(’\r’);

uart 00_putc(c);

}

24

The general behavior of the UART is that we must wait for engpigice in the fifo
by checking a status register, and then write the charattéei fifo by the mean of a
TX register.

ATMEL AT91RM9200: As for CM922T-XA10, we define the following functions :

void usart_init();

inline void usart_writec(const char c);
inline void usart_writes(const char* s);
inline char usart_readc();

The register mapping is the following in AT91RM9200 USART :

struct at91lrnP2 usart

{
/+* 1/Oregister
* %/
unsi gned long cr; /* control =*/
unsi gned long nr; /+* node */
unsigned long ier; /* interrupt enable =/
unsigned long idr; /* interrupt disable x/
unsigned long inr; /* interrupt mask =*/
unsi gned long csr; /* channel status x/
unsi gned long rhr; /* receive holding */
unsigned long thr; /* tranmsmt holding =*/
unsi gned long brgr; /* baud rate generator =/
unsigned long rtor; /* rx time-out =/
unsigned long ttgr; /+ tx tinme-guard */
unsi gned long fidi;
unsi gned | ong ner;
unsi gned long us_if;

unsi gned | ong sysflg;

With this informations, thew i t ec() function implemtentation is the following :

inline void usart_wait()

whi |l e (AT91RWD2_USART_BASEP- >csr ! = (AT91RWB2_CSR _TXEMPTY | AT91RWD2_CSR TXRDY))
{

}

[+ busy wait =/

}

inline void usart_writec(const char c)

{
AT91RVB2_USART BASEP- >t hr = c;

usart_wait();

}

The philosophy here is to wait until the fifo is empty after imavput a character in
it. Then when we want to write something in it we know that iailsvays empty. This
implementation is different from the previous one, but itiicbhave be the same since
UART and USART have close mechanisms.

25

3.2.2 Interrupt Controller Device Driver

The second step in device driver implementation is the tapgion Controller (ITC)
since this is a first step in the direction of preemption impatation.

Driver API: The generic API for this driver is made of the following fuiocts :

void init 0);
void mask_irqg (unsigned int irq);
voi d unmask_i rq(unsigned int irq);

The meaning of these function is quite simple. When we washtble an irq, we
must tell the ITC to set its mask. This is the aimnefsk_i rq() . unmask_i rq()
has the opposite aim, when an IRQ occurs we must mask it tincentio work without
being interrupted every cycle

ARM Integrator CM922T-XA10: The driver implementation of the EPXA10 inter-
ruption controlleii t c00 contains exactly the function introduced before :

voi d cnP22t xal0_itc00_init(void);
voi d cnmB22t xalO_i tc00_nask_irq(unsigned int irq);
voi d cnmB22t xalO_i tc00_unmask_irqg(unsigned int irq);

The device regiter description is also made with a strudagoking like this :

struct cnP22txall_itc00

{
unsi gned | ong i ns; [+ Mask Set =/
unsi gned | ong i nt; /+ Mask Clear =*/
unsi gned | ong i ss; /* Source Status =/
unsi gned long irs; /* Request Status =*/
unsi gned long iid; /* Interrupt 1D */
unsi gned | ong ppr; /* PLD priority =/
unsi gned | ong nod; /+ PLD Mode =*/
unsi gned | ong unused[25]; /* unused =*/
unsi gned | ong prio[17]; /* Priorities */

b

For exemple, the implementation of the functimaks i rq() forit cOO is re-
ally simple :

voi d cnmB22t xalO_itc00_nask_irq(unsigned int irq)

{
CMP22TXAL0 | TCOO BASEP->ims = (1 << irq);

}

We only need to set a register valuarg interrupt mask set).

The functions described till there are low level interropticontroller functions.
An extra function need to be completed, which is the intefauphandling function.
This function will be called by the exception routine, wheniaterruption will occur.
The name of this handler is fixed 8y st em nt er rupt () and its definition must
be placed in the t . ¢ file in the platform directory. Briefly, this function readset
status register of the interruption controller, and cdlks $pecific interruption handler,
which must be registered by the driver of the source device.

26

ATMEL AT91RM9200:

The implementation of the ITC in AT91RM9200 as a lit-

tle specificity. On top of the generic functions describedie@a we need two extra
functionsset _i rq() andcl ear _irq() :

void at9lrnB2 aic_init

void at91lrnP2_aic_nask_irq
voi d at91lrnP2_ai c_unmask_irq(unsi gned int
void at9lrnmB2_aic_set_irq
void at91lrnP2_aic_clear_irq (unsigned int

The register mapping is the following :

struct at9lrnD2 aic

{
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned
unsi gned

| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong
| ong

aic_snr[32];
ai c_svr[32];
aic_ivr;
aic_fvr;
aic_isr;
aic_ipr;
aic_inr;
aic_cisr;
reserved[2] ;
aic_iecr;
aic_idcr;
aic_iccr;
aic_iscr;

ai c_eoicr;
ai c_spu;

ai c_dcr;
reservedl;

| *
| *
| *
| *
| *
| *
| *
| *
| *
| *
| *
| *
| *
| *
| *
| *

(unsigned int

(unsi gned int

0x000
0x080
0x100
0x104
0x108
0x10C
0x110
0x114
0x118
0x120
0x124
0x128
0x12C
0x130
0x134
0x138

irq);
irq);
irag);
irq);

Sour ce Mode register

Source Vector register

Interrupt Vector register

Fast Interrupt Vector register
Interrupt status register
Interrupt pending register
Interrupt Mask register

Core interrupt status register

& 0x11C

I nterrupt Enabl e Conmand register
Interrupt Disable Conmand register
Interrupt C ear Conmand register
Interrupt Set Conmand regi ster

End of Interrupt Command register
Spurious Interrupt Vector register
Debug Control register

As for CM922T-XA10 themask i r q() operation is only a register value write :

voi d at91lrnmB2_ai c_mask_i rq(unsi gned int

{

unsi gned long mask = 1 << (irq);
mask;

AT91RVD2_Al C_BASEP- >ai c_i dcr

}

irq)

The definition ofSyst em nt er r upt () must be adapted to the specific registers
of this interruption controller. It is placed in the foldefrtbe platform.

3.2.3 Timer device driver

Final step to get preemption working is to develop a drivetlie timer. The main task
of this driver is to configure the timer to interrupt the CPUagiredefined interval of

time.

Driver API:

lowing :

The API of the timer driver is quite complexe in Mutek sincenitist
manage with multiple processor synchronization. The fsildf primitives is the fol-

27

EEEEE

(RO
(RO
(RO

(VO
(VO
(VO
(VO
(VWO
(RW
(RW

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

voi d timerSetlnterruptEnable();

voi d timerSetlnterruptDi sable();

voi d tinmerSetPeriod(unsigned int v);
voi d timerSet Synchroni zedPeri od(unsi gned int v);
int timerGetPeriod();

int timerGetState();

voi d timerSet Counti ngRun();

void timerResetInterrupt(int procid);
voi d tinmerSet Synchroni zedMode() ;

void timerlinterruptlnit(unsigned int);
voi d timerlnterruptHandl er(void);

Briefly, these functions allows to enable and disable trerinption assertion in the
hardware timer, to configure the period between two tickstahdndle the interruption
asserted. Some of these functions have only a sense whennk@mwmulti-processor
platforms.

ARM Integrator CM922T-XA10: In a first implementation, we do not forsee the
integration of multiple processor. This choice allows udéalare most of the function
presented above as empty functions.

The currently implemented functions are :

voi d tinerSetlnterruptEnable();

voi d timerSetlnterruptDi sable();

voi d timerSetPeriod(unsigned int v);
void tinmerResetlnterrupt(int procid);

Thet i ner 00, which is the name of the timer available on the EPXA10, wealnee
to set a control bit to tell it to start (or stop). We decidedrplement two extra
functions whose aims are to start and stop the timer.

void tinmerStart(void);
void timerStop(void);

The registers of the timer are mapped in a structure, as far gteripherals. The
definition of this structure looks like the following one:

struct cnB22txall_tiner00 {

unsigned long tcr; /* Tinmer Control Register =/
unsi gned | ong unused_1[3];

unsigned long tpre; /+ Timer Prescale x/

unsi gned | ong unused_2[3];

unsi gned long tl; [+ Timer Limt =/
unsi gned | ong unused_3[3];
unsi gned long tr; /* Timer Read */

}s

With all these definition, the timer is ready for usage. Bué @mportant thing
still needs to be implemented to make preemption work. Téss$ $tep is the inter-
ruption handler for timer interruptions. This handler vailily disable the interruption
and call the preemption facilities. This part of the codeef$ &s it is since it works,
once semaphores (more precisely spinlocks used in the $@mgimplementation) are
fixed.

28

ATMEL AT91RM9200: The functions implemented for the AT91 are the same than
the one implemented for the EPXA10. Only the register map@mifferent.

struct at91lrnP2_st {

unsi gned | ong st_cr; /1 Control Register

unsi gned | ong st _pint; /] Period Interval Mde Register
unsi gned | ong st _wnr; /1 \Wat chdog Mbde Regi ster

unsi gned | ong st_rtnr; /1 Real -time Mode Register

unsi gned | ong st_sr; /] Status Register

unsi gned | ong st_ier; /1 Interrupt Enabl e Register
unsi gned | ong st_idr; /1 Interrupt Disable Register
unsi gned | ong st_inr; /1 Interrupt Mask Regi ster

unsi gned | ong st_rtar; /1 Real-time Alarm Register

unsi gned | ong st_crtr; /1 Current Real-tinme Register

This timer do not need start and stop functions. The remaioittbe procedure is
identical to the one presented for CM922T-XA10.

4 Mutek Design and Programming Model

4.1 CPU Vector Relocalisation or Mapping

In the Mutek implementation section, we presented the atiineplementation of the
CPU vector. In fact, we build a CPU vector in assembler lagguand copy it at
execution time to the right plac®X00000000). This solution is the only possible
solution when we do not use the MMU, as we have no mappingIpitides. Indeed,
with the use of MMU, other solutions are available. Amongihee can use the CPU
vector remapping option, that is to say that the CPU vectarlmplace at address
OxFFFF0000, which is impossible whithout MMU.

In that case an interresting option is available. We can rhapmiemory region
of the CPU vector at addre€xFFFFO000 and add a Null pointer trap at address
0x00000000 avoiding to reset the platform each time we make a null poiteess.
This is made by declaring an invalid page at locai®0000000. Each instruction
prefetch or data access at this address will generate ahetm@ption (prefetch abort
or data abort).

The two solutions can be ported into Mutek, since we use thd.MivVorder to use
the data cache.

4.2 Mutek/ARM execution mode

As we mentionned before Mutek is running in supervisor mddes mode must have
been chosen because all instructions are executable sirca privileged mode of
execution. In the description of context saving, we sawtihatregisters are not acces-
sible (SP and LR) while handling an IRQ in IRQ mode. This isfodil true. In fact
they are not accessible because we run in supervisor modsRwadd LR are banked
(SP_svc and LR_svc).

In fact the ARM instruction set allow retrieving normal SRddrR with a special
bit in the instructiond dmandst m To keep the advantage of running in privileged
mode to avoid mode switching when we want execute privilég&ductions we should

29

use the system mode. This mode of execution, present on ARMaHitecture, is a
privileged mode of execution which uses no banked registers

This could have great advantages for us, because the excdpindler can be
simplified, and all context storing can be made in IRQ mode.

Another great advantage is noticeable. If we envision tleefisoftware interrupts,
or some reset handling, the current configuration will ntvathem. The CPU auto-
matically update the LR_svc with the PC value, and as thepiaremode of software
interrupts or reset is supervisor, the saved PC will eras@ibcess LR. LR value will
then be lost.

We beleive that these two reasons should promote the usgstdm mode run
the Mutek operating system instead of ugervisor mode

4.3 Mutek Programming Model

The Mutek operating system is a very lightweight implem#ateof the Posix thread
library. As such, the Mutek programming model is based onrg ten hardware
abstraction layer so that threads can have access to thdeteragdress space. Mutek
can already support a wide range of applications. The nertirtg point we see on
the Mutek development cycle is to know whether the deviceedsi and high level
support within the kernel code or should be part of the apfibo code. The timer and
interrupt controller is the only hardware dependent pathefkernel, all other drivers
can be written in BsiIx threads that will be scheduled with other application tisea
This decision has a big impact on the I/O functions providgthie Mutekl i bc. The

I i bc should be re-written to refine the Mutek programming model.

References

[1] Soclib simulation environment. Available online,
http://soclib.l1pb.Tr/}2005.

[2] ARM. Arm integrator/cm922t-xal0 user guide. Availablenline,
http://www.arm.com/pdfs/DUIOL84A CM922T.pdf, Octolf05.

[3] Atmel. Atmel at91rm9200 platform. Available online,
http://www.atmel.com/dyn/products/product_card.aspt? 10=2983, October
2005.

[4] I. Augé, F. Donnet, P. Gomez, D. Hommais, and F. Pétrosy@ént: a pragmatic
approach to the design of embedded system®dsign, Automation and Test in
Europe Conference and Exhibition (DATE'QParis, France, March 2002.

[5] Nicolas Fournel, Antoine Fraboulet, and Paul FeautBeioting and Porting Linux
and uClinux on a new platform. Research Report 2006-08 ENS-Lyon, Febru-
ary 2006. 28 pages.

[6] Mutek Operating System. Disydent web site. Available liroa
http://www-asim.lip6.fr/recherche/disydent/, OctoRe05.

[7] Andrew N.Sloss, Dominic Symes, and Chris WrighhRM System Developer’s
Guide Morgan Kaufmann, 2004. ISBN 1-55860-874-5.

30

http://soclib.lip6.fr/
http://soclib.lip6.fr/
http://www.arm.com/pdfs/DUI0184A_CM922T.pdf
http://www.atmel.com/dyn/products/product_card.asp?part_id=2983
http://www-asim.lip6.fr/recherche/disydent/

[8] David Seal. ARM Architecture Reference Manughddison-Wesley, 2nd edition,
2001. ISBN 0-201-73719-1.

[9] Skyeye. Skyeye web site. Available onlihe, http://sggsourceforge.net/, October
2005.

31

http://skyeye.sourceforge.net/

A Core Toolchain compilation Script

The DISYDENT framework comes with gcc 3.2, during our experiments we edé¢d
upgrade to gcc-3.3. The configuration script to build gcaiitede updated to the new
configuration gcc scheme. This appendix presets the bagis sised to build a cross
compiler for Mutek/ARM.

CXTOOLS=/ usr/ | ocal / cross_t ool chai n/ arm core/ gcc- 3. 3. 6-none/ arm 9t dni - | i nux-gnu
BUI LD _DI R=/ hore/ nf our nel / t nmp/ gcc_crossbui |l d
TARGET=ar m 9t dmi - | i nux- gnu

GCC_VER=3.3.6
Bl NUTI LS_VER=2. 16. 1

#binutils

cd $BU LD DI R/ src

if test ! -d binutils-$BINUTILS VER; then
tar jxvf binutils-$BINUTILS VER tar.bz2

fi

nkdir -p $BU LD DI R/ buil d/ bi nutils-$BI NUTI LS VER

cd $BUI LD DI R/ bui | d/ bi nutils-$BI NUTILS VER

$BUI LD DI R/ src/ binutils-$BINUTILS VER configure \
--prefix=$CXTOOLS - -t ar get =$TARGET

make ; make install

export PATH=$CXTOOLS/ bi n: $PATH

cd $BU LD DI R/ src
if test ! -d gcc-$GCC VER ; then
tar jxvf gcc-$GCC _VER tar.bz2
fi
nkdir -p $BUI LD DI R/ bui | d/ gcc- $GCC_VER
cd $BUI LD DI R/ bui | d/ gcc- $GCC_VER

$BUI LD DI R/ src/ gcc- $GCC_VER/ confi gure --prefix=$CXTOOLS \
--srcdir=$BU LD DI R/ src/gcc-$CCC_VER \
--target =$TARGET
--enabl e- | anguages=c, c++ --wi th-gnu-as --with-gnu-1d
--di sabl e-shared --disable-nultilib --disable-threads
--di sable-libgcj --disable-nls --without-newib
--di sabl e-1i bstdcxx-v3 --with-cpu=arndbtdm

— - - -

export ALL_TARGET MODULES=""
export CONFI GURE_TARGET MODULES=""
export | NSTALL TARGET MODULES=""
make -e; nake -e install

32

33

B AT91RM9200 Idscript

| *
* Mutek |inker script for ARM AT91RMB200

* Ant oi ne Fraboul et
*

* |
MVEMORY
{
init : ORIG N = 0xc0000000, LENGTH = 0x00010000 /* 65 KB */
t ext : ORIG N = 0xc0010000, LENGTH = 0x00080000 /* 512 KB =*/
dat a : ORIG@ N = 0xc0090000, LENGTH = 0x00100000 /* 1 MB * |
/* 0xc0190000 - 0xc01a0000 is used for stack () =/
reset : ORIA N = 0xc01a0000, LENGIH = 0x00010000
excep : ORIG N = 0xc01b0000, LENGTH = 0x00010000
}
EXTERN(r eset)
EXTERN(excep)
ENTRY(excep)
SECTI ONS
{
dinit |
/ hone/ ant oi ne/ proj et s/ arngcc/ nut ek/ nut ek-oes/ i b/l ibhandler.a(.init)
} >init
text o {
= ALI GN(0x4)
*(.text)
(. gnu.linkonce.tx)
*(.glue_7t)
*(.glue_7)
= ALI GN(0x10)
_etext = . ;
} > text
.excep : {
/ hone/ ant oi ne/ proj et s/ ar ngcc/ nut ek/ nut ek- oes/ i b/ 1 i bhandl er. a(. excep)
} > excep
.reset : {
/ hone/ ant oi ne/ proj et s/ arngcc/ nut ek/ nut ek-oes/ i b/1ibhandl er. a(.reset)
} > reset
.data : {
*(.rodata) *(.rodata.strl.4)
= ALI GN(4);
*(.data) *=(.1it8) *(.lit4) *(.sdata)
__sem.addr = .
LONG(0)

34

LONG 0)
LONG 0)
LONG 0)
LONG 0)
LONG 0)
LONG(0)
LONG(0)
LONG(0)
LONG 0)
LONG 0)
LONG 0)
LONG(0)
LONG(0)
LONG 0)
_edata = . ;
*(.sbss) *(.scommon) =*(.bss) *(COVMON)
_end = . ;

} > data

[+ Semaphore address =*/
[+ __sem addr = 0x01110100; =/

/+* Required, but useful only when dealing with scratch pad nenories =/
__Spm addr 0;
spm 0;

[+ Default stack address, for ALL processors x/
/* the stack starts above the data section */
__irqg_stack_addr 0xc0190000 + 0x400;

__fiqg_stack_addr = __irqg_stack_addr + 0x400;
__und_st ack_addr = _ fiqg_stack_addr + 0x400;
__abt_stack_addr = _und_stack_addr + 0x400;
__svc_stack_addr = abt_stack_addr + 0x1000;

/= peripheral adress =*/

__tty addr = Oxfffc0000; /* USARTO */
__itc_addr = Oxfffffo00; /+ AIC */
__tnr_addr = OxfffffdoO; /+ System Tinmer =/

__processor_nunber 1;

}

SEARCH DI R (/ hone/ ant oi ne/ pr oj et s/ ar ngcc/ mut ek/ nut ek- oes/ |i b)
GROUP (libc.a l'ibhandler.a |ibpthread. a)

35

C Integrator CM922T-XA10 Idscript

| *
* Mutek linker script for ARM I ntegrator CVB22T- XAl10

*

* |

MVEMORY

{
init : ORIG N = 0x00020000, LENGTH = 0x00010000 /* 65 KB */
page_tabl e : ORIA N = 0x00100000, LENGIH = 0x00004000 /* 16 KB =*/
t ext : ORIG N = 0x00200000, LENGTH = 0x00100000 /* 1 MB =/
dat a : ORIA@ N = 0x00500000, LENGTH = 0x00100000 /* 1 MB * |
/* 0xc0190000 - 0xc01a0000 is used for stack () =/
reset : ORIG N = 0x00600000, LENGTH = 0x00010000
[+ excep : ORIA N = 0x001b0000, LENGTH = 0x00010000 =*/

}

EXTERN(r eset)
EXTERN(excep)
ENTRY(excep)

SECTI ONS
{

dinit |
/ hone/ nf our nel / CVS_eos/ nmut ek- oes/ bin-at91/1ib/libhandler.a(.init)
} >init

.excep : {
/ hone/ nf our nel / CVS_eos/ nmut ek- oes/ bin-at 91/ 1i b/l i bhandl er. a(. excep)
} >init

.pgtable : {
__pgt _base = .
} > page_table

text o {
= ALI GN(0x4)
*(.text)
(. gnu.linkonce.tx)
*(.glue_7t)
*(.glue_7)
= ALI GN(0x10)
_etext = . ;
} > text

.reset : {
/ hone/ nf our nel / CVS_eos/ nut ek- oes/ bin-at 91/1i b/l i bhandl er. a(.reset)

36

} > reset

.data : {

*(.rodata) *(.rodata.strl.4)
= ALI GN(4);

*(.data) (. I|t8) *(.litd) =(.sdata)
__sem addr = .
LONG(0)
LONGE 0)
LONGE 0)
LONGE 0)
LONG(0)
LONG(0)
LONGE 0)
LONGE 0)
LONGE 0)
LONG(0)
LONG(0)
LONG(0)
LONGE 0)
LONGE 0)
LONG(0)
_edata = .
* (. sbss) *(scomon) *(.bss) *(COVMON)
_end = . ;

} > data

/= Semaphore address =*/
[+ __sem addr = 0x01110100; =/

/+* Required, but useful only when dealing with scratch pad nenories =/
__spm addr 0;
spm 0;

/= Default stack address, for ALL processors x/
/+ the stack starts above the data section x/
__irq_stack_addr 0x00390000 + 0x400;

__fiq_stack_addr = __irqg_stack_addr + 0x400;
__und_st ack_addr = fiqg_stack_addr + 0x400;
__abt_stack_addr = _und_stack_addr + 0x400;
__svc_stack_addr = _abt _stack_addr + 0x1000;

[+ peripheral adress =*/

__tty_addr = 0x0B000280; /* UARTOO * |
__itc_addr = 0x0B0O0O0OCO0; /= 1TCOO */
__tmr_addr = 0x0B000200; /* Tiner0 */

1

__processor_nunber

37

SEARCH DI R (/ hone/ nf our nel / CVS_eos/ nmut ek- oes/ bi n-at 91/1i b)
GROUP (libc.a l'ibhandler.a |ibpthread. a)

38

	Introduction
	The Mutek Kernel
	The libhandler library
	The libc library
	Porting Mutek to a real platform

	Platforms Description
	ARM Common Architecture
	ARM9TDMI Core
	Instruction and Data Caches
	MMU Behaviour

	Integrator CM922T-XA10 Platform
	Hardware Architecture
	Memory map
	Interruption Architecture

	Atmel AT91RM9200 Platform
	Hardware Architecture
	Memory Map
	Interruption architecture

	Mutek Modifications
	Mutek on ARM (generic implementations)
	Exception handling
	Exception CPU Vector Relocation
	Spinlocks Implementation
	Caches Activation

	Specific Device Drivers
	Serial device driver
	Interrupt Controller Device Driver
	Timer device driver

	Mutek Design and Programming Model
	CPU Vector Relocalisation or Mapping
	Mutek/ARM execution mode
	Mutek Programming Model

	Core Toolchain compilation Script
	AT91RM9200 ldscript
	Integrator CM922T-XA10 ldscript

