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Abstract
This research report presents a non intrusive methodology for building embedded sys-
tems energy consumption models. The method is based on measurement on real hard-
ware in order to get a quantitative approach that takes into account the full architecture.
Based on these measurements, data are grouped into class of instructions and events.
These classes can then be reused in software simulators and in high-level source code
transformation cost functions for optimizing compilers. The computed power model is
much more simpler than previous power models while being accurate at the platform
level.
The methodology is illustrated using experimental resultsmade on an ARM Integrator
platform for which an accurate and full system energy model is build.

Keywords: Embedded Systems, Energy Consumption Model, Simulation Instrumentation, Optimizing
Compilers Cost Functions.

Résumé
Ce rapport de recherche présente une méthodologie non intrusive de construction de
modèles de consommation pour des architectures embarquées. La méthode utilise des
mesures effectuées sur des plateformes réelles afin d’avoirune approche quantita-
tive prenant en compte la plateforme complète. Les mesures sont ensuite groupées en
classes d’instructions et d’événements pour simplifier le modèle. Ces données peuvent
ensuite être facilement réutilisées dans des simulateurs instrumentés ou comme indi-
quation dans des modèles de coût utilisés dans les transformations de haut niveaux des
compilateurs optimiseurs.
Une application de la méthode est présentée en utilisant uneplateforme ARM Integra-
tor pour laquelle un modèle de consommation est construit aunivveau système.

Mots-clés: Systèmes embarqués, Modèle de consommation énergétique, Instrumentation pour la
simulation, Fonctions de coût pour compilateurs optimiseurs.
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1 Introduction

Embedded computing systems go through a dramatic increase of computational power. While this com-
putational power is growing, electrical consumption follows the same kind of trend. Unfortunately battery
capacity used to power these systems does not keep the same pace. The consequences of these differences
in evolution drive designers to take the electrical consumption as a major constraint. We reached a point
where hardware solutions are not sufficient anymore. One of the multiple solutions to reduce significantly
energy consumption is to organize software and drive the hardware in a power efficient way.

One can use software optimization techniques during software design or source code optimization at
compile time. To know where the software is the more power-hungry and what are the best optimization
choices, quantitative consumption data are of great value.Manufacturers reference manuals usually pro-
vide some consumption figures for different system parts. Unfortunately, these figures are generally not
precise enough to build a complete system power consumptionmodel. The usability of these figures (CPU
instructions, caches, bus access, scratch-pad and external memories, peripherals, . . . ) is made difficult for
software developers and tools by their varying levels of description that are most of the time different from
each other among components of the same embedded system. Theresult is that it is very difficult to aggre-
gate the figures of different components for a full system electrical consumption. In the same manner it is
often difficult to handle them during hardware simulation orwithin optimizing compilers.

In this report, we propose a methodology which aims at building electrical consumption models that
overcome these problems. As it is targeting embedded software development for fixed architectures, the
power consumption model is based on measurement on real hardware. The measurement procedure should
not be intrusive because these setups are generally difficult to implement and represent a lot of work that
might not be feasible for software developers. The proposition of this report use a model building method-
ology based on external system measurements only. The modelgenerated by this methodology must be
simple enough to be used in fast simulation for software organization choices or automated optimizations
at compile time. Experimentations have been made on an ARM Integrator platform and an accurate full
system energy consumption model is built from a series of measurements using micro benchmark codes.

The report is organized as follows. In Section2 we review the different existing techniques used for
building hardware power consumption model and their use. Section 3 presents our methodology used to
build full platform energy consumption models. Section4 presents our experimental results on an ARM
target platform that highlights the points mentioned aboveand shows that an accurate energy consump-
tion model can be build and used in software platform simulators using only simple and non intrusive
measurements. Finally, the model will be validated in section5.1.

2 State of the Art and Related Work

Before giving some examples of existing models, we explain in this section how an energy consumption
model is used and why it is interesting.

2.1 Energy consumption models

We give here an overview of the end user model usage. This overview will be preceded by an architecture
presentation, which will help to understand this usage.

The aim of using a model in energy consumption estimation is to reduce the design complexity and
to test some solutions before production. We will give more details about these specific aims after model
building description. The architecture of targeted systems can be seen as a hierarchical stack. At the lowest
level, we find the transistors, elementary components of VLSI (Very Large Scale Integration) circuits, and
at the upper level, there is the overall system. This hierarchy is depicted on Figure1.

Every model is built at a specific level of granularity. The major influence of this level of granularity is
on the model parameters. The parameters of a system-level model are not as fine grained as the one taken
for a gate-level model. For example in the first case we will have microprocessor instructions whereas in
the second we will use binary test vectors.
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Figure 1: Architectural hierarchy from transistor to embedded system

When using the model, we must use the correct parameters values to get the most precise energy
consumption estimation. If the model has architectural level parameters and if our goal is to know how
many Joules were spent by a given software application, we should proceed as follows. We should simulate
the behavior of the platform between system level (usage level) and architectural level (model level), to
estimate the model parameters values. At system level, activity informations are given by the application
itself. Once the parameters values are fed in the model, a computation phase is needed to aggregate the
data. This example is illustrated by figure2.
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2.2 Model classification and related work

We will now see that many work has been already done on the taskof energy characterization or power
estimation. Before giving examples of these works, we will expose here how we decided to classify them.
These models can be characterized by two main orthogonal criteria. The first is the level of granularity of
the resulting model, and the second is the data acquisition method at model building time.

2.2.1 Level of granularity

The first criterion is level of granularity of the model. Up tonow there exists several power consumption
models for processing systems (general purpose and specialized processing unit). These models can be
ordered by level of abstraction, from circuit-level (the lowest) to system-level (the highest). Figure1 depicts
the increasing level of granularity of the model as far as we consider a higher level in the architectural
hierarchy. We can classify them into three main groups : circuit/gate-level models, architectural models
and finally system/instruction-level models.

Thus, in the highest class of abstraction level, which is instruction/system level, efforts are made to
characterize the energy consumption of instructions. Someonly builds an instruction cost table, where
others also take into account the inter-instruction cost (control logic switching cost) or the data values (data
logic switching cost).

At the architecture level, the system is first divided into functional blocks. Each of these blocks has its
own energy consumption model. An important advantage of this kind of model is the possibility to choose
completely different types of model for each functional block, and thus completely different parameters for
them. Most of the time, models used for functional unit are analytical models, but statistical or empirical
models built thanks to simulated or measured data can be usedtoo.

Finally, as far as circuit/gate level model are concerned, the work is to describe very fine grained
behavior of the target system or processor.

2.2.2 Data gathering method

In the model building process, quantitative value of energyconsumption are needed to calibrate the final
model to suit more closely the underlying architecture energy consumption. Two of the methods can be
distinguished by their data acquisition method and the third does not even need data. For this criterion, we
can find the three following classes : analytical models, simulation based models and physical measurement
based models.

The first method of model building is analytical construction. In fact, in this method no energy con-
sumption data are needed. This method use physical laws and architecture description to predict accurately
the electrical consumption of the targeted element. This method is often used on low-level and regularly
structured units such as caches memories. It appears to be really difficult on irregular structures or not
really accurate due to extreme simplifications.

The second method gathers quantitative data from simulation. In this method, we build the model
by a bottom-up process, which consists in using models of lower level of granularity, as described in
section2.1. This process can be repeated level by level. At each step, parameters of the lower level
must be calculated by simulation and quantitave data gathered. All informations are then deduced from
the hardware architecture. Figure3 depicts this method. Since this method only requires the detailed
architecture of the system, no hardware platform is needed.It can be used during design of VLSI circuits
to estimate the resulting consumption or to test the viability of new solutions before production.

An alternate solution to simulation and lower level model based methodology is to use measurements.
Indeed, by measuring the energy consumption on real hardware, it is possible to build an energy consump-
tion model. In fact, the production process of this kind of models is the exact opposite of the one described
before for simulation based ones. The process is a top-down construction, since the data gathered by mea-
surement concern the overall system, and detailed informations must be extracted from these global ones,
and not aggregated. Figure4 gives an overview of this method. The models built by this kind of method
are generally less complex since quantitative data are coarse-grained.
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We will give examples of each methods at different level of granularity in the following section. As our
interest is in a measurement based method, we give here a few examples of measurement setups proposed
in the literature. The solutions proposed for measurement have a wide range of complexity.

• The simplest solution is proposed in [20], by Tiwari et al. It consists in using a ammeter connected
to the power supply pins of the processor. This method has foradvantage to be very simple to
implement, but it has also a huge disadvantage, which is the loss of information. Due to the poor
time resolution of the ammeter, we only get mean values.

• A way to overcome this problem is proposed by Russell and Jacome in [18]. Their data acquisition
solution use a digitalizing oscilloscope coupled with a resistor placed in series with the power sup-
ply connection. For this kind of measurement, they use a highperformance oscilloscope (LeCroy
LC534) which has a high sample rate. The setup even allows theauthors to have a trigger signal,
which gives the beginning and the end of the measurement period. The sample rate of the data is
limited by the performance of the oscilloscope.

• Another solution for instantaneous current measures is proposed by Nikolaidis and Laopoulos in
[16]. The setup is based on an oscilloscope and a current mirror unit. The reason of a current mirror
usage is the reduction of the influence of the measurement setup on measured hardware. The authors
can measure power consumption of the system at high samplingspeed without interfering with the
supply voltage.

• Finally, Chang et al., in [3], propose a setup that gives the consumption cycle by cycle.This setup is
based on the charge and discharge of capacitors. Indeed, thesetup is placed in series with the power
supply. The principle is that at each cycle one capacitance charges and the other discharges. Thus by
sampling only twice a clock cycle they can deduce the power consumed by the target system during
this cycle. The setup is completed by an AD converter (Analog-Digital Converter) which is in charge
of sampling, and a Fast SRAM that is fed by the ADC with the voltage values. The data are then
computed from the SRAM.

2.2.3 Related work

The two criteria of classification are not fully orthogonal,since all combination are not possible or pertinent.
Indeed, analytically built models targets low level units due to the complexity of the building process. This
building method will not be detailed any further in the remaining of this report, because our interest is in
a higher level model. As far as simulation based model are concerned, they are rarely used in the highest
level of granularity since they are highly time consuming atbuilding time. Finally we do not find lower
level model based on measurements since it is complicated toextract low level informations from measures
which are representing the whole system consumption.

In the following paragraphs, we will give an overview of the basic models of electrical consumption of
circuits, and then some examples of abstraction level/building method combinations investigated in related
works. The presentation of these works will be organized by level of abstraction.

The basic model Before giving examples of models by architectural layer class, we present here the basic
power model of VLSI (Very Large Scale Integration) circuits. This model is one of the lowest level power
model, since it models the power consumption of the most elementary gate, the inverter (2 transistors).

The consumption of a gate can by divided into two main parts : static and dynamic power. The first
part, static power, does not depend on the gate input changesand hence gate activity. However, the second
part, dynamic power, is correlated to these input signal changes.

The static power is composed of the current leakage of a closed transistor. It is usually modeled by
equation (1). Vdd is the power supply voltage andIleak is the leakage current.

Pstatic = Vdd × Ileak (1)

The dynamic power can be subdivided into two parts : short-cut power and output capacitance load
power.
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The short-cut power is due to the fact that the transistors are all (N-MOS group and P-MOS group)
opened at the same time in the transition period. Some are switching from 1 to 0 and the others from 0 to
1. When the input signal is around the threshold voltageVth, the two group of transistors are open and a
current can pass between groundVcc andVdd. This power can be modeled by equation (2). Once againVth

is the threshold voltage andVdd is the power supply voltage. Finally,τ is the signal raise time.

Pshort_cut = K.(Vdd − 2Vth)
3
.τ (2)

The second part of the dynamic power is the output capacitance load power. This formula express the
fact that the energy stored in the output capacitance is shorted to ground when the input switches from 1 to
0.

P =
1

2
CV 2

dd (3)

whereC is the output capacitance of the gate.
In present day technologies, the first two sources of power dissipation are negligible against the amount

of power that the third represents. The power consumption ofthe inverter is then simplified to the output
capacitance load described by equation (3).

This model is generalized to all gates by the approximation that all other consumption can be neglected
against the output capacitance charge.

A second generalization is used in architectural and systemlevel models. A naive extension of the
model described before (equation (3)) to a full block or chip gives formula (4) :

P =
1

2
CmV 2

ddfα (4)

whereCm is the total output capacitance of the system,f is the operating clock frequency andα is the
proportion of gates switching from 0 to 1 in a clock cycle. Theparametersα andCm are difficult to
estimate but can be obtained by detailed simulation.

This latter model is widely used, even in other models, whereit gives approximation of the power
consumption of a system or block, but it is not adapted to the specificity of the logic contained in the block.

Transistor/Gate-level Models One of the most accurate methods to estimate power consumption before
a circuit is realized is doubtlessly transistor/gate levelsimulation. In fact most of synthesis tools provide
power consumption prediction. For example PowerMill [8] from Synopsys and QuickPower [7] from
Mentor. These tools are low level (circuit or HDL) simulators. Other simulators operate at circuit level,
such as Spice-based simulators (Star-Sim [11] for example). This kind of simulation gives accurate fine-
grained results, but are very time-expensive. In fact the time of simulation limits the number of events
simulated.

A first improvement for this drawback is the gate level simulation. The elementary unit is not the
transistor anymore but the gate (an assembly of transistor). Mynoch [17] for example, runs 450 times
faster than Spice based simulation.

The models (and simulators based on these models) presentedhere requires detailed information on the
hardware modeled, HDL source or equivalent informations. At software development phase, it is almost
impossible to get these information from the manufacturers. Then this kind of models do not meet our
needs of simplicity. Moreover measurement based model doesnot exist and are probably impossible to
build at such a low level of granularity.

Architectural-level models As we saw before, the peculiarity of architectural models isthat they are
centered on the functional units. Energy consumption is estimated by estimating the consumption of all the
blocks.

The first architectural-level model we will talk about is proposed by Chen et al. in [6, 5, 4]. The system
modeled in this work is a full system comprising a CPU and a DSP, plus a bus and memories. This system
is divided into functional blocks, such as registers, ALU, MAC, . . . On top of that, the decomposition
proposed by the authors is hierarchical, and apply to all features of the target. As far as efficiency is
concerned, the authors want their model to be accurate, hence they decided to take into account logic
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switching generated by instructions and data values. The blocks are grouped into two families :bit-
dependent andbit-independent blocks, regarding if their consumption varies while input vector changes.
The models used in the functional blocks are based on tabularform called Look-Up Tables (LUT) filled
thanks to the model presented in equation (4). The final results gives an accuracy at about 9% of the real
values.

Li and Henkel [14] build a model at a higher architectural level. Indeed, the system class targeted
by their model is also a full system integrating a CPU, memories and even custom ASICs (representing
peripherals), but in their model the CPU is a unique functional block. Other blocks are then main memory,
caches and specific hardware. The models used for each of the units are purely analytical ones, based on
architectural data found in the literature (number of row and columns for memory, . . . ), or behavioral data
of the application (number of miss, . . . ).

Kim et al. [10] augment a cycle accurate simulator with an architectural power consumption model.
The targeted system of their model is a CPU. The model proposed has the peculiarity to be a “recursive”
architectural level model. The system is divided into functional units called micro-architectural blocks.
What is interesting in their model is that the micro-architectural models can be subdivided in turn. The
micro-architectural block consumption is defined by three components : load of the input capacitance,
switching of the logic due to the switching of inputs and finally the leakage power. These data are stored
in LUTs calculated off-line (the LUTs can be replaced by analytical models for example).

Wattch [1] is a power model integrated in SimpleScalar [2], a cycle accurate instruction set simulator.
The modified SimpleScalar tracks the access to functional units to predict energy consumption of a CPU.
The authors regroup the functional unit power model into four classes : array structures, CAM (Content
Addressable Memory) structures, complex logic blocks and clocking. Array structures represents caches
for example. CAM structures are part of TLBs (Translation Look-aside Buffer) or write queues. Complex
logic blocks are ALU, FPU. Clocking represents the clock distribution tree. In each class, the consumption
is estimated by a parameterized analytical model based on architectural parameters. As far as Wattch
performances are concerned, it performs power estimation 1000 times faster than circuit level simulator
with an error of only 10%.

SimplePower [22] works in the same way as SimpleScalar, by simulating the execution of each in-
struction in each pipeline stage of the CPU. From these information only activated functional blocks of
the architectural model of SimplePower are called to estimate power. The simulator use a cache simulator,
analytical models and LUT (Look-Up Tables) models to predict power consumption. These models are
fed with input values and behavioral informations (ex : cache misses, . . . ). The resulting accuracy of this
model is about 15% against transistor level simulation.

To conclude, architectural level power models are build to be flexible. In fact, the main aim of most of
them is the reuse of part of the model between different target system. Indeed, there is no need to recreate
an entirely new model for a new architecture, but to add, remove or modify existing functional blocks.
Their goal is to be less complex than circuit-level models, and more accurate than instruction-level models.
In this kind of model, every gate or transistor are not simulated, hence the model is less time-consuming,
but the model take into account the specificity of certain part of the architecture by using different model
for each functional unit of the system. Some of the models presented in this family are easily adaptable
to our objectives of modelling the full platform, since theycan be augmented to take into account the full
system (CPU plus peripherals, memories, . . . ). This is the case of the first two examples of architectural
model. In the examples cited here no measurement based models are present.

Instruction-level models Tiwari et al. [20, 21] model of power consumption estimation for a CPU
(x86) is based on measurement. The power measurements are obtained by measuring the current drawn
by the CPU with a digital ammeter. As this tool averages the values, simple measurement would have
meant nothing. The method proposed by the authors gives a mean consumption value for each instruction
by executing each one in a well sized loop and measuring the consumption of the overall application.
The consumption is then divided by the number of instructionexecuted. The sum of instructions mean
consumption does not reflect the effect of control logic switching between instructions. In order to take this
into account, the authors proposed to characterize what they call inter-instruction consumption. To measure
this, they proposed to renew the same experience with each combination of two instructions in the loops.
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Once the consumption obtained, they subtract the amount of energy due to the instructions themselves, and
then divide the rest by the number of instruction switch. In their approach, inter-instructions are symmetric.
The main difficulty of this method is that the table of inter-instruction has a size ofN2 (if N is the size of
instruction set). The accuracy of their model is within 3% ofthe measured values.

Lee et al. [12] enhance the model described before on a DSP, by regrouping instructions into classes.
Thus the complexity of the inter-instruction table falls underO(N2). The accuracy still stays under 10%
of error.

Another work, from Steinke et al. [19], uses an ammeter to get the desired consumption on an
ARM7TDMI. Their model is build thanks to linear regression with detailed instruction informations like
the instruction, and its parameters (register number, register value, immediate value, . . . ). The error falls
here under 2%.

The previous measurement procedure has an important drawback, which is its narrow frequency spec-
trum. The setup only allows them to get mean power consumption values. In this condition they loose peak
power consumption. Russell and Jacome in [18] propose a solution that has a better temporal resolution.
They use a digital oscilloscope (Lecroy LC534). Thanks to the temporal resolution enhancement, instruc-
tion power consumption are more precise. Indeed, Tiwari et al. are forced to measure consumption of the
instruction repeated in a loop. But their measures include the consumption of the branch instruction too,
neglected because it is executed only once in a huge loop. Russell and Jacome [18] use a trigger signal
to only measure the consumption of the body of the loop (without the branch instruction). The resulting
model proposed by the authors is based on a statistical method, a constant parameter model. The parame-
ters of this model are the types of instructions. Experiments were made on an Intel i960 and the estimated
values give about 8% of error.

Lee et al. [13] propose another solution to get rid of the inaccuracy of themeasures based on statistics.
Their technique is also based on a simple setup for measuringreal power consumption on an existing target
(CPU), and aimed at building an instruction-level model. What is different in their approach is the use of
regression analysis. If applied correctly, their model allows to know even less architectural informations
on the target system/processing unit and reach a good accuracy of 2.5%. In fact by applying the regression
successively with each selected parameter, one does not have to know the underlying architecture because
the parameter are not estimated from the hardware. The parameters are finer-grained than the previous
proposition, since in this model takes into account the per pipeline stage cost of instructions.

All models here are centered on estimating CPU power consumption. Our interest is to estimate this
consumption plus the consumption generated by the rest of the embedded system. System/Instruction
level models would not allow this, our proposition will not be based at system level of granularity. But
measurement are widely used at this level of abstraction, some of the building methods proposed here have
the characteristics we are wanting of our methodology, simplicity, minimum architectural information.

To conclude, simulation and analytical model building methods are generally oriented for early stage
VLSI design, before material production. Conversely measurement based method needs less information
on the underlying material architecture. These last pointsdrive us to propose a measurement based method-
ology, since at software development phase, all informations needed for simulation based method will not
necessarily be available.

The second point is that the setup used for data acquisition in our methodology must not require elec-
tronic skills. Compared to all setup proposed in the literature we should use one of the simplest.

Finally, all system/instruction level models proposed before are centered on a CPU, and do not take
into account peripherals. The whole system is then not modelled with these models. Some exceptions
are present in the architecture level models. For example, Li et al. [14] propose a model in which CPU,
memory and busses are different units. This model is closer to system-level modeling than the instruction-
level ones.

3 A methodology for energy consumption model construction

As presented before, until now overall embedded system energy consumption model were proposed, but
they are not based on simple data acquisition methods. Conversely simple acquisition method based models
were proposed, but they are usually taking into account onlya subset of the system, the CPU. We will
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propose in this report a methodology which is both using simple non-intrusive measurements and a model
that is representing the whole embedded system. The aim of this methodology is to be simple and generic
enough to be reproducible by software developpers on their hardware platform.

In this section, we will give details about this propositionof methodology for building an energy con-
sumption model based on simple non-intrusive measurement.We will describe the measurement setup, we
will give an overview of the measurement protocol and the data extraction. Finally we will say a few words
about the setup validation.

3.1 Measurement setup

First of all, it is necessary to remember what we have to measure exactly to know what our system is
consuming. Basically, every electrical appliance power isgiven by the following formula :

P = IV (5)

WhereI is the current drawn at input andV is the power supply voltage.
In fact we will be more interested by energy, since it represents the real cost in terms of electrical

consumption. The definition of the energy is the following :

E = Pt (6)

whereP is defined by formula (5) andt is the time.
These two definitions are correct if the current and the voltage are constants. This is exactly what

Tiwari et al. [20] considered by using using human reading on an off-the shelfammeter. It should not be
the case on our target system, so current and voltage become functions of timei andv. On top of that, the
process of data acquisition, that is to say physical measures induce thati andv will not be continuous, but
in discrete time. We then have the new definitions :

pj = ijvj (7)

E =

∫ t

pdt ≈

nsamp
∑

j=1

pj∆tsamp (8)

Where∆tsamp = 1
fsamp

andfsamp is the sampling frequency.
In that condition, measurement will consists in sampling current and voltage. From these informations

we can deduce the power and energy consumption of the system during the time of the experiment.
Now that we know what we have to measure, we must define where totake these measures.
The choice of measurement point is very important. In fact, this choice will have an influence on

many other choices in the following steps. The most important thing is that it is tightly coupled with the
informations we can/want to extract from the measures.

What we mean here is that if we want to measure the electrical consumption of the CPU, we would have
better sampling the current and voltage at the power supply input of the CPU. This is a huge prerequisite,
which is that it must be accessible and that you can instrument it for current sampling (voltage sampling is
easier).

As we said before, we are not necessarily interested in very fine grained measures. On top of that we
base this approach on non intrusive measures, because software developers often do not have time and
skills to make this kind of measures. The better way to be non intrusive is to place our measurement point
at the power supply input of the system.

More precisely, our approach is based on the whole system electrical consumption in order to closely
fit to the real consumption of the studied system. This means that we should place at the point where the
battery is fitted, since it is the only energy supplier in embedded systems.

This approach has an interesting advantage, since it allowsthe model generated to take into account the
integration costs (in term of electrical consumption). We not only measure the consumption of the main
chip containing the desired device, but of the components.
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Finally, once we have chosen such a measurement point, we must select the measurement material,
which will be used in the model building. There is only one contraint in this selection, which is that probes
bandwidth and sampling frequencies must meet Shannon’s lawon target signal. If we still would like to
have CPU electrical consumption and if our measurement point is placed at the power supply input of this
CPU, we might probably have signals whose frequency is the CPU frequency. We would have then to
select an acquisition material of which bandwidth is sufficient to acquire this signal.

In the experiments depicted in section4 we decided to sample current and voltage at the power supply
input of the development board ARM Integrator CM922T-XA10.At this boards power supply input, we
have the signal depicted by figure5.

Figure 5: Sampled signals at 2.5G samples/s : We can observe that the sampled current and voltage present
a frequency of 500kHz which is far away from the CPU frequency(198MHz)

The sampling rate for this figure is 2.5G samples per second. The frequency of the signal depicted
is about 500kHz. The explanation for this is that the board current switching stabilizer has an operating
frequencies of around 500kHz (as stated on the manufacturer’s specifications). As a consequence, it is
evident that we will not have cycle accurate energy consumption. In fact, the voltage stabilizer does not
do a perfect job. Power variation are due both to events in theevaluation board and to the supply voltage
variations. The latter effect must be averaged out of the measurements.

The second important fact is the duration of the measurement. In fact it can be limited by the hardware
used for the acquisition. If it is the case, it will give an upper bound to the sampling rate. In our case there
are two stabilizers. Their frequencies are slightly different i.e. about 2 or 3 kHz. The time of experience
must then be sufficient to take this variation into account. We had to adjust the time window by modifying
the sampling rate.

The resulting setup is the following. For current sampling,we selected an ampermetric clamp Tektronix
P6021. As far as voltage sampling is concerned, we used a voltage probe Tektronix P6139A. Finally, the
acquisition was made by a DPO (Digital Phosphor Oscilloscope) TDS 7054A series. This oscilloscope was
only used as an acquisition device.

In terms of sampling frequencies, we finally used a 2.5M sample per second rate, which gives us a10−2

s time window thanks to its 250 000 sample memory.

3.1.1 Protocol

Once the measurement setup is chosen, which means we have decided where and what will be measured
and with what material, we have to organize our experiments in order to extract the information we are
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interested in. Indeed, placing the measurement point at thepower supply input, will certainly not allow us
to get CPU cycle accurate measures.

As our main aim is to build a software electrical energy model, the events which will be the subjects
of our measures will range from CPU instructions to operating system services. More details about those
events will be given in section3.3. What is important to underline here is that the duration of most of the
target events will fall below the time accuracy of the setup.

To solve this problem, there are two solutions. The first willbe to change the setup to collect measures
closer to the CPU, for example. This solution is not acceptable, since this measurement point was chosen
for reasons expressed above. The second solution is then to repeat each event a certain number of times,
and average the energy consumption.

In this second solution, measurement experiments must meeta several requirements. We must know
how many times the target event occurs during the measurement interval, we also need to know the exact
duration of the experiment, and finally it is important that nothing else than the target event happens during
the time window. All these requirements induce that we base the measurements on benchmarks raising
each a different target event.

First of all, we have to know exactly how many times the event occurs during our measure in order to
make a correct average. Indeed, supposing that we can calculate exactly the energy spent in the benchmark,
we will have to divide this amount of energy by the number of occurrence to have the per event energy cost.
The only way to get this information is to build the benchmarkto execute the event a known-in-advance
time. This number of repetition should be adapted to the acquisition window imposed by the measurement
material. Two alternatives are available for implementation of the benchmark, the first would be a fully
linear program containing the required number of events, orthe implementation of a loop containing a
submultiple of the number of event.

In our case, we select the second solution, since many embedded systems integrates caches, and then
the loop implementation can take advantage of it, if the sizeof the loop is adapted to the cache geometry.
In that situation, instruction cache misses will not pollute benchmarks results. The cost of the loop in time
and power must be estimated and can be taken into account in the results extraction.

As we said above, the loop must be of the right size in order to eventualy take advantage of the instruc-
tion cache.

In fact, the loop body must be large enough to minimize the influence of the loop skeleton on the final
results. It must also be smaller than the size of the instruction cache to avoid cache misses during the loop
execution.

Other factors are important and must not be forgotten, whichare cache loading of the loop. Indeed, this
loading phase generates compulsory cache misses. The best way to get rid of these misses is to preload the
loop body in the cache before starting the measurements. This is possible on some processors. The second
solution is to minimize the influence of these misses on the measurement.

The influence of this second class of factors is opposed to thefirst class ones. The smaller the loop is,
the less misses we have. The loop size choice is then a trade off problem.

To formalize this problem, we have to identify the two major components. Equations (9) and (10)
give the number of occurences of each of these componentsnloop andnmisses, against the total number of
events in term of instructionninsn_evt, the loop sizelloop, and the cache line width in wordswcache_line.

nloop =
ninsn_evt

lloop

(9)

nmisses =
lloop

wcache_line

(10)

Once these two amount are weigthed by their cost we obtain theproblem expressed by equation (11).

E =
ninsn_evt

lloop

× cloop +
lloop

wcache_line

× cmiss (11)

wherecloop andcmiss are the costs of loop skeleton and cache misses. These two costs can be either
time costs or energy costs. The most relevent one would be energy cost, but a first approximation can be
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estimated thanks to time (cycles) informations, since timeand energy consumption are correlated in this
kind of problem.

The optimal value is hence obtained thanks to the solution given by (12) :

l =

√

ninsn_evt × cloop × wcache_line

cmiss

(12)

l <
scache

winsn

(13)

(14)

wherescache is the cache size in bytes andwinsn is the instruction width in bytes. For example, if we have
a 8 word wide line cache of 8kB, with acloop of 4 cycles and acmiss of 40 cycles, the optimal loop size is
2048, for 15000000 events.

To conclude on loop size choice, we must underline the fact that the estimation of number of misses
is based on the fact that the number of misses is predictable.In fact it is a little simplistic in the previous
problem, since in some associative caches the replacement policy is random. If we put two lines in the same
set, the probability of the replacement of the previously loaded line is not zero, as it is for a round-robin
replacement rule. The estimation of the number of misses should be adjusted to the level of associativity.
The solution to get predictability in the benchmark with random replacement rule is to only use one line of
each associative set. Such a restriction avoid a line to be replaced by a second load in this same set.

The final solution is then to use prefetching solution if theyare available, or to minimize the misses
influence by resolving the trade-off exposed before, with the predictability constraint.

As we mentioned above it is important to be able to calculate the energy consumption of the bench-
mark, and only it. We should thus know when the core of the benchmark starts and when it ends. These
informations can be collected thanks to a trigger signal controlled by the benchmark itself. This trigger
signal must change state just before the first iteration of the loop and after the last one. The interesting data
can then be selected thanks to this third sampled signal.

The last benchmark requirement for accurate event cost measure is the control of what is running on the
platform. Indeed, during the benchmark core loop, only the target event should happen. This means that
the platform must be initialized in a way that deactivate alluseless peripherals, and only the benchmark
should run on the platform.

To conclude the measurement experiments are organized as follows : each event energy cost measure
is the subject of a particular benchmark, whose task is to trigger this event a predefined number of time,
using a loop.

For example, in our experiments on the Integrator CM922T-XA10, each cycle of the measured signal
represents approximately the electrical consumption of 400 CPU cycles. CPU runs at a frequency of 198
MHz and the voltage stabilizers frequency is about 500 kHz.

In the experiments on the CM922T-XA10 we opt for a LED as triggering signal. The benchmark turns
it off just before the beginning of the loop, and on just afterthe last loop, the data acquired between these
two fronts are relative to the energy spend in the benchmark.The interesting data can then be selected
thanks to a third sampled signal. Figure6 gives an overview of the acquired data (two upper graphs) and
the trigger signal (lower graph). The payload data are present between the two state change of the trigger.

In order to have a full control of the platform, we use a lightweight operating system called Mutek [15].
At present, we only use hardware initialization of Mutek. OSinitialization is replaced by the benchmark
body.

As we explained in section3.1, at the end of a data collection phase we have two series of measures,
on current and on voltage. We also presented how we can extract power information from the data (7).

From this sampled power we can extract two different informations. The first is a mean power over the
benchmark.

P =

∑nsamp

i=1 pi

nsamp

(15)

wherensamp is the number of samples. Mean power gives us information about gate activity. This is an
interesting information, but it does not allow us to have thereal cost of an addition or a memory access.
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Figure 6: Acquisition results : the two upper graphs are interesting data i and v, and the lower one is the
trigger signal LED

The main reason is the heterogeneity in event lengths. In ourcase we want to know the cost in term of
battery consumption.

We will work in energy rather. As we mentioned before it is given by equation (8). This equation gives
the total energy consumed during the benchmark, this information is important, but should be normalized
to give the event consumption. To do so, all we have to do is to normalize the energy by the number of
event executed during the benchmark :

Eevt =
Ebench

nevt

(16)

whereEevt is our event energy cost,Ebench is the benchmark total energy andnevt is the number of times
our event happened during the benchmark.

If the loop skeleton cost is negligible, the previous resultcan be considered as the final result, but if it
is not the case, we should subtract the cost of loops to the total energy of the benchmark.

The loop skeleton may be evaluated by an empty benchmark, andits costEloop may be calculated by the
previous equation. Once this cost estimated, we can use the following equation for the other benchmarks :

Eevt =
Ebench − Eloopcost

nevt

(17)

whereEloopcost = Eloop × nloop, andEloop is the cost of one loop cycle andnloop is the number of
loop executed in the benchmark.

This gives more accuracy to the value obtained.

3.2 Measurement error verification

In order to validate the measurement setup, we have to estimate the error made on measures. The error will
allow us to know the reachable precision in measures.

We make a measurement on both sampled signals,i andv. This error is modelled as follows :

i = imeas + ierr (18)

v = vmeas + verr (19)
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wherei andv are real values,imeas andvmeas are measured values andierr andverr are errors due to
measurement setup.

If we put these new definitions ofi andv in equation (7), we get the following result :

pj = (imeas
j + ierr

j )(vmeas
j + verr

j ) (20)

By deduction, we can state thatpmeas
j = imeas

j vmeas
j . In that case we obtain the following errorperr

j :

perr
j = ierr

j vmeas
j + imeas

j verr
j + ierr

j verr
j (21)

The error made on power measures (equation (21)) can be then reported in the energy calculus defined
by equation (8).

Ebench =

nsamp
∑

j=1

(pmeas
j + perr

j ) ∗ ∆tsamp (22)

As we did previously for power, we can state thatEmeas =
∑nsamp

j=1 pmeas
j ∗ ∆tsamp. The error on

total benchmark energy is then given by equation (23).

Eerr =

nsamp
∑

j=1

perr
j ∗ ∆tsamp (23)

The final step in information extraction is the normalization of the results at the event. This is made
thanks to equation (16). In the same way, the error can be normalized. Then we obtain:

Eerr
evt =

Eerr
bench

nevt

(24)

In our particular case, the measurement error is bounded by the error made at quantization by the oscil-
loscope. Error of the ampermetric clamp and the voltage probe are negligible in respect to the error made
by the oscilloscope Analog-to-Digital Converter (ADC). According to the adjustments of the oscilloscope,
we obtain the following errors on each channel :

As far as current is concerned, we convert every measure of 2Ainto a range of 16bits. The quantization
error is then :

ierr = ±
2

216
= ±3.052 10−5A

Voltage error calculus is very close, since we have 10V converted on binary values on 16bits. He have
then :

verr = ±
10

216
= ±1.526 10−4V

To validate the measures taken during our benchmarks, we computed their error. The resulting conclu-
sion is that we have a good accuracy. For example, on a benchmark which aim is to give us the consumption
of a load instruction, the energy cost found is1.242761 10−08 J and the measurement error is equal to
1.154064 10−12 J.

3.3 Model structure and parameters

Our choice among all the modeling method which have been presented in Sect.2.2.3is to build an archi-
tecture level model, in which the platform is divided in functional blocks, as in figure7.

The energy consumption of an applicationEapp is obtained be adding the all blocks consumptionsEbl:

Eapp =
∑

blocks

Ebl (25)
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Each block can have its own energy consumption model. To havea platform model better suited for
software development, we apply the instruction level modelsolution for CPU modeling. The CPU energy
consumptionECPU is thus model as described in the next equation.

ECPU = Einsn + Ecache + EMMU (26)

The energy consumption is the sum of the energy consumed by instruction execution, plus cache and
MMU overheads consumptions, and consumption of the other blocks of the platform.

Eapp = ECPU +
∑

blocks

Ebl (27)

This model aims at being integrated in a cycle accurate simulation tool of the complete platform. The
most interesting way of writing the model for this kind of purpose is to define a per time slot energy
consumption. The chosen time slot is the CPU instruction execution. There are two reason for choosing
this time reference. The first is that it is the finest time reference since CPU have generally the highest clock
frequency in embedded systems. Secondly, interrupt requests, the only mean for the hardware peripherals
to interact with the software, are managed at the end (or beginning) of the instruction execution. From
a software point of view, there is no need to use a finer time reference to report hardware events more
precisely.

The model can be rewritten in a form where the consumption of CPU and other blocks are reported for
the currently executed instruction. AllE∗ will be kept for overall application consumptions, for the sake
of notation simplicity instruction reported consumptionswill be noted asE∗. This new model formula is
expressed in the following equation:

Eslot = ECPU +
∑

blocks

Ebl (28)

Eapp =
∑

insn

Eslot (29)

(30)

The last peculiarity in this model is the measurement based data collection. As we only get global
measures for the platform consumption, we can foresee that the base consumptions of every blocks will
not be easily distinguishable. We mean here that once the embedded system is put in its laziest state,
idle state for example with all possible units powered off, the resulting consumption is considered as a
base consumption regrouping the base consumption of every powered peripherals. Obviously, a part of
this consumption is static power dissipation. We will call this termEbase, it is important to note that
this consumption is reported to the current executed instrustion on the CPU. It can be expressed as in
equation (32), as it is dependent on the instruction lengthlinsn. Equation (28) becomes equation (31).

Eslot = Ebase + ECPU +
∑

Ebl (31)

Ebase = linsn × Ec_base (32)
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The CPU and other blocks consumption are then expressed as overhead against the idle state.
As described in equation (26), CPU energy consumption is given by the executed instruction energy

cost. This model can be simplified by regrouping instructions in classes as proposed in [12].
As far as other blocks are concerned, we can expand them as bus, memories and other peripherals.

This is interesting since bus and memories will be subject toevents generated by the processor, such as
memory writes. The peripherals will be then modeled by statemachines giving the energy consumption of
the peripheral during the time slot.

The last step in model construction consists in defining all possible parameters for these components.
Due to the limited information available, the developers would not necessarily know the behavior of intra-
blocks logic. The parameters for the CPU are already selected, since it is modeled thanks to instructions
consumptions. The same can be done for cache, MMU and even co-processors consumptions. The param-
eters for other blocks are limited to behavioral parameters(UART sending a byte) and their states such as
operating mode (running, stopped).

Each energy cost in this model is function of the running frequency and power supply voltage to allow
dynamic and frequency scaling capabilities of the platformto be modeled. An example of this is presented
in the next section.

4 Measurement results : experimentations on the ARM Integra-
tor/CM 922T-XA10

In this section we will give more details about this methodology, by giving an example of application.
As we said before, we applied this methodology on an ARM basedplatform, ARM Integrator CM922T-
XA10. We will explain the architecture exploration procedure, give a few details about the benchmarks
implementation and finally give the results of these measures.

4.1 Architecture exploration

As the first step of the model construction consists in defining the model parameters, we have to explore
the architecture of our platform to find clues about which events could be the most representatives of the
energy consumption. We will give here a rapid overview of thehardware architecture, the interested reader
could find for more details about it in [9]

As all Core Module (CM) sold by ARM, this CM is based on an ARM CPU, but this one is a little
special since the ARM processor is in fact integrated in a FPGA (Field Programmable Gate Array), an
Altera Excalibur EPXA10. With the CPU, few peripherals wereintegrated in the stripe, which means that
they are placed in the chip along the FPGA. On top of that, someperipherals can be implemented in the
FPGA, since there are bridges that allow communications between the stripe and the PLD (Programmable
Logic Device),i.e. the peripherals placed in the FPGA.

The global architecture is depicted on figure8. As we can see from this figure, the stripe has a two level
bus architecture, where the second level could be connectedto the PLD. As far as memory is concerned,
there are different level of memories, with different access time. The first level is SP (single port) and
DP (dual port) SRAM, which are static RAMs connected to the AHB (Advanced High-speed Bus). These
RAMs are accessed with only one bus access cycle. Further, wehave first level of SDRAM, accessible
through the memory controller. This memory is accessed in a longer time since we access to the memory
controller through the first level of bus, and then we access to the RAM chips by going out of the EPXA10
chip. A second level of SDRAM or SSRAM could be used by implementing a second memory controller
in the FPGA, since SDRAM can be connected thanks to a DIMM connector or a SSRAM chip is integrated
on the CM board. This second level will not be mentioned any further.

As we said before, our model is placed at the architectural level. At this level, we found the following
blocks :

• CPU

• SP/DP SRAM
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• busses (AHB1 and AHB2)

• ITC (Interrupt Controller)

• Timer

• Memory controller and SDRAM

This blocks enumeration gives us clues on the potential parameters of our model. In fact from the
software point of view, some of the parameters becomes evidents. In fact, since ARM CPU’s have a
RISC architecture, all operations are from registers to registers except the load and store operations. In
this situation, we can define two classes of instructions : load and store, and the second group all other
instructions. To complete the coverage, we should add a third group, the co-processors operations.

Once we have made this first classification, we can easily imagine that the address of the load and stores
will define the memory level of the access, and then define if weaccess to memories or memory mapped
registers, through bus level 1 and level 2, and so on.

These different remarks are focused on the CPU and memories.On top of these two classes, we
find peripherals. This class of blocks can have an autonomousoperating mode. In that case their energy
consumption should be modeled by finite state machines, since only access to their control registers can
change their state.

The parameters selected after this architecture exploration are the following :

• CPU instructions of class 2.

• load/stores in cache

• bus accesses

• main memory accesses

• Scratch Pad memory access

• peripherals states consumptions
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On top of these informations, the architecture explorationreveals that this platform possesses an inter-
esting feature. The PLL (Phase-locked loop) of the clock signal generation is programmable by the mean
of a control register. Unfortunately, there is no possibility of adjusting the supply voltage.

4.2 Benchmarks construction

Once every possible parameters are listed, we have to measure their cost. As described before, we build
benchmarks for each of the parameters.

The procedure is the same as the one depicted in section3.1.1, which means that we generate the
targeted events a predefined number of occurrence thanks to aloop.

ARM922T, the CPU embedded in the EPXA10, has caches. Theses caches are separated 8kB data and
instruction caches. They are 4 way set associative with 8-words wide lines, which means that they have
64 sets of 4 lines. The instruction cache of the ARM 922T allows prefetching. We used this feature in the
benchmark implementation. The second point concerns the replacement rule in the associative sets. Two
rules are available, random and round robin. As we mentionedin section3.1.1, the most predictable rule
is round-robin, but we kept the possibility of testing the random one by using only one line per set. Then
as far as the loop sizing is concerned, we selected a 512 instructions loop body, since it is the size of the
direct mapped cache (we are using one line of each set).

Most of the events could not be measured directly, which means that we cannot build a benchmark
that makes this event and only this one to occur. By measuringtwo series of benchmark’s consumption,
one causing the event and the other not, we can determine the consumption increase due to the event. For
example, to estimate the memory access overhead, we should run benchmarks that load or store in memory
cached and not cached. Then the CPU executes the same instruction in the two tests, but one generates
a memory access and not the other. The difference in energy consumption represents the overhead of a
memory access.

Here is a short list of benchmarks that were built, and their target event :

• insn-XXX : This benchmark allows us to compare different instructions executed in the CPU. (add,
mul, mov, . . . ). It is only executing the instruction in the loop.

• Dcache-access : With this benchmark we can get the ldr/str instruction cost. It is accessing a
cached memory address. Then all the access read or writes in amemory cell in the D-cache.

• AHB1-reg-write : This one gives the bus access (level 1) overhead. We write ina peripheral
register a value that has no effect on the preipheral. The register must be accessible through the first
level of bus. For example, we use ITC register (see figure8).

• AHB2-access : Like the previous, this one is giving a bus access (level 2) overhead. In that case,
the benchmark is working like the previous one, but with a register accessible through the second
level of bus. For example, we use timer register (see figure8).

• mem-access : To get data memory access overhead with this benchmark, we desactivate D-cache.
Indeed, allload or store instructions access the main memory.

• spm-access : The aim of this benchmake is to get data scratch pad memory overhead. To have
this result, we access scratch pad addresses instead of mainmemory addresses. The D-cache is
desactivated. Every memory access is then made on the SP-SRAM (see figure8).

• timer-test : As an example of peripherals energy characterization, this benchmark allows us
to get running/stopped timer consumption. It is subdividedinto two benchmarks, one in which the
timer is stopped and the second in which the timer is running.The structure of the loop is the same
as theinsn-cmp benchmark with a nop instruction, since it is the instruction generating the less
activity.

• loop-calibration : Finally, this benchmark is the one which gives loop skeleton overhead. By
running an empty loop benchmark, we can estimate the loop overhead.
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On top of these various benchmarks, which correspond to mostof the parameters events, they all have
parameters that allow us to estimate the remaining parameters of the model. Then all benchmarks can be run
at different frequencies. As we mentioned before, frequency and voltage scaling are potential parameters
of the model, and our tested platform only allows us to modifyfrequency. However, we can extrapolate
our results to a platform with Dynamic Voltage Scaling (DVS)by assuming that the supply voltage can be
scaled down in proportion to the clock frequency, which is a reasonable approximation if far away from
the threshold voltage.

4.3 Measures and model adaptation

bench name length energy (nJ) error_meas (pJ) error_stdev (pJ) p_mean (W)
loop-calibration 4 69.084 5.1777 20.338 3.421
insn-nop 1 16.747 1.2884 6.1914 3.317
insn-add 1 16.762 1.2889 3.0943 3.319
insn-and 1 16.769 1.2892 6.2788 3.32
insn-mov 1 16.76 1.2889 5.1092 3.319
insn-lsr 1 16.764 1.289 6.4375 3.32
insn-mul 3 50.378 3.8494 20.599 3.327
AHB1-access 6 101.33 7.7132 154 3.347
AHB2-access 18 300 22.998 542.9 3.304
timer-test_on(nop) 1 16.754 1.285 27.298 3.298
timer-test_off(nop) 1 16.732 1.2857 6.0922 3.3
Dcache-access_ldr 1 17.146 1.3007 5.942 3.397
Dcache-access_str 2 34.341 2.603 13.381 3.4
mem-access_ldr 40 775.44 54.551 171.04 3.818
mem-access_str 28 543 38.296 231.29 3.801
spm-access_ldr 8 131.72 10.168 38.48 3.259
spm-access_str 7 115.37 8.9021 21.916 3.263

Table 1: Results of benchmarks

bench name energy w/ prefetch (nJ) energy wo/ prefetch (nJ)
loop-calibration 69.084 67.925
insn-nop 16.747 17.309
insn-add 16.762 17.307
insn-and 16.769 17.315
insn-mov 16.76 17.307
insn-lsr 16.764 17.314
insn-mul 50.378 51.967
AHB1-access 101.33 101.49
AHB2-access 300 300.45
Dcache-access_ldr 17.146 17.66
Dcache-access_str 34.341 35.364
mem-access_ldr 775.44 775.29
mem-access_str 543 543.08
spm-access_ldr 131.72 135.82
spm-access_str 115.37 118.79

Table 2: Results of benchmarks : influence of prefetch

The results summarized in table1 allows us to draw the following conclusions. First of all, wecan
conclude that the type of instruction does not matter as far as it is not a data access or it does not misses in
instruction cache. This conclusion is underlined by the results ofinsn-XXX benchmark. We should note
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bench name length energy (nJ) error_meas (pJ) error_stdev (pJ) p_mean (W)
loop-calibration 4 69.084 5.1777 20.338 3.421
loop-calibration-H 4 114.08 9.6173 162.21 2.822
loop-calibration-Q 4 201.4 18.418 211.53 2.49
loop-calibration-E 4 376.22 36.029 930.49 2.329
loop-calibration-S 4 724.58 71.213 450.41 2.244
insn-nop 1 16.747 1.2884 6.1914 3.317
insn-nop-H 1 27.422 2.3924 24.747 2.717
insn-nop-Q 1 48.638 4.5942 44.488 2.407
insn-nop-E 1 90.792 8.9897 87.111 2.247
insn-nop-S 1 174.93 17.776 115.9 2.164
insn-mul 3 50.378 3.8494 20.599 3.327
insn-mul-H 3 82.482 7.1462 97.676 2.723
insn-mul-Q 3 145.81 13.707 145.18 2.405
insn-mul-E 3 272.07 26.818 245.46 2.245
insn-mul-S 3 524.32 53.034 120.3 2.162
AHB1-access 6 101.33 7.7132 154 3.347
AHB1-access-H 6 169.97 14.426 161.89 2.803
AHB1-access-Q 6 303.26 27.733 389.56 2.5
AHB1-access-E 6 568.79 54.319 390.06 2.347
AHB1-access-S 6 1098.2 107.44 774.36 2.263
AHB2-access 18 300 22.998 542.9 3.304
AHB2-access-H 18 505.74 43.068 522.74 2.781
AHB2-access-Q 18 905.39 82.903 823.1 2.489
AHB2-access-E 18 1702.8 162.52 3224.9 2.337
AHB2-access-S 18 3289.2 321.5 1203.4 2.26

Table 3: Results of benchmarks at different frequencies : H means half speed, Q quarter, E eighth and S
sixteenth. These ratio are given according to reference clock speed of 198MHz
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that there is a special case, the multiplication. In fact it is not a one cycle operation, its consumption is then
a strict multiple of the instruction cost. The ratio is the multiplication length, between 3 and 6 (depending
on the multiplier).

As we mentioned before, we used prefetch to overcome the instruction cache loading bias on measures.
As table2 shows, cache loading bias is about 1% of the energy figures. The difference between the
benchmark using prefetch and the ones not using it is due to the cache misses induced by this cache
loading. More precisely the loop body is 512 instructions long and the cache line is 8 words wide. We have
64 cache misses generating an amount of energy divided by thenumber of event. This quantity explains
the difference underlined before.

The second remarkable fact is that reducing platform frequency increases energy consumption of event.
We believe the explanation as follows. Since we cannot reduce the power supply voltage of the circuit and
since the dynamic activity is the same, the event energy consumption is at least equal. It can be higher due
to static consumption which increases since the event takesmore time.

By finally repeating the exact same experiment a large numberof time, we can observe that the variation
in the results is higher than the measurement error. This variation is due to various possible factors such
has previous activity on the platform, temperature of the chip, . . .

4.4 Resulting model

4.4.1 Basic model

The basic model presented in section3.3 can be rewritten, by using models simplifications obtained by
calibration.

We found that most instructions have the same energy consumptions as long as they stay inside the CPU.
Currently only ARM32 instruction set is modeled. Thumbs (16bit) instruction set could be modeled using
them same benchmark methodology in no time. In our setup, it is not possible to isolate the instruction
cache consumption, which is lumped with the instruction consumption. Cache misses will then be modeled
as simple memory accesses.

We finally have a model where CPU instructions are regrouped in two classes, the logical and integer
intra-CPU instructions, and the load and store instructions. A memory load access is modeled as a load
instruction, plus a bus overhead, plus a memory overhead. Last but not least, the peripherals energy con-
sumption are taken into account thanks to state machines that give their consumption during the instructions
execution.

Other model simplifications are possible in the case of this platform. For example, the CPU cache
models are simplified by taking into account only memory access bursts in case of misses since the overhead
can be neglected. The MMU has the same kind of simplification,since the TLB (Translation Look aside
Buffer) misses generate memory accesses, and the table walkrepresents only a negligible amount of energy.

This model is finally resumed by Equation (33).

Eslot = Ebase

+ Einsn + Ebus_access + Emem

+
∑

periph

Eperiph_state (33)

whereEslot is the energy consumption of the instruction execution timeslot, Einsn is the cost of in-
struction given by its class cost,Ebus_access is the bus overhead cost for load or store instructions,Emem is
the overhead for memory accesses. The last term represents the sum of the energy overhead of peripherals
state. These cost are all overhead costs, since the full consumption of a peripheral cost, for example, is
given by its base energy cost comprised inEbase and the overhead.

4.5 Advanced information extraction

As we stated before, the Integrator/CM has no dynamic voltage scaling (DVS) capabilities, hence when we
reduce the frequency we cannot decrease energy consumption.
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4.5.1 Frequency scaling

Let us have a look at what is happening. First, when we reduce the frequency, it should be underlined
that the modified frequency domain contains only the stripe’s peripherals and CPU. Our clock frequency
reduction does not affects the SDRAM modules or the FPGA.

Figure9 depicts the measured values for three different benchmarksreproduced at 5 different frequen-
cies. This graph represents energy consumption per event, in that case instruction, against clock divisor,
rf =

fref

f
wherefref is the nominal frequency in our case 198 MHz.
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Figure 9: Multiple frequencies experiments : This figure shows that the energy per event increases linearly
against frequency ratio.

These curves show that energy per event increases when frequency is decreased, and this may seem
counter-intuitive. To understand these results observe first that a given event,e.g. the execution of some
specific instruction, entails an almost constant number of bit flips, and that each flip uses a fixed amount
of energy. Hence, to a first approximation, and in the absenceof voltage scaling, the energy for a given
event should be a constant. However, in our platform, frequency scaling acts only on the processor and
Excalibur embedded peripherals; the consumption of other peripherals, external memories and FPGA is
not affected. Hence, the addition of a parasitic term which is roughly proportional to the duration of the
event or inversely proportional to frequency. This is clearly the case for the curves of Fig.9.

Eevt = Erp + Emc (34)

WhereEevt is the per event energy cost as measured before.Emc is the energy consumed by the modified
clock domain of the platform. TheErp term is the base energy of the remaining part of the platform.

The event triggered by these five benchmarks stays in the frequency domain of the stripe.loop-calibration,
insn-mul andinsn-nop instructions are CPU only instructions and AHB 1 and 2 register read access
only to the two busses, whose clocks are the CPU clock for AHB1and half the CPU clock for the AHB
2. This information is important since in these benchmarks the same activity is generated in the stripe but
at different frequencies. If we apply the power model of VLSIpresented in section2.2.3(equation (4)), in
our case the power supply voltage is constant and the activity denoted byα too.

P =
1

2
CV 2αf (35)
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In terms of energy :

Emc = Pevttevt

=
1

2
CV 2αfref t

ref
evt

=
1

2
CV 2αlinsn

In terms of time, if we divide the frequency by two, we multiply the time of the event by two. Then the
productftevt is constant. Thus all members of the previous formula are constant. We can state that the
real energy drawn by the event is constant against frequency. This energy is the lined square on figure10.

Time (s)
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t
f
insn

P
f/2
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P
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t
f/2
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Figure 10: energy consumption

This figure drives us to modify the last equation to take into account the variation ofErp against fre-
quency divisor, or time. If the “base power” is constant against clock frequency variation on a same
benchmark, we can consider the following equation :

Eevt = Erp_baserf + Emc (36)

WhereErp_base is the base energy, which means that it is the base energy consumed during one event
at full speed.

This final formula fits perfectly to the linear character of the experimental results. The last fact which is
not explained by this last equation is the difference in the slopes of the three lines. To explain these slopes,
we should have a closer look at the benchmarks characteristics and more precisely on event lengths. In the
first benchmark, the nop one, the length of the event is 1 cycle. In the second one, AHB1 register access,
the length is 7 cycles and finally the AHB2 register access length is 12 cycles.

If the Ebase is really invariant against frequency and represents energy consumption of the remaining
part of the platform, the elementary base energy cost presented before should be 7 times higher in the
second benchmark than in the first, and 12 times higher in the third benchmark. This remark drives us to
rewrite the equation like this :

Eevt = Erp_base × levt × rf + Emc (37)

whereE
cycle
base is the base energy consumed by the remaining part of the platform in one full speed CPU

cycle. The CPU cycle is the unit of time since it is the shortest event which can be measured and also which
can happen on the platform.levt is the event length in terms of full speed CPU cycles.

Linear regressions on the previous results gives the following results :
These results show that equation (37) gives a good explanation for the experiments on clock frequency

variation. These results gives us an estimation of what we can consider as base energy, which is not
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Benchmark name Erp_base (nJ) Emc (nJ) error (pJ)
insn-mul 10.91 26.37 572.36

loop-calibration 10.52 19.22 258.90
insn-nop 10.54 6.35 105.61

access-AHB1 11.06 36.72 1085.37
access-AHB2 11.06 106.32 3431.46

Table 4: Linear regression results

changing against software execution. The value obtained isabout10.82 nJ (with a standard deviation of
±2.6 10−2) per CPU clock cycle. This previous value can be used to re-interpret benchmarks results. We
only presentedEevt values in table1. But these values give an idea of the cost in energy of the events, but
they are biased by the large influence ofErp_base × levt. The new results obtained by subtracting this base
energy are shown in table5.

bench name energy (nJ) eff_energy (nJ) error_meas (pJ) error_stdev (pJ)
loop-calibration 69.084 26.442 5.1777 20.338
insn-nop 16.747 6.086 1.2884 6.1914
insn-nop-H 27.422 6.1012 2.3924 24.747
insn-nop-Q 48.638 5.9956 4.5942 44.488
insn-nop-E 90.792 5.5071 8.9897 87.111
insn-nop-S 174.93 4.3556 17.776 115.9
insn-add 16.762 6.1009 1.2889 3.0943
insn-and 16.769 6.1088 1.2892 6.2788
insn-mov 16.76 6.0992 1.2889 5.1092
insn-lsr 16.764 6.1032 1.289 6.4375
insn-mul 50.378 18.396 3.8494 20.599
insn-mul-H 82.482 18.518 7.1462 97.676
insn-mul-Q 145.81 17.884 13.707 145.18
insn-mul-E 272.07 16.211 26.818 245.46
insn-mul-S 524.32 12.614 53.034 120.3
AHB1-access 101.33 37.362 7.7132 154
AHB2-access 300 108.11 22.998 542.9
timer-test_on(nop) 16.754 5.9714 1.285 27.298
timer-test_off(nop) 16.732 5.9937 1.2857 6.0922
Dcache-access_ldr 17.146 6.4852 1.3007 5.942
Dcache-access_str 34.341 13.02 2.603 13.381
mem-access_ldr 775.44 349.02 54.551 171.04
mem-access_str 543 244.5 38.296 231.29
spm-access_ldr 131.72 46.436 10.168 38.48
spm-access_str 115.37 40.746 8.9021 21.916

Table 5: Effective results

4.5.2 DVS extension

In this section we present an hypothetical extension of the previous model for a DVS enabled platform. The
effective energy of different classes events presented before asEevt are approximated be the basis dynamic
power model (equation (36)).

As we saw before the frequency inffluence on these part is null. This is the reason why frequency
scaling has no effect on energy consumption in our experiments. But if we introduce the fact thatVdd can
be adjusted this not true any more. We take the assumption that if we divide the frequency byr we can

divide Vdd by anrv =
V

ref
dd

Vdd
amount depending onrf . For example, Siminucet al. prove experimentally
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that the relation between the voltage and frequency of theirStrongARM SA1100 can be approximated by:
1
rv

= 0.66 1
r

+ 0.33. In that situation theEevt is modified and expressed like this for instruction execution
for example:

Einsn =
1

2
C

V 2
dd

r2
v

αlinsn (38)

The benefit is then of1
r2
v

. In case we approximate the relation between voltage and frequency in our

platform, by the one given earlier, we would have a benefit of(0.66 1
r

+ 0.33)2. For a clock ratio of 2,
half the speed, the energy benefit would be of 56 % less consumption. This relation can be applied on the
modified clock domain, and thus a NOP instruction would have cost 2.76 nJ instead of6.35. The base
energy would not be affected.

Finally, concerning the base energy term. TheErp_base could also be modified by DVS, but in our case
we have no mean to reduce the frequency, then it has no interest. TheEover

peri can be however modified by
the same amount than the previous one, since the peripheral are also in the modified clock domain. Voltage
scaling would have been of great interest, but our platform was not designed for it.

5 Model validation

5.1 Model validation

To check the accuracy of the model thus built for the ARM Integrator CM922T-XA10, we describe here
our accuracy tests experiments. The model were implementedin a simulator, and its results were compared
to physical measurements.

Simulator integration

Our model is implemented in a simulation tool suite. This simulation tools are composed of two simulator.
The first is a complete platform functional simulator in charge of generating a cycle-accurate execu-

tion trace of the software. This trace reports all executed instructions, and all peripherals activities (state
changes). This first step allow software developers to functionally debug their applications and supply them
the material to make the second step simulation. To fulfill this step task, we implemented the behaviour of
the Integrator platform in the open source simulatorskyeye. We also upgraded it to the cycle accurate
trace generation.

The second step is energy simulation tool proper. This simulator implements the model presented in
the previous section. Its main task is to compute model parameters from the cycle-accurate execution trace.
It accumulates all computed energies, and reports them in anenergy profile file. The format of this file is
an emerging file format, which can be visualized thanks to theopen source projectKCacheGrind. This
simulation step allows to get the overall consumption of thesoftware ’run’, figures we will use in the next
step of this validation.

Validation methodology

To check the accuracy of the resulting model, we propose to compare the consumption estimation of the
model, thus implemented in our tool to physical measurementon the real platform.

The test application chosen for this model validation are widely spread multimedia applications : JPEG,
JPEG2000 and MPEG2. The implementations of these three applications are Linux standard libraries.
Hence they use operating system services and standard libc functions. All experiments could have been
made with Linux (or even uClinux), since the simulation tools are complete enough to run these oper-
ating systems. For limited measurement duration reasons, we decided to replace these heavy OS by the
lightweight one, Mutek [15]. Linux hardware layer abstraction makes interrupt request managment too
long to allow a reasonable sized image to be decoded in our measure time window.

27



The three applications are executed in the simulation toolsto get model estimations of their executions.
As far as the measurement setup is concerned, we kept the samesetup as the one used for model calibration,
presented in section??.

Accuracy

Measured values Simulated values Error
Bench-name code lines cycles energy (J) cycles energy (J) cycles (%) energy (%)
jpeg 25819 6916836 1.142440e-01 6607531 1.037940e-01 - 4.4 - 9.1
jpeg2k 4686 7492173 1.268535e-01 7663016 1.200488e-01 + 2.2 - 5.3
mpeg2 24657 13990961 2.335522e-01 14387358 2.208065e-01 + 2.8 - 5.4

Table 6: Simulators results: the results obtained for execution time and energy consumption by real hard-
ware measurement are shown in second and third columns, the simulation ones in fourth and fifth columns.
The last two columns give the error percentile of the simulation.

Results of model estimations and physical measurements arepresented in table6. The second column
gives an idea of the application code complexity, by giving the total number of source code lines. These
figures do not integrate the operating system source code.

The third and fourth columns reports the physical measurement results, in terms of execution duration
in CPU clock cycles and in terms of energy consumption in Joules. Fifth and sixth columns gives the same
kind of informations concerning the simulation results. Finally, the last two columns gives the percentile
error of simulation errors of the simulation results against the physical measurement on the target hardware
platform.

These results show that a 10% error rate can be achieve by our simple complete platform energy model.
This estimations are obtained in roughly less than a minute (25s for the first simulation plus 20s for the
second). We think that the error rate of 10% is largely acceptable in regard of the simulation time.

6 Conclusion and Future Works

In this report we have explained how an accurate energy consumption model for a full embedded system
can be build from external measurements and micro-benchmarks. Our methodology is made for systems
using fixed architectures (as opposed to codesign based developments) for which a real hardware plat-
form is available. Quantitative energy data are gathered atthe battery power input such that total system
consumption can be estimated. Measurements are made in a non-intrusive manner (without hardware mod-
ification) so as to reduce electronic equipment and skills needed to perform the acquisition. Most of the
time used to setting the measurement up is spent in writing the micro benchmark code used to activate
different part of the hardware.

The resulting model is thus driven by the activity generatedby the embedded software that is run on
the platform. Quantitative values obtained during the benchmark tests can be used in a number of ways:
raw consumption can be used in software platform simulatorsto estimate software energy cost, differences
between access at different levels of the memory hierarchy can be used to control and calibrate tradeoffs
used in compilers during high level transformations such asloop optimizations for data locality.

Based on our experiments, we were able to build an accurate energy model for our test platform. The
resulting model is simple enough to be used efficiently in fast software platform simulators. Consumption
data clearly identify computation operations, memory accesses at different levels of the memory hierarchy,
bus and peripheral activity.

Our aim is to derive from these figures the tradeoffs involvedin using techniques such as software
caches or scratch pad memories for software development. These tradeoffs will be used to build a dynamic
model of local memory usage to couple compilation techniques and operating systems services. This will
be integrated to efficiently use scratch pad memories and shared low energy resources for multi-tasking
software development in embedded systems.
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Future works will provide energy data input tables that can be used along with simulators such as Sim-
pleScalar [2]. Other work will provide extensions to this methodology inorder to support advanced energy
consumption optimization techniques such as digital voltage scaling available on most recent platforms.
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A Complete results list

bench name energy (nJ) eff_energy (nJ) error_meas (pJ) error_stdev (pJ)
loop-calibration 69.084 26.442 5.1777 20.338
loop-calibration-H 114.08 28.79 9.6173 162.21
loop-calibration-Q 201.4 30.825 18.418 211.53
loop-calibration-E 376.22 35.079 36.029 930.49
loop-calibration-S 724.58 42.298 71.213 450.41
loop-calibration 67.925 25.283 5.1421 128.93
insn-nop 16.747 6.086 1.2884 6.1914
insn-add 16.762 6.1009 1.2889 3.0943
insn-and 16.769 6.1088 1.2892 6.2788
insn-mov 16.76 6.0992 1.2889 5.1092
insn-lsr 16.764 6.1032 1.289 6.4375
insn-mul 50.378 18.396 3.8494 20.599
insn-nop 17.309 6.6485 1.3058 6.584
insn-add 17.307 6.6462 1.3058 8.0992
insn-and 17.315 6.6548 1.306 6.9669
insn-mov 17.307 6.6462 1.3057 3.7529
insn-lsr 17.314 6.6532 1.306 5.0697
insn-mul 51.967 19.985 3.8987 8.9715
insn-mul-H 82.482 18.518 7.1462 97.676
insn-mul-Q 145.81 17.884 13.707 145.18
insn-mul-E 272.07 16.211 26.818 245.46
insn-mul-S 524.32 12.614 53.034 120.3
insn-nop-H 27.422 6.1012 2.3924 24.747
insn-nop-Q 48.638 5.9956 4.5942 44.488
insn-nop-E 90.792 5.5071 8.9897 87.111
insn-nop-S 174.93 4.3556 17.776 115.9

Table 7: Effective results (part 1)
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bench name energy (nJ) eff_ energy (nJ) error_meas (pJ) error_stdev (pJ)
AHB1-access 101.33 37.362 7.7132 154
AHB1-access 101.49 37.528 7.7194 24.95
AHB1-access-H 169.97 42.039 14.426 161.89
AHB1-access-Q 303.26 47.402 27.733 389.56
AHB1-access-E 568.79 57.077 54.319 390.06
AHB1-access-S 1098.2 74.733 107.44 774.36
AHB2-access 300 108.11 22.998 542.9
AHB2-access 300.45 108.56 22.99 235.33
AHB2-access-H 505.74 121.96 43.068 522.74
AHB2-access-Q 905.39 137.83 82.903 823.1
AHB2-access-E 1702.8 167.69 162.52 3224.9
AHB2-access-S 3289.2 218.97 321.5 1203.4
timer-test_on(nop) 16.754 5.9714 1.285 27.298
timer-test_off(nop) 16.732 5.9937 1.2857 6.0922
Dcache-access_ldr 17.146 6.4852 1.3007 5.942
Dcache-access_str 34.341 13.02 2.603 13.381
Dcache-access_ldr 17.66 6.9996 1.3167 3.801
Dcache-access_str 35.364 14.043 2.6348 12.459
mem-access_ldr 775.44 349.02 54.551 171.04
mem-access_str 543 244.5 38.296 231.29
mem-access_ldr 775.29 348.87 54.553 87.694
mem-access_str 543.08 244.58 38.308 132.05
spm-access_ldr 131.72 46.436 10.168 38.48
spm-access_str 115.37 40.746 8.9021 21.916
spm-access_ldr 135.82 50.53 10.295 32.952
spm-access_str 118.79 44.162 9.0074 19.565

Table 8: Effective results (part 2)
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