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Abstract

This research report presents a non intrusive methodotwrdyfilding embedded sys-
tems energy consumption models. The method is based on reessut on real hard-
ware in order to get a quantitative approach that takes ttownt the full architecture.

Based on these measurements, data are grouped into classrotiions and events.
These classes can then be reused in software simulators highilevel source code
transformation cost functions for optimizing compilerfielcomputed power model is
much more simpler than previous power models while beingrate at the platform

level.

The methodology is illustrated using experimental resukisle on an ARM Integrator
platform for which an accurate and full system energy maslbliild.

Keywords: Embedded Systems, Energy Consumption Model, Simulatistndumentation, Optimizing
Compilers Cost Functions.

Résumé
Ce rapport de recherche présente une méthodologie nosiigrde construction de
modéles de consommation pour des architectures embardpaéegthode utilise des
mesures effectuées sur des plateformes réelles afin d'ameirapproche quantita-
tive prenant en compte la plateforme compléte. Les mesorgeasuite groupées en
classes d'instructions et d’événements pour simplifierde@he. Ces données peuvent
ensuite étre facilement réutilisées dans des simulatestszimentés ou comme indi-
quation dans des modéles de co(t utilisés dans les traraioma de haut niveaux des
compilateurs optimiseurs.
Une application de la méthode est présentée en utilisantlateforme ARM Integra-
tor pour laquelle un modele de consommation est construihengau systéme.

Mots-clés: Systemes embarqués, Modéle de consommation énergétigtrenhentation pour la
simulation, Fonctions de colt pour compilateurs optimiseu
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1 Introduction

Embedded computing systems go through a dramatic incréasemputational power. While this com-
putational power is growing, electrical consumption faltothe same kind of trend. Unfortunately battery
capacity used to power these systems does not keep the samelpa consequences of these differences
in evolution drive designers to take the electrical constimnpas a major constraint. We reached a point
where hardware solutions are not sufficient anymore. Onleeofrtultiple solutions to reduce significantly
energy consumption is to organize software and drive théviene in a power efficient way.

One can use software optimization techniques during soéhaasign or source code optimization at
compile time. To know where the software is the more powergy and what are the best optimization
choices, quantitative consumption data are of great vdlemufacturers reference manuals usually pro-
vide some consumption figures for different system partstoktinnately, these figures are generally not
precise enough to build a complete system power consumpiiatel. The usability of these figures (CPU
instructions, caches, bus access, scratch-pad and dxtegneories, peripherals, ...) is made difficult for
software developers and tools by their varying levels otdpton that are most of the time different from
each other among components of the same embedded systemnestliés that it is very difficult to aggre-
gate the figures of different components for a full systemteleal consumption. In the same manner it is
often difficult to handle them during hardware simulatiomdthin optimizing compilers.

In this report, we propose a methodology which aims at bogidilectrical consumption models that
overcome these problems. As it is targeting embedded sdtdevelopment for fixed architectures, the
power consumption model is based on measurement on realéi@dThe measurement procedure should
not be intrusive because these setups are generally difficishplement and represent a lot of work that
might not be feasible for software developers. The projwosif this report use a model building method-
ology based on external system measurements only. The rgedetated by this methodology must be
simple enough to be used in fast simulation for software mimgdion choices or automated optimizations
at compile time. Experimentations have been made on an AR&gtator platform and an accurate full
system energy consumption model is built from a series ofsomeanents using micro benchmark codes.

The report is organized as follows. In Sect®mve review the different existing techniques used for
building hardware power consumption model and their useti@e3 presents our methodology used to
build full platform energy consumption models. Sectibpresents our experimental results on an ARM
target platform that highlights the points mentioned abawd shows that an accurate energy consump-
tion model can be build and used in software platform sinmutatising only simple and non intrusive
measurements. Finally, the model will be validated in secdi 1

2 State of the Art and Related Work

Before giving some examples of existing models, we explaithis section how an energy consumption
model is used and why it is interesting.

2.1 Energy consumption models

We give here an overview of the end user model usage. Thivievewill be preceded by an architecture
presentation, which will help to understand this usage.

The aim of using a model in energy consumption estimation itiuce the design complexity and
to test some solutions before production. We will give mogtads about these specific aims after model
building description. The architecture of targeted systean be seen as a hierarchical stack. At the lowest
level, we find the transistors, elementary components of \(W&ry Large Scale Integration) circuits, and
at the upper level, there is the overall system. This hiérais depicted on Figuré.

Every model is built at a specific level of granularity. Thejonanfluence of this level of granularity is
on the model parameters. The parameters of a system-lewslrace not as fine grained as the one taken
for a gate-level model. For example in the first case we willeh@icroprocessor instructions whereas in
the second we will use binary test vectors.
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Figure 1: Architectural hierarchy from transistor to emébed system

When using the model, we must use the correct parameterssvéduget the most precise energy
consumption estimation. If the model has architecturatli@arameters and if our goal is to know how
many Joules were spent by a given software application, weldlproceed as follows. We should simulate
the behavior of the platform between system level (usagd)l@nd architectural level (model level), to
estimate the model parameters values. At system leveljtgtdtiformations are given by the application
itself. Once the parameters values are fed in the model, getation phase is needed to aggregate the
data. This example is illustrated by figuze
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Figure 2: Energy consumption model usage.




2.2 Model classification and related work

We will now see that many work has been already done on thedfaskergy characterization or power
estimation. Before giving examples of these works, we wilese here how we decided to classify them.
These models can be characterized by two main orthogonetiari The first is the level of granularity of
the resulting model, and the second is the data acquisitethad at model building time.

2.2.1 Level of granularity

The first criterion is level of granularity of the model. Upriow there exists several power consumption
models for processing systems (general purpose and spedigrocessing unit). These models can be
ordered by level of abstraction, from circuit-level (thevkst) to system-level (the highest). Figdreéepicts
the increasing level of granularity of the model as far as wester a higher level in the architectural
hierarchy. We can classify them into three main groups :udiigate-level models, architectural models
and finally system/instruction-level models.

Thus, in the highest class of abstraction level, which isrirtsion/system level, efforts are made to
characterize the energy consumption of instructions. Sonte builds an instruction cost table, where
others also take into account the inter-instruction camtifol logic switching cost) or the data values (data
logic switching cost).

At the architecture level, the system is first divided intodtional blocks. Each of these blocks has its
own energy consumption model. An important advantage efkimd of model is the possibility to choose
completely different types of model for each functionalddpand thus completely different parameters for
them. Most of the time, models used for functional unit aralyical models, but statistical or empirical
models built thanks to simulated or measured data can betosed

Finally, as far as circuit/gate level model are concernbd,work is to describe very fine grained
behavior of the target system or processor.

2.2.2 Data gathering method

In the model building process, quantitative value of energlysumption are needed to calibrate the final
model to suit more closely the underlying architecture gpeonsumption. Two of the methods can be
distinguished by their data acquisition method and thelttiires not even need data. For this criterion, we
can find the three following classes : analytical modelsusation based models and physical measurement
based models.

The first method of model building is analytical constructidn fact, in this method no energy con-
sumption data are needed. This method use physical lawgelmiteature description to predict accurately
the electrical consumption of the targeted element. Thithatkis often used on low-level and regularly
structured units such as caches memories. It appears talbe déficult on irregular structures or not
really accurate due to extreme simplifications.

The second method gathers quantitative data from simalatio this method, we build the model
by a bottom-up process, which consists in using models o&tdavel of granularity, as described in
section2.1. This process can be repeated level by level. At each stepmeders of the lower level
must be calculated by simulation and quantitave data gadhehll informations are then deduced from
the hardware architecture. FiguBedepicts this method. Since this method only requires thailéeit
architecture of the system, no hardware platform is neelde@dn be used during design of VLSI circuits
to estimate the resulting consumption or to test the vigtili new solutions before production.

An alternate solution to simulation and lower level modeddzthmethodology is to use measurements.
Indeed, by measuring the energy consumption on real haegivés possible to build an energy consump-
tion model. In fact, the production process of this kind ofdels is the exact opposite of the one described
before for simulation based ones. The process is a top-donstiction, since the data gathered by mea-
surement concern the overall system, and detailed inféomamust be extracted from these global ones,
and not aggregated. Figudegives an overview of this method. The models built by thiddkaf method
are generally less complex since quantitative data areseegmained.
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We will give examples of each methods at different level @frgrarity in the following section. As our
interest is in a measurement based method, we give here axéanpées of measurement setups proposed
in the literature. The solutions proposed for measuremave b wide range of complexity.

e The simplest solution is proposed (], by Tiwari et al. It consists in using a ammeter connected
to the power supply pins of the processor. This method hasdeantage to be very simple to
implement, but it has also a huge disadvantage, which isaee df information. Due to the poor
time resolution of the ammeter, we only get mean values.

e A way to overcome this problem is proposed by Russell andniadn [18]. Their data acquisition
solution use a digitalizing oscilloscope coupled with dgstes placed in series with the power sup-
ply connection. For this kind of measurement, they use a pagformance oscilloscope (LeCroy
LC534) which has a high sample rate. The setup even allowautiers to have a trigger signal,
which gives the beginning and the end of the measuremerdcefihe sample rate of the data is
limited by the performance of the oscilloscope.

e Another solution for instantaneous current measures ipgs@d by Nikolaidis and Laopoulos in
[16]. The setup is based on an oscilloscope and a current minibrithe reason of a current mirror
usage is the reduction of the influence of the measuremert eetmeasured hardware. The authors
can measure power consumption of the system at high sangpieed without interfering with the
supply voltage.

e Finally, Chang et al., ing], propose a setup that gives the consumption cycle by cytis. setup is
based on the charge and discharge of capacitors. Indeegkttiyeis placed in series with the power
supply. The principle is that at each cycle one capacitahaeges and the other discharges. Thus by
sampling only twice a clock cycle they can deduce the powesemed by the target system during
this cycle. The setup is completed by an AD converter (Anddigjtal Converter) which is in charge
of sampling, and a Fast SRAM that is fed by the ADC with the agédt values. The data are then
computed from the SRAM.

2.2.3 Related work

The two criteria of classification are not fully orthogorsihce all combination are not possible or pertinent.
Indeed, analytically built models targets low level uniteedo the complexity of the building process. This
building method will not be detailed any further in the remag of this report, because our interest is in
a higher level model. As far as simulation based model areermed, they are rarely used in the highest
level of granularity since they are highly time consumindpailding time. Finally we do not find lower
level model based on measurements since it is complicaedract low level informations from measures
which are representing the whole system consumption.

In the following paragraphs, we will give an overview of theesic models of electrical consumption of
circuits, and then some examples of abstraction levetimgimethod combinations investigated in related
works. The presentation of these works will be organizecelgllof abstraction.

The basic model Before giving examples of models by architectural layess)ave present here the basic
power model of VLSI (Very Large Scale Integration) circuithis model is one of the lowest level power
model, since it models the power consumption of the mostettany gate, the inverter (2 transistors).

The consumption of a gate can by divided into two main partsiticsand dynamic power. The first
part, static power, does not depend on the gate input chamgHsence gate activity. However, the second
part, dynamic power, is correlated to these input signahgba.

The static power is composed of the current leakage of adlaasistor. It is usually modeled by
equation {). Vg4 is the power supply voltage ard.,.. is the leakage current.

Pstatic - Vdd X Ileak (1)

The dynamic power can be subdivided into two parts : sharpower and output capacitance load
power.



The short-cut power is due to the fact that the transistasalir(N-MOS group and P-MOS group)
opened at the same time in the transition period. Some atetsig from 1 to 0 and the others from 0 to
1. When the input signal is around the threshold voltigg the two group of transistors are open and a
current can pass between grodnd andV;,. This power can be modeled by equati@h Once agairV;,
is the threshold voltage arid,; is the power supply voltage. Finally,is the signal raise time.

Pshort_cut = K-(Vdd - 2‘/th)3.7' (2)

The second part of the dynamic power is the output capaeitiac power. This formula express the
fact that the energy stored in the output capacitance igesthtw ground when the input switches from 1 to
0.

1

whereC' is the output capacitance of the gate.

In present day technologies, the first two sources of povesifition are negligible against the amount
of power that the third represents. The power consumptighefnverter is then simplified to the output
capacitance load described by equatighn (

This model is generalized to all gates by the approximatiaball other consumption can be neglected
against the output capacitance charge.

A second generalization is used in architectural and sy$teei models. A naive extension of the
model described before (equatid@))(to a full block or chip gives formula4) :

1
P= 5Cmvjd fo (4)

where(C,, is the total output capacitance of the systefitis the operating clock frequency andis the
proportion of gates switching from 0 to 1 in a clock cycle. Terametersy and C,, are difficult to
estimate but can be obtained by detailed simulation.

This latter model is widely used, even in other models, whiegives approximation of the power
consumption of a system or block, but it is not adapted to pleeificity of the logic contained in the block.

Transistor/Gate-level Models One of the most accurate methods to estimate power consamiygfore

a circuit is realized is doubtlessly transistor/gate lesmglulation. In fact most of synthesis tools provide
power consumption prediction. For example PowerMi] from Synopsys and QuickPower][from
Mentor. These tools are low level (circuit or HDL) simulaoiOther simulators operate at circuit level,
such as Spice-based simulators (Star-Sifj for example). This kind of simulation gives accurate fine-
grained results, but are very time-expensive. In fact thee tof simulation limits the number of events
simulated.

A first improvement for this drawback is the gate level siniola The elementary unit is not the
transistor anymore but the gate (an assembly of transistdgnoch [L7] for example, runs 450 times
faster than Spice based simulation.

The models (and simulators based on these models) preseretequires detailed information on the
hardware modeled, HDL source or equivalent informationssdtware development phase, it is almost
impossible to get these information from the manufacturditsen this kind of models do not meet our
needs of simplicity. Moreover measurement based model doesxist and are probably impossible to
build at such a low level of granularity.

Architectural-level models As we saw before, the peculiarity of architectural modelthat they are
centered on the functional units. Energy consumption imesed by estimating the consumption of all the
blocks.

The first architectural-level model we will talk about is posed by Chen et al. if6]5, 4]. The system
modeled in this work is a full system comprising a CPU and a,[p&R a bus and memories. This system
is divided into functional blocks, such as registers, ALUA®] ... On top of that, the decomposition
proposed by the authors is hierarchical, and apply to atifea of the target. As far as efficiency is
concerned, the authors want their model to be accurate ehivey decided to take into account logic



switching generated by instructions and data values. Thekblare grouped into two families bit-
dependent and bit-independent blocks, regarding if their consumption varies while inpattor changes.
The models used in the functional blocks are based on tafarar called Look-Up Tables (LUT) filled
thanks to the model presented in equatién {The final results gives an accuracy at about 9% of the real
values.

Li and Henkel [L4] build a model at a higher architectural level. Indeed, thetem class targeted
by their model is also a full system integrating a CPU, mes®and even custom ASICs (representing
peripherals), but in their model the CPU is a unique funetidmock. Other blocks are then main memory,
caches and specific hardware. The models used for each ofitiseave purely analytical ones, based on
architectural data found in the literature (number of row anlumns for memory, ...), or behavioral data
of the application (humber of miss, ...).

Kim et al. [L0] augment a cycle accurate simulator with an architectusalgy consumption model.
The targeted system of their model is a CPU. The model praploas the peculiarity to be a “recursive”
architectural level model. The system is divided into fumeal units called micro-architectural blocks.
What is interesting in their model is that the micro-arctiiteal models can be subdivided in turn. The
micro-architectural block consumption is defined by thremponents : load of the input capacitance,
switching of the logic due to the switching of inputs and fipdhe leakage power. These data are stored
in LUTSs calculated off-line (the LUTs can be replaced by sitiegal models for example).

Wattch [1] is a power model integrated in SimpleScala}, [a cycle accurate instruction set simulator.
The modified SimpleScalar tracks the access to functioritd tmpredict energy consumption of a CPU.
The authors regroup the functional unit power model inta fdasses : array structures, CAM (Content
Addressable Memory) structures, complex logic blocks dadking. Array structures represents caches
for example. CAM structures are part of TLBs (Translatiomkeaside Buffer) or write queues. Complex
logic blocks are ALU, FPU. Clocking represents the clockrdiation tree. In each class, the consumption
is estimated by a parameterized analytical model based dritectural parameters. As far as Wattch
performances are concerned, it performs power estimafd@0 limes faster than circuit level simulator
with an error of only 10%.

SimplePower 22] works in the same way as SimpleScalar, by simulating thew@n of each in-
struction in each pipeline stage of the CPU. From these nimfion only activated functional blocks of
the architectural model of SimplePower are called to egémawer. The simulator use a cache simulator,
analytical models and LUT (Look-Up Tables) models to predmwver consumption. These models are
fed with input values and behavioral informations (ex : @nfisses, ...). The resulting accuracy of this
model is about 15% against transistor level simulation.

To conclude, architectural level power models are buildgdléxible. In fact, the main aim of most of
them is the reuse of part of the model between different taggem. Indeed, there is no need to recreate
an entirely new model for a new architecture, but to add, resrar modify existing functional blocks.
Their goal is to be less complex than circuit-level modats] more accurate than instruction-level models.
In this kind of model, every gate or transistor are not sirredahence the model is less time-consuming,
but the model take into account the specificity of certaint pathe architecture by using different model
for each functional unit of the system. Some of the modelsqred in this family are easily adaptable
to our objectives of modelling the full platform, since thegn be augmented to take into account the full
system (CPU plus peripherals, memories, ...). This is tlse cdthe first two examples of architectural
model. In the examples cited here no measurement basedsravdgiresent.

Instruction-level models Tiwari et al. [20, 21] model of power consumption estimation for a CPU
(x86) is based on measurement. The power measurementstaneeobby measuring the current drawn
by the CPU with a digital ammeter. As this tool averages tHaes simple measurement would have
meant nothing. The method proposed by the authors gives a cogsumption value for each instruction
by executing each one in a well sized loop and measuring theurnption of the overall application.

The consumption is then divided by the number of instrucégacuted. The sum of instructions mean
consumption does not reflect the effect of control logic shittg between instructions. In order to take this
into account, the authors proposed to characterize whattikinter-instruction consumption. To measure
this, they proposed to renew the same experience with eachination of two instructions in the loops.



Once the consumption obtained, they subtract the amoumniesfg due to the instructions themselves, and
then divide the rest by the number of instruction switch higitapproach, inter-instructions are symmetric.
The main difficulty of this method is that the table of intasiruction has a size d¥? (if N is the size of
instruction set). The accuracy of their model is within 3%he measured values.

Lee et al. 7] enhance the model described before on a DSP, by regroupstryictions into classes.
Thus the complexity of the inter-instruction table fallsdenO(N?). The accuracy still stays under 10%
of error.

Another work, from Steinke et al. 1P|, uses an ammeter to get the desired consumption on an
ARM7TDMI. Their model is build thanks to linear regressioitwdetailed instruction informations like
the instruction, and its parameters (register numberstegialue, immediate value, ...). The error falls
here under 2%.

The previous measurement procedure has an important dciaywehich is its narrow frequency spec-
trum. The setup only allows them to get mean power consumpttues. In this condition they loose peak
power consumption. Russell and Jacomelid propose a solution that has a better temporal resolution.
They use a digital oscilloscope (Lecroy LC534). Thanks totdmporal resolution enhancement, instruc-
tion power consumption are more precise. Indeed, Tiwari. eira forced to measure consumption of the
instruction repeated in a loop. But their measures inclh@econsumption of the branch instruction too,
neglected because it is executed only once in a huge loopseRasd Jacomelp] use a trigger signal
to only measure the consumption of the body of the loop (witlibe branch instruction). The resulting
model proposed by the authors is based on a statistical mhethmpnstant parameter model. The parame-
ters of this model are the types of instructions. Experirngrdre made on an Intel i960 and the estimated
values give about 8% of error.

Lee et al. L3] propose another solution to get rid of the inaccuracy oftieasures based on statistics.
Their technique is also based on a simple setup for measw@hgower consumption on an existing target
(CPU), and aimed at building an instruction-level model. aMis different in their approach is the use of
regression analysis. If applied correctly, their modedwal to know even less architectural informations
on the target system/processing unit and reach a good agaeird.5%. In fact by applying the regression
successively with each selected parameter, one does notdvamow the underlying architecture because
the parameter are not estimated from the hardware. The psgesrare finer-grained than the previous
proposition, since in this model takes into account the fjezlme stage cost of instructions.

All models here are centered on estimating CPU power consampOur interest is to estimate this
consumption plus the consumption generated by the resteoémhbedded system. System/Instruction
level models would not allow this, our proposition will no¢ bbased at system level of granularity. But
measurement are widely used at this level of abstractionegaf the building methods proposed here have
the characteristics we are wanting of our methodology, Baityg minimum architectural information.

To conclude, simulation and analytical model building noelh are generally oriented for early stage
VLSI design, before material production. Conversely meament based method needs less information
on the underlying material architecture. These last paint® us to propose a measurement based method-
ology, since at software development phase, all informatiteeded for simulation based method will not
necessarily be available.

The second point is that the setup used for data acquisitionii methodology must not require elec-
tronic skills. Compared to all setup proposed in the liter@tve should use one of the simplest.

Finally, all system/instruction level models proposeddbefare centered on a CPU, and do not take
into account peripherals. The whole system is then not niedi@lith these models. Some exceptions
are present in the architecture level models. For examplet &l. [14] propose a model in which CPU,
memory and busses are different units. This model is clasgydtem-level modeling than the instruction-
level ones.

3 A methodology for energy consumption model construction
As presented before, until now overall embedded systenggrramsumption model were proposed, but

they are not based on simple data acquisition methods. Gelysimple acquisition method based models
were proposed, but they are usually taking into account argybset of the system, the CPU. We will
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propose in this report a methodology which is both using #mpn-intrusive measurements and a model
that is representing the whole embedded system. The ainisafthodology is to be simple and generic
enough to be reproducible by software developpers on tlaethiare platform.

In this section, we will give details about this propositmirethodology for building an energy con-
sumption model based on simple non-intrusive measureménwvill describe the measurement setup, we
will give an overview of the measurement protocol and tha @atraction. Finally we will say a few words
about the setup validation.

3.1 Measurement setup

First of all, it is necessary to remember what we have to nreasxactly to know what our system is
consuming. Basically, every electrical appliance poweiien by the following formula :

P=1IV (5)

Wherel is the current drawn at input andis the power supply voltage.
In fact we will be more interested by energy, since it repnes¢he real cost in terms of electrical
consumption. The definition of the energy is the following :

E="Pt (6)

whereP is defined by formulag) andt is the time.

These two definitions are correct if the current and the geltare constants. This is exactly what
Tiwari et al. [20] considered by using using human reading on an off-the stmtheter. It should not be
the case on our target system, so current and voltage becomigois of timel andv. On top of that, the
process of data acquisition, that is to say physical measadeice that andv will not be continuous, but
in discrete time. We then have the new definitions :

pj = 1) (7)
E = / pdt ~ Z P At samyp (8)

WhereAt qmp = f p— and fsqmp is the sampling frequency.

In that condition, measurement will consists in samplingent and voltage. From these informations
we can deduce the power and energy consumption of the systengdhe time of the experiment.

Now that we know what we have to measure, we must define wheéakédhese measures.

The choice of measurement point is very important. In fdut thoice will have an influence on
many other choices in the following steps. The most impartiaing is that it is tightly coupled with the
informations we can/want to extract from the measures.

What we mean here is that if we want to measure the electaceluumption of the CPU, we would have
better sampling the current and voltage at the power supplytiof the CPU. This is a huge prerequisite,
which is that it must be accessible and that you can instraiih&n current sampling (voltage sampling is
easier).

As we said before, we are not necessarily interested in veeygiained measures. On top of that we
base this approach on non intrusive measures, becauseasoit@velopers often do not have time and
skills to make this kind of measures. The better way to be ntrnsive is to place our measurement point
at the power supply input of the system.

More precisely, our approach is based on the whole systectrield consumption in order to closely
fit to the real consumption of the studied system. This meaaiswe should place at the point where the
battery is fitted, since it is the only energy supplier in eddsd systems.

This approach has an interesting advantage, since it atfeusiodel generated to take into account the
integration costs (in term of electrical consumption). V& anly measure the consumption of the main
chip containing the desired device, but of the components.
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Finally, once we have chosen such a measurement point, weselest the measurement material,
which will be used in the model building. There is only oneftaimt in this selection, which is that probes
bandwidth and sampling frequencies must meet Shannon’statarget signal. If we still would like to
have CPU electrical consumption and if our measurement gopiaced at the power supply input of this
CPU, we might probably have signals whose frequency is thd €&quency. We would have then to
select an acquisition material of which bandwidth is sudfitito acquire this signal.

In the experiments depicted in sectidme decided to sample current and voltage at the power supply
input of the development board ARM Integrator CM922T-XA K. this boards power supply input, we
have the signal depicted by figuse
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Figure 5: Sampled signals at 2.5G samples/s : We can obsevne sampled current and voltage present
a frequency of 500kHz which is far away from the CPU freque(i®8MHz)

The sampling rate for this figure is 2.5G samples per secor flequency of the signal depicted
is about 500kHz. The explanation for this is that the boameru switching stabilizer has an operating
frequencies of around 500kHz (as stated on the manufasts@ecifications). As a consequence, it is
evident that we will not have cycle accurate energy consiomptn fact, the voltage stabilizer does not
do a perfect job. Power variation are due both to events irethdiation board and to the supply voltage
variations. The latter effect must be averaged out of thesomeanents.

The second important fact is the duration of the measurenhefdct it can be limited by the hardware
used for the acquisition. If it is the case, it will give an epjpound to the sampling rate. In our case there
are two stabilizers. Their frequencies are slightly défei.e. about 2 or 3 kHz. The time of experience
must then be sufficient to take this variation into accourg.N&d to adjust the time window by modifying
the sampling rate.

The resulting setup is the following. For current sampling selected an ampermetric clamp Tektronix
P6021. As far as voltage sampling is concerned, we used ageofirobe Tektronix P6139A. Finally, the
acquisition was made by a DPO (Digital Phosphor OscillosgdpS 7054A series. This oscilloscope was
only used as an acquisition device.

In terms of sampling frequencies, we finally used a 2.5M samgt second rate, which gives usla 2
s time window thanks to its 250 000 sample memory.

3.1.1 Protocol

Once the measurement setup is chosen, which means we hagedletere and what will be measured
and with what material, we have to organize our experimentsder to extract the information we are
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interested in. Indeed, placing the measurement point gidtwer supply input, will certainly not allow us
to get CPU cycle accurate measures.

As our main aim is to build a software electrical energy mothed events which will be the subjects
of our measures will range from CPU instructions to opetpsiystem services. More details about those
events will be given in sectioB.3. What is important to underline here is that the duration oshof the
target events will fall below the time accuracy of the setup.

To solve this problem, there are two solutions. The first bélto change the setup to collect measures
closer to the CPU, for example. This solution is not accdptalince this measurement point was chosen
for reasons expressed above. The second solution is thepeatreach event a certain number of times,
and average the energy consumption.

In this second solution, measurement experiments must angeteral requirements. We must know
how many times the target event occurs during the measutenterval, we also need to know the exact
duration of the experiment, and finally it is important thathing else than the target event happens during
the time window. All these requirements induce that we bhsenteasurements on benchmarks raising
each a different target event.

First of all, we have to know exactly how many times the evertuos during our measure in order to
make a correct average. Indeed, supposing that we canai@exactly the energy spent in the benchmark,
we will have to divide this amount of energy by the number afurcence to have the per event energy cost.
The only way to get this information is to build the benchmirlexecute the event a known-in-advance
time. This number of repetition should be adapted to theiaitgpn window imposed by the measurement
material. Two alternatives are available for implementatf the benchmark, the first would be a fully
linear program containing the required number of eventgherimplementation of a loop containing a
submultiple of the number of event.

In our case, we select the second solution, since many eratlesydtems integrates caches, and then
the loop implementation can take advantage of it, if the eizthe loop is adapted to the cache geometry.
In that situation, instruction cache misses will not palbenchmarks results. The cost of the loop in time
and power must be estimated and can be taken into accour ieghlts extraction.

As we said above, the loop must be of the right size in ordeveénteialy take advantage of the instruc-
tion cache.

In fact, the loop body must be large enough to minimize theigrfte of the loop skeleton on the final
results. It must also be smaller than the size of the insomdache to avoid cache misses during the loop
execution.

Other factors are important and must not be forgotten, waiettache loading of the loop. Indeed, this
loading phase generates compulsory cache misses. Thedyegi get rid of these misses is to preload the
loop body in the cache before starting the measurements.i§possible on some processors. The second
solution is to minimize the influence of these misses on thasmeement.

The influence of this second class of factors is opposed téirtelass ones. The smaller the loop is,
the less misses we have. The loop size choice is then a tragiebfem.

To formalize this problem, we have to identify the two majongponents. Equation®) and (L0)
give the number of occurences of each of these compongtsandn,,sses, against the total number of
events in term of instruction;,s,,_c.t, the loop sizé;,.,, and the cache line width in words..cre iine-

Nins t
Bty = "5t ©
oop
lloop
Nmisses = —— (10)

Weache_line

Once these two amount are weigthed by their cost we obtaiprtiidem expressed by equatidiiy.

Tinsn_evt lloop
E=———x Cloop + ————— X Cpiss (11)

lloop Weache_line

wherec;,op ande,iss are the costs of loop skeleton and cache misses. These tigoewsbe either
time costs or energy costs. The most relevent one would bgyoest, but a first approximation can be
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estimated thanks to time (cycles) informations, since t#me energy consumption are correlated in this
kind of problem.
The optimal value is hence obtained thanks to the solutieergy (L2) :

I = \/ninsn_evt X Cloop X Weache_line (12)
Cmiss
| < Scache (13)
Winsn
(14)

wheres.qcne IS the cache size in bytes ang, ., is the instruction width in bytes. For example, if we have
a 8 word wide line cache of 8kB, with@,,, of 4 cycles and &;,,;ss of 40 cycles, the optimal loop size is
2048, for 15000000 events.

To conclude on loop size choice, we must underline the faadtttie estimation of number of misses
is based on the fact that the number of misses is predictabfact it is a little simplistic in the previous
problem, since in some associative caches the replacemwiaytis random. If we put two lines in the same
set, the probability of the replacement of the previousgdied line is not zero, as it is for a round-robin
replacement rule. The estimation of the number of missegldhae adjusted to the level of associativity.
The solution to get predictability in the benchmark withdam replacement rule is to only use one line of
each associative set. Such a restriction avoid a line togilaced by a second load in this same set.

The final solution is then to use prefetching solution if tlaeg available, or to minimize the misses
influence by resolving the trade-off exposed before, withpghedictability constraint.

As we mentioned above it is important to be able to calcula¢eeinergy consumption of the bench-
mark, and only it. We should thus know when the core of the berark starts and when it ends. These
informations can be collected thanks to a trigger signatrotled by the benchmark itself. This trigger
signal must change state just before the first iterationefdabp and after the last one. The interesting data
can then be selected thanks to this third sampled signal.

The last benchmark requirement for accurate event costureessthe control of what is running on the
platform. Indeed, during the benchmark core loop, only #rget event should happen. This means that
the platform must be initialized in a way that deactivateusiless peripherals, and only the benchmark
should run on the platform.

To conclude the measurement experiments are organizetl@sso each event energy cost measure
is the subject of a particular benchmark, whose task is ggéri this event a predefined number of time,
using a loop.

For example, in our experiments on the Integrator CM922Tt¥Aeach cycle of the measured signal
represents approximately the electrical consumption 6f@BU cycles. CPU runs at a frequency of 198
MHz and the voltage stabilizers frequency is about 500 kHz.

In the experiments on the CM922T-XA10 we opt for a LED as teigigg signal. The benchmark turns
it off just before the beginning of the loop, and on just after last loop, the data acquired between these
two fronts are relative to the energy spend in the benchm@he interesting data can then be selected
thanks to a third sampled signal. Figuigives an overview of the acquired data (two upper graphs) and
the trigger signal (lower graph). The payload data are pitdsetween the two state change of the trigger.

In order to have a full control of the platform, we use a lighight operating system called Muteld].

At present, we only use hardware initialization of Mutek. @Balization is replaced by the benchmark
body.

As we explained in sectiof.1, at the end of a data collection phase we have two series cures
on current and on voltage. We also presented how we can egtraer information from the dat&Y.

From this sampled power we can extract two different infdiomes. The first is a mean power over the

benchmark. .
b T

Nsamp

whereng,m, is the number of samples. Mean power gives us informatiomitadpate activity. This is an
interesting information, but it does not allow us to havetsal cost of an addition or a memory access.

(15)
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Figure 6: Acquisition results : the two upper graphs arer@gting data i and v, and the lower one is the
trigger signal LED

The main reason is the heterogeneity in event lengths. Ircase we want to know the cost in term of
battery consumption.

We will work in energy rather. As we mentioned before it isegisby equation§). This equation gives
the total energy consumed during the benchmark, this irdition is important, but should be normalized
to give the event consumption. To do so, all we have to do iotoalize the energy by the number of
event executed during the benchmark :

Eevt = M (16)

Neuvt
whereFL..,; is our event energy cosk,.,..., is the benchmark total energy ang,,; is the number of times
our event happened during the benchmark.
If the loop skeleton cost is negligible, the previous resah be considered as the final result, but if it
is not the case, we should subtract the cost of loops to thednergy of the benchmark.
The loop skeleton may be evaluated by an empty benchmarksaoustZ;,.,, may be calculated by the
previous equation. Once this cost estimated, we can useltbeing equation for the other benchmarks :

o Ebench - Eloopcost
Eevt -

(17)

Nevt

whereEjoopcost = Eloop X Noop, @NAE4,)p, iS the cost of one loop cycle and,,, is the number of
loop executed in the benchmark.

This gives more accuracy to the value obtained.

3.2 Measurement error verification

In order to validate the measurement setup, we have to dstiimaerror made on measures. The error will
allow us to know the reachable precision in measures.
We make a measurement on both sampled sighalsdv. This error is modelled as follows :

Z‘ — ,L-meas + 7;67‘7‘ (18)

v = ,Umeas JF ,Ue'r‘r (19)
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where: andv are real valueg/™c** andv™¢*s are measured values aiféi” andv®"" are errors due to
measurement setup.
If we put these new definitions @éfandv in equation {), we get the following result :

p] — (i;_neas + Z’;TT')(U;TLE(ZS + /U;’I’!) (20)

By deduction, we can state thalf“** = i7****v***. In that case we obtain the following errgf™ :

ernr ~EeTT, Mmeas

pj — Zj ,UJ + ,L-;neasv(;‘rr + iel””l",UCiTT‘ (21)

J J J
The error made on power measures (equatidy) can be then reported in the energy calculus defined
by equation ).

Nsamp

Ebench = Z (p;neas + P;TT) * Atsamp (22)

j=1

As we did previously for power, we can state thgt<*s = Z}’j‘lm" Py % Atsamp. The error on
total benchmark energy is then given by equat®3).(

Nsamp

BT =" pi sk Atamy (23)
j=1

The final step in information extraction is the normalizatif the results at the event. This is made
thanks to equationl@). In the same way, the error can be normalized. Then we obtain

err

E
EETT — bench (24)

evt —
Nevt

In our particular case, the measurement error is boundédusgrtor made at quantization by the oscil-
loscope. Error of the ampermetric clamp and the voltageeeob negligible in respect to the error made
by the oscilloscope Analog-to-Digital Converter (ADC).deding to the adjustments of the oscilloscope,
we obtain the following errors on each channel :

As far as current is concerned, we convert every measure oftdf range of 16bits. The quantization

error is then : 5
cerr _ -5
1" = iQTG = +3.052107°4
\oltage error calculus is very close, since we have 10V cdadeon binary values on 16bits. He have

then : 10
err __ _ —4

To validate the measures taken during our benchmarks, wputeih their error. The resulting conclu-
sion is that we have a good accuracy. For example, on a bemklwhich aim is to give us the consumption
of al oad instruction, the energy cost found i242761 10~8 J and the measurement error is equal to
1.154064 1012 J.

3.3 Model structure and parameters

Our choice among all the modeling method which have beerepted in Sect2.2.3is to build an archi-
tecture level model, in which the platform is divided in ftiooal blocks, as in figuré.
The energy consumption of an applicatiby,;, is obtained be adding the all blocks consumptifiys

Eapp= Y _ Enl (25)
blocks
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Figure 7: model block examples

Each block can have its own energy consumption model. To agiatform model better suited for
software development, we apply the instruction level maadition for CPU modeling. The CPU energy
consumptionFcpy is thus model as described in the next equation.

ECPU = Einsn + Ecache + EMMU (26)

The energy consumption is the sum of the energy consumedshyation execution, plus cache and
MMU overheads consumptions, and consumption of the otfuakislof the platform.

E.pp = Ecpu + Z Ey, (27)
blocks

This model aims at being integrated in a cycle accurate sitioul tool of the complete platform. The
most interesting way of writing the model for this kind of pose is to define a per time slot energy
consumption. The chosen time slot is the CPU instructioretien. There are two reason for choosing
this time reference. Thefirstis that it is the finest time refiee since CPU have generally the highest clock
frequency in embedded systems. Secondly, interrupt régjutbs only mean for the hardware peripherals
to interact with the software, are managed at the end (ombetd) of the instruction execution. From
a software point of view, there is no need to use a finer timereefce to report hardware events more
precisely.

The model can be rewritten in a form where the consumptionRif @nd other blocks are reported for
the currently executed instruction. A, will be kept for overall application consumptions, for theke
of notation simplicity instruction reported consumptiani#i be noted ast,.. This new model formula is
expressed in the following equation:

Esot = Ecpu t Z Enl (28)
blocks

Eapp - Z 55lot (29)

(30)

The last peculiarity in this model is the measurement basea cbllection. As we only get global
measures for the platform consumption, we can foreseehkdbdse consumptions of every blocks will
not be easily distinguishable. We mean here that once thee@telol system is put in its laziest state,
idle state for example with all possible units powered dff tesulting consumption is considered as a
base consumption regrouping the base consumption of ewevgned peripherals. Obviously, a part of
this consumption is static power dissipation. We will clistterm &y, it is important to note that
this consumption is reported to the current executed istnu on the CPU. It can be expressed as in
equation 82), as it is dependent on the instruction lengith,. Equation 28) becomes equatior3{).

Esot = Evase +EcPu+ Y Enl (31)
gbase = linsn X gc_base (32)
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The CPU and other blocks consumption are then expressedtdseaw against the idle state.

As described in equatior26), CPU energy consumption is given by the executed instnanergy
cost. This model can be simplified by regrouping instrutionclasses as proposed ik?].

As far as other blocks are concerned, we can expand them asneasories and other peripherals.
This is interesting since bus and memories will be subjeevients generated by the processor, such as
memory writes. The peripherals will be then modeled by staehines giving the energy consumption of
the peripheral during the time slot.

The last step in model construction consists in defining @disible parameters for these components.
Due to the limited information available, the developersildaot necessarily know the behavior of intra-
blocks logic. The parameters for the CPU are already selesirce it is modeled thanks to instructions
consumptions. The same can be done for cache, MMU and evprocessors consumptions. The param-
eters for other blocks are limited to behavioral parameldART sending a byte) and their states such as
operating mode (running, stopped).

Each energy cost in this model is function of the running diestcy and power supply voltage to allow
dynamic and frequency scaling capabilities of the platftribe modeled. An example of this is presented
in the next section.

4 Measurement results : experimentations on the ARM Integra
tor/CM 922T-XA10

In this section we will give more details about this methady, by giving an example of application.
As we said before, we applied this methodology on an ARM badatfiorm, ARM Integrator CM922T-
XA10. We will explain the architecture exploration proceelugive a few details about the benchmarks
implementation and finally give the results of these measure

4.1 Architecture exploration

As the first step of the model construction consists in degitie model parameters, we have to explore
the architecture of our platform to find clues about whichréseould be the most representatives of the
energy consumption. We will give here a rapid overview oftiedware architecture, the interested reader
could find for more details about it i®]

As all Core Module (CM) sold by ARM, this CM is based on an ARMEGMut this one is a little
special since the ARM processor is in fact integrated in a AR&eld Programmable Gate Array), an
Altera Excalibur EPXA10. With the CPU, few peripherals wargegrated in the stripe, which means that
they are placed in the chip along the FPGA. On top of that, spenpherals can be implemented in the
FPGA, since there are bridges that allow communicationsdxst the stripe and the PLD (Programmable
Logic Device),i.e. the peripherals placed in the FPGA.

The global architecture is depicted on fig8reAs we can see from this figure, the stripe has a two level
bus architecture, where the second level could be conneztibe PLD. As far as memory is concerned,
there are different level of memories, with different accéme. The first level is SP (single port) and
DP (dual port) SRAM, which are static RAMs connected to theBA/Advanced High-speed Bus). These
RAMSs are accessed with only one bus access cycle. Furthemawefirst level of SDRAM, accessible
through the memory controller. This memory is accessed amgédr time since we access to the memory
controller through the first level of bus, and then we acoetise RAM chips by going out of the EPXA10
chip. A second level of SDRAM or SSRAM could be used by implatirgy a second memory controller
in the FPGA, since SDRAM can be connected thanks to a DIMM eotar or a SSRAM chip is integrated
on the CM board. This second level will not be mentioned amhér.

As we said before, our model is placed at the architectuval.lét this level, we found the following
blocks :

e CPU
e SP/DP SRAM
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This blocks enumeration gives us clues on the potentialnpaters of our model. In fact from the
software point of view, some of the parameters becomes etsden fact, since ARM CPU’s have a
RISC architecture, all operations are from registers tiastegs except the load and store operations. In
this situation, we can define two classes of instructionsad land store, and the second group all other
instructions. To complete the coverage, we should add @ ¢noup, the co-processors operations.

Once we have made this first classification, we can easilyimedbat the address of the load and stores
will define the memory level of the access, and then define ifeeess to memories or memory mapped

registers, through bus level 1 and level 2, and so on.

These different remarks are focused on the CPU and memo@estop of these two classes, we
find peripherals. This class of blocks can have an autonompesating mode. In that case their energy
consumption should be modeled by finite state machinesg sinty access to their control registers can

change their state.

The parameters selected after this architecture expboratie the following :

e CPU instructions of class 2.
e |oad/stores in cache

bus accesses

main memory accesses

Scratch Pad memory access

peripherals states consumptions
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On top of these informations, the architecture exploratémeals that this platform possesses an inter-
esting feature. The PLL (Phase-locked loop) of the clochaigeneration is programmable by the mean
of a control register. Unfortunately, there is no posdipitif adjusting the supply voltage.

4.2 Benchmarks construction

Once every possible parameters are listed, we have to neetimir cost. As described before, we build
benchmarks for each of the parameters.

The procedure is the same as the one depicted in seBtiofy which means that we generate the
targeted events a predefined number of occurrence thankedp a

ARM922T, the CPU embedded in the EPXA10, has caches. Thasbsg are separated 8kB data and
instruction caches. They are 4 way set associative with &svevide lines, which means that they have
64 sets of 4 lines. The instruction cache of the ARM 922T allpnefetching. We used this feature in the
benchmark implementation. The second point concerns filaaement rule in the associative sets. Two
rules are available, random and round robin. As we mentiamedction3.1.1, the most predictable rule
is round-robin, but we kept the possibility of testing thedam one by using only one line per set. Then
as far as the loop sizing is concerned, we selected a 512i@tistns loop body, since it is the size of the
direct mapped cache (we are using one line of each set).

Most of the events could not be measured directly, which mehaat we cannot build a benchmark
that makes this event and only this one to occur. By meastwnnogseries of benchmark’s consumption,
one causing the event and the other not, we can determinetisemption increase due to the event. For
example, to estimate the memory access overhead, we shuoub@nchmarks that load or store in memory
cached and not cached. Then the CPU executes the same tiostinche two tests, but one generates
a memory access and not the other. The difference in energguotption represents the overhead of a
memory access.

Here is a short list of benchmarks that were built, and tlzeget event :

e i nsn- XXX: This benchmark allows us to compare different instructiexecuted in the CPU. (add,
mul, moy, ...). Itis only executing the instruction in th@fo

e Dcache-access : With this benchmark we can get the Idr/str instruction cdsts accessing a
cached memory address. Then all the access read or writes@mary cell in the D-cache.

e AHBl-reg-wite : This one gives the bus access (level 1) overhead. We wri¢eperipheral
register a value that has no effect on the preipheral. Thstszgnust be accessible through the first
level of bus. For example, we use ITC register (see figlre

e AHB2- access : Like the previous, this one is giving a bus access (leveM2yloead. In that case,
the benchmark is working like the previous one, but with dsteg accessible through the second
level of bus. For example, we use timer register (see figure

e Nem access : To get data memory access overhead with this benchmarkesactivate D-cache.
Indeed, all oad or st or e instructions access the main memory.

e spm access : The aim of this benchmake is to get data scratch pad memamhead. To have
this result, we access scratch pad addresses instead ofrmeaiory addresses. The D-cache is
desactivated. Every memory access is then made on the SRASSE figureB).

e timer-test : As an example of peripherals energy characterizatios, ibhchmark allows us
to get running/stopped timer consumption. It is subdivigd two benchmarks, one in which the
timer is stopped and the second in which the timer is runniitng structure of the loop is the same
as thei nsn- cnp benchmark with a nop instruction, since it is the instructi®nerating the less
activity.

e | oop-cal i brati on: Finally, this benchmark is the one which gives loop skeleteerhead. By
running an empty loop benchmark, we can estimate the loofheae.
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On top of these various benchmarks, which correspond to afdse parameters events, they all have
parameters that allow us to estimate the remaining parasadtthe model. Then all benchmarks can be run
at different frequencies. As we mentioned before, frequamd voltage scaling are potential parameters
of the model, and our tested platform only allows us to mottiéguency. However, we can extrapolate
our results to a platform with Dynamic Voltage Scaling (D\y)assuming that the supply voltage can be
scaled down in proportion to the clock frequency, which igasonable approximation if far away from
the threshold voltage.

4.3 Measures and model adaptation

bench name length | energy (nJ)| error_meas (pJ) error_stdev (pJ) p_mean (W)
loop-calibration 4 69.084 5.1777 20.338 3.421
insn-nop 1 16.747 1.2884 6.1914 3.317
insn-add 1 16.762 1.2889 3.0943 3.319
insn-and 1 16.769 1.2892 6.2788 3.32
insn-mov 1 16.76 1.2889 5.1092 3.319
insn-Isr 1 16.764 1.289 6.4375 3.32
insn-mul 3 50.378 3.8494 20.599 3.327
AHB1l-access 6 101.33 7.7132 154 3.347
AHB2-access 18 300 22.998 542.9 3.304
timer-test_on(nop) 1 16.754 1.285 27.298 3.298
timer-test_off(nop) 1 16.732 1.2857 6.0922 3.3
Dcache-access_Idr 1 17.146 1.3007 5.942 3.397
Dcache-access_str 2 34.341 2.603 13.381 3.4
mem-access_|ldr 40 775.44 54,551 171.04 3.818
mem-access_str 28 543 38.296 231.29 3.801
spm-access_|dr 8 131.72 10.168 38.48 3.259
spm-access_str 7 115.37 8.9021 21.916 3.263
Table 1: Results of benchmarks

bench name energy w/ prefetch (nJ) energy wo/ prefetch (nJ

loop-calibration 69.084 67.925

insn-nop 16.747 17.309

insn-add 16.762 17.307

insn-and 16.769 17.315

insn-mov 16.76 17.307

insn-Isr 16.764 17.314

insn-mul 50.378 51.967

AHB1l-access 101.33 101.49

AHB2-access 300 300.45

Dcache-access_Idr 17.146 17.66

Dcache-access_sir 34.341 35.364

mem-access_|ldr 775.44 775.29

mem-access_str 543 543.08

spm-access_|dr 131.72 135.82

spm-access_str 115.37 118.79

Table 2: Results of benchmarks : influence of prefetch
The results summarized in tableallows us to draw the following conclusions. First of all, wan

conclude that the type of instruction does not matter asdéria not a data access or it does not misses in
instruction cache. This conclusion is underlined by thelte®ofi nsn- XXX benchmark. We should note
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bench name length | energy (nJ)| error_meas (pJ) error_stdev (pJ) p_mean (W)
loop-calibration 4 69.084 5.1777 20.338 3.421
loop-calibration-H 4 114.08 9.6173 162.21 2.822
loop-calibration-Q 4 201.4 18.418 211.53 2.49
loop-calibration-E 4 376.22 36.029 930.49 2.329
loop-calibration-S 4 724.58 71.213 450.41 2.244
insn-nop 1 16.747 1.2884 6.1914 3.317
insn-nop-H 1 27.422 2.3924 24.747 2.717
insn-nop-Q 1 48.638 4.5942 44.488 2.407
insn-nop-E 1 90.792 8.9897 87.111 2.247
insn-nop-S 1 174.93 17.776 115.9 2.164
insn-mul 3 50.378 3.8494 20.599 3.327
insn-mul-H 3 82.482 7.1462 97.676 2.723
insn-mul-Q 3 145.81 13.707 145.18 2.405
insn-mul-E 3 272.07 26.818 245.46 2.245
insn-mul-S 3 524.32 53.034 120.3 2.162
AHB1-access 6 101.33 7.7132 154 3.347
AHB1-access-H 6 169.97 14.426 161.89 2.803
AHB1-access-Q 6 303.26 27.733 389.56 2.5
AHB1-access-E 6 568.79 54.319 390.06 2.347
AHB1-access-S 6 1098.2 107.44 774.36 2.263
AHB2-access 18 300 22.998 542.9 3.304
AHB2-access-H 18 505.74 43.068 522.74 2.781
AHB2-access-Q 18 905.39 82.903 823.1 2.489
AHB2-access-E 18 1702.8 162.52 3224.9 2.337
AHB2-access-S 18 3289.2 321.5 1203.4 2.26

Table 3: Results of benchmarks at different frequencies :gdms half speed, Q quarter, E eighth and S
sixteenth. These ratio are given according to referenakdpeed of 198MHz

22



that there is a special case, the multiplication. In fac itat a one cycle operation, its consumption is then
a strict multiple of the instruction cost. The ratio is theltiplication length, between 3 and 6 (depending
on the multiplier).

As we mentioned before, we used prefetch to overcome theigiiin cache loading bias on measures.
As table2 shows, cache loading bias is about 1% of the energy figure® difference between the
benchmark using prefetch and the ones not using it is dueet@adiche misses induced by this cache
loading. More precisely the loop body is 512 instructiomgjand the cache line is 8 words wide. We have
64 cache misses generating an amount of energy divided hyuttnder of event. This quantity explains
the difference underlined before.

The second remarkable fact is that reducing platform fraquencreases energy consumption of event.
We believe the explanation as follows. Since we cannot rethe power supply voltage of the circuit and
since the dynamic activity is the same, the event energyuropson is at least equal. It can be higher due
to static consumption which increases since the event takes time.

By finally repeating the exact same experiment a large nuoftigne, we can observe that the variation
in the results is higher than the measurement error. Thiati@m is due to various possible factors such
has previous activity on the platform, temperature of thp,ch.

4.4 Resulting model
4.4.1 Basic model

The basic model presented in secti®3 can be rewritten, by using models simplifications obtaingd b
calibration.

We found that most instructions have the same energy cortsamsas long as they stay inside the CPU.
Currently only ARM32 instruction set is modeled. Thumbskitpinstruction set could be modeled using
them same benchmark methodology in no time. In our setup,ribt possible to isolate the instruction
cache consumption, which is lumped with the instructionstonption. Cache misses will then be modeled
as simple memory accesses.

We finally have a model where CPU instructions are regroupégd classes, the logical and integer
intra-CPU instructions, and the load and store instrustioh memory load access is modeled as a load
instruction, plus a bus overhead, plus a memory overheast. Hia not least, the peripherals energy con-
sumption are taken into account thanks to state machingegitieetheir consumption during the instructions
execution.

Other model simplifications are possible in the case of thatfgrm. For example, the CPU cache
models are simplified by taking into account only memory asd®irsts in case of misses since the overhead
can be neglected. The MMU has the same kind of simplificagorce the TLB (Translation Look aside
Buffer) misses generate memory accesses, and the tableapadisents only a negligible amount of energy.

This model is finally resumed by Equatioddj.

Eslot = Ebase
+ 5insn + 5bus_access + gmem
+ Z gperiph_state (33)
periph

where&y, is the energy consumption of the instruction execution tslog, &5, is the cost of in-
struction given by its class cogly,us access iS the bus overhead cost for load or store instructiépsg,, is
the overhead for memory accesses. The last term repreblergsrn of the energy overhead of peripherals
state. These cost are all overhead costs, since the fuluogstfon of a peripheral cost, for example, is
given by its base energy cost comprisedin,. and the overhead.

45 Advanced information extraction

As we stated before, the Integrator/CM has no dynamic velszgling (DVS) capabilities, hence when we
reduce the frequency we cannot decrease energy consumption
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4.5.1 Frequency scaling

Let us have a look at what is happening. First, when we recuedreéquency, it should be underlined
that the modified frequency domain contains only the stsiperipherals and CPU. Our clock frequency
reduction does not affects the SDRAM modules or the FPGA.

Figure9 depicts the measured values for three different benchmepkeduced at 5 different frequen-
cies. This graph represents energy consumption per evetiitai case instruction, against clock divisor,
r§= fTTf wheref,.¢ is the nominal frequency in our case 198 MHz.

energy per event (J) Frequency effects

2.0e-06

1.8e-06| ~— loop-cal
1 insn-cmp_mul
1.6e-06- — insn-cmp_nop
7 — AHB1-reg-write
AHB2-reg-write
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1.26-06-]
Loe06 ]
80007
60007 o
4.0e-07;

2.0e-07-

0.0e+00——— T T T T T T T T T T T T T T clock divisor
3 5 7 9 11 13 15 17

Figure 9: Multiple frequencies experiments : This figurevgbthat the energy per event increases linearly
against frequency ratio.

These curves show that energy per event increases wherefregis decreased, and this may seem
counter-intuitive. To understand these results obsersetfiat a given event.g. the execution of some
specific instruction, entails an almost constant numbeiitdfips, and that each flip uses a fixed amount
of energy. Hence, to a first approximation, and in the absehegeltage scaling, the energy for a given
event should be a constant. However, in our platform, fraguecaling acts only on the processor and
Excalibur embedded peripherals; the consumption of otedpperals, external memories and FPGA is
not affected. Hence, the addition of a parasitic term whicroughly proportional to the duration of the
event or inversely proportional to frequency. This is dig#re case for the curves of Fi§.

gevt = grp + 5mc (34)

Where&, is the per event energy cost as measured befireis the energy consumed by the modified
clock domain of the platform. Th&,, term is the base energy of the remaining part of the platform.

The event triggered by these five benchmarks stays in thadrexy domain of the stripé.oop- cal i brati on,
i nsn-nul andi nsn- nop instructions are CPU only instructions and AHB 1 and 2 registad access
only to the two busses, whose clocks are the CPU clock for AdBd half the CPU clock for the AHB
2. This information is important since in these benchmadnkssame activity is generated in the stripe but
at different frequencies. If we apply the power model of Vip&sented in sectioh.2.3(equation 4)), in
our case the power supply voltage is constant and the guotigitoted by too.

p— %cm f (35)
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In terms of energy :

gmc = Pevttevt
_ 1 2 ref
= 5 cv Oéf,-eft

evt
1
= 5 CV2 alinsn

In terms of time, if we divide the frequency by two, we muljithe time of the event by two. Then the
productft.,; is constant. Thus all members of the previous formula arsteoin. We can state that the
real energy drawn by the event is constant against frequéihcy energy is the lined square on figli@

Power (W)

pf
insn  [c < <
pi/2 ss s
insn [~
Ppase oo~ S

tf )

- LSTy Time (s)
+1/2

insn

Figure 10: energy consumption

This figure drives us to modify the last equation to take irtooaint the variation of,, against fre-
guency divisor, or time. If the “base power” is constant agaiclock frequency variation on a same
benchmark, we can consider the following equation :

5evt = grp_baserf + Emc (36)

Where&,,, vqse is the base energy, which means that it is the base energyro@alsduring one event
at full speed.

This final formula fits perfectly to the linear character of #xperimental results. The last fact which is
not explained by this last equation is the difference in thpess of the three lines. To explain these slopes,
we should have a closer look at the benchmarks charactsréstd more precisely on event lengths. In the
first benchmark, the nop one, the length of the event is 1 cyoléhe second one, AHBL register access,
the length is 7 cycles and finally the AHB2 register accesgtleis 12 cycles.

If the &uase is really invariant against frequency and represents gnesgsumption of the remaining
part of the platform, the elementary base energy cost preddiefore should be 7 times higher in the
second benchmark than in the first, and 12 times higher inhiing henchmark. This remark drives us to
rewrite the equation like this :

gevt = 5rp_base X levt Xy + gmc (37)

cycle

wherel; 7 “ is the base energy consumed by the remaining part of theptath one full speed CPU
cycle. The CPU cycle is the unit of time since it is the shdar@ent which can be measured and also which
can happen on the platform.,; is the event length in terms of full speed CPU cycles.

Linear regressions on the previous results gives the fatigwnesults :

These results show that equati@T) gives a good explanation for the experiments on clock feegy
variation. These results gives us an estimation of what wecomsider as base energy, which is not
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Benchmark name &, pase (NJ) | Eme (nJ) | error (pJ)
insn-mul 10.91 26.37 572.36
loop-calibration 10.52 19.22 258.90
insn-nop 10.54 6.35 105.61
access-AHB1 11.06 36.72 1085.37
access-AHB2 11.06 106.32 | 3431.46

Table 4: Linear regression results

changing against software execution. The value obtainafasit10.82 nJ (with a standard deviation of
+2.6 10~2) per CPU clock cycle. This previous value can be used toterpnet benchmarks results. We
only presented.. values in tablel. But these values give an idea of the cost in energy of theteyieut
they are biased by the large influencefpf pase X levt. The new results obtained by subtracting this base
energy are shown in tabte

bench name energy (nJ)| eff_energy (nJ)| error_meas (pJ) error_stdev (pJ
loop-calibration 69.084 26.442 5.1777 20.338
insn-nop 16.747 6.086 1.2884 6.1914
insn-nop-H 27.422 6.1012 2.3924 24.747
insn-nop-Q 48.638 5.9956 4.5942 44.488
insn-nop-E 90.792 5.5071 8.9897 87.111
insn-nop-S 174.93 4.3556 17.776 115.9
insn-add 16.762 6.1009 1.2889 3.0943
insn-and 16.769 6.1088 1.2892 6.2788
insn-mov 16.76 6.0992 1.2889 5.1092
insn-lsr 16.764 6.1032 1.289 6.4375
insn-mul 50.378 18.396 3.8494 20.599
insn-mul-H 82.482 18.518 7.1462 97.676
insn-mul-Q 145.81 17.884 13.707 145.18
insn-mul-E 272.07 16.211 26.818 245.46
insn-mul-S 524.32 12.614 53.034 120.3
AHB1-access 101.33 37.362 7.7132 154
AHB2-access 300 108.11 22.998 542.9
timer-test_on(nop) 16.754 5.9714 1.285 27.298
timer-test_off(nop) 16.732 5.9937 1.2857 6.0922
Dcache-access_ldr 17.146 6.4852 1.3007 5.942
Dcache-access_str 34.341 13.02 2.603 13.381
mem-access_|dr 775.44 349.02 54.551 171.04
mem-access_str 543 244.5 38.296 231.29
spm-access_Idr 131.72 46.436 10.168 38.48
spm-access_str 115.37 40.746 8.9021 21.916

Table 5: Effective results

45.2 DVS extension

In this section we present an hypothetical extension of tbeipus model for a DVS enabled platform. The
effective energy of different classes events presentast®et.,. are approximated be the basis dynamic
power model (equatiorBg)).

As we saw before the frequency inffluence on these part is ftiis is the reason why frequency
scaling has no effect on energy consumption in our expetisn@&ut if we introduce the fact thaf;; can

be adjusted this not true any more. We take the assumptioif tha divide the frequency by we can
ref

divide V4 by anr, = ‘@;d amount depending ory. For example, Siminuet al. prove experimentally
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that the relation between the voltage and frequency of BieangARM SA1100 can be approximated by:
% = 0.66% + 0.33. In that situation the. is modified and expressed like this for instruction execgutio
for example:

1,V
2 r2

v

ginsn - alinsn (38)

The benefit is then of; In case we approximate the relation between voltage amgiémrcy in our

platform, by the one given earlier, we would have a benef(ll)diﬁ% + 0.33)2. For a clock ratio of 2,
half the speed, the energy benefit would be of 56 % less corntsamT his relation can be applied on the
modified clock domain, and thus a NOP instruction would hav&t 2.76 nJ instead 0f5.35. The base
energy would not be affected.

Finally, concerning the base energy term. Ehg 4. could also be modified by DVS, but in our case
we have no mean to reduce the frequency, then it has no intditesE72° can be however modified by
the same amount than the previous one, since the peripher@ika in the modified clock domain. Voltage
scaling would have been of great interest, but our platfoas mot designed for it.

5 Model validation

5.1 Model validation

To check the accuracy of the model thus built for the ARM Indéégr CM922T-XA10, we describe here
our accuracy tests experiments. The model were impleméngesimulator, and its results were compared
to physical measurements.

Simulator integration

Our model is implemented in a simulation tool suite. Thiswdation tools are composed of two simulator.

The first is a complete platform functional simulator in d&of generating a cycle-accurate execu-
tion trace of the software. This trace reports all executstrictions, and all peripherals activities (state
changes). This first step allow software developers to fanatly debug their applications and supply them
the material to make the second step simulation. To fulfidl sep task, we implemented the behaviour of
the Integrator platform in the open source simulakyeye. We also upgraded it to the cycle accurate
trace generation.

The second step is energy simulation tool proper. This sitbuimplements the model presented in
the previous section. Its main task is to compute model parars from the cycle-accurate execution trace.
It accumulates all computed energies, and reports them @nargy profile file. The format of this file is
an emerging file format, which can be visualized thanks toofhen source proje&CacheGri nd. This
simulation step allows to get the overall consumption ofsbftware 'run’, figures we will use in the next
step of this validation.

Validation methodology

To check the accuracy of the resulting model, we propose figpeoe the consumption estimation of the
model, thus implemented in our tool to physical measurermeithe real platform.

The test application chosen for this model validation adealyi spread multimedia applications : JPEG,
JPEG2000 and MPEG2. The implementations of these threécapphs are Linux standard libraries.
Hence they use operating system services and standardihibtidns. All experiments could have been
made with Linux (or even uClinux), since the simulation tbafre complete enough to run these oper-
ating systems. For limited measurement duration reasoaslesided to replace these heavy OS by the
lightweight one, Mutek 15]. Linux hardware layer abstraction makes interrupt regoenagment too
long to allow a reasonable sized image to be decoded in ousunedme window.
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The three applications are executed in the simulation togdet model estimations of their executions.
As far as the measurement setup is concerned, we kept thesstupeas the one used for model calibration,
presented in sectiop?.

Accuracy
Measured values Simulated values Error
Bench-name| code lines cycles energy (J) cycles energy (J)|| cycles (%) | energy (%)
ipeg 25819| 6916836| 1.142440e-01| 6607531| 1.037940e-01 -4.4 -9.1
ipeg2k 4686 | 7492173| 1.268535e-01| 7663016| 1.200488e-01 +2.2 -5.3
mpeg2 24657 | 13990961| 2.335522e-01| 14387358| 2.208065e-01] +2.8 -5.4

Table 6: Simulators results: the results obtained for etx@ctime and energy consumption by real hard-
ware measurement are shown in second and third columnsitbiaton ones in fourth and fifth columns.
The last two columns give the error percentile of the sinioitat

Results of model estimations and physical measuremenggesented in tablé. The second column
gives an idea of the application code complexity, by giving total number of source code lines. These
figures do not integrate the operating system source code.

The third and fourth columns reports the physical measunénesults, in terms of execution duration
in CPU clock cycles and in terms of energy consumption inekautifth and sixth columns gives the same
kind of informations concerning the simulation resultsndty, the last two columns gives the percentile
error of simulation errors of the simulation results aggiine physical measurement on the target hardware
platform.

These results show that a 10% error rate can be achieve binguiecomplete platform energy model.
This estimations are obtained in roughly less than a mirfe {or the first simulation plus 20s for the
second). We think that the error rate of 10% is largely aad@ptin regard of the simulation time.

6 Conclusion and Future Works

In this report we have explained how an accurate energy copon model for a full embedded system
can be build from external measurements and micro-bendtsm@ur methodology is made for systems
using fixed architectures (as opposed to codesign basedbdevents) for which a real hardware plat-
form is available. Quantitative energy data are gatheredeabattery power input such that total system
consumption can be estimated. Measurements are made iniatnagive manner (without hardware mod-
ification) so as to reduce electronic equipment and skileded to perform the acquisition. Most of the
time used to setting the measurement up is spent in writiagrittro benchmark code used to activate
different part of the hardware.

The resulting model is thus driven by the activity generdigdhe embedded software that is run on
the platform. Quantitative values obtained during the bemark tests can be used in a number of ways:
raw consumption can be used in software platform simuldtoestimate software energy cost, differences
between access at different levels of the memory hierarahybe used to control and calibrate tradeoffs
used in compilers during high level transformations sucloag optimizations for data locality.

Based on our experiments, we were able to build an accuratgymodel for our test platform. The
resulting model is simple enough to be used efficiently in $agtware platform simulators. Consumption
data clearly identify computation operations, memory ases at different levels of the memory hierarchy,
bus and peripheral activity.

Our aim is to derive from these figures the tradeoffs involiredsing techniques such as software
caches or scratch pad memories for software developmeeseTthadeoffs will be used to build a dynamic
model of local memory usage to couple compilation techrscared operating systems services. This will
be integrated to efficiently use scratch pad memories anetdhaw energy resources for multi-tasking
software developmentin embedded systems.
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Future works will provide energy data input tables that cam$ed along with simulators such as Sim-
pleScalar ?]. Other work will provide extensions to this methodologyoirler to support advanced energy
consumption optimization techniques such as digital galtscaling available on most recent platforms.
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A Complete results list

bench name energy (nJ)| eff_energy (nJ)| error_meas (pJ) error_stdev (pJ
loop-calibration 69.084 26.442 5.1777 20.338
loop-calibration-H 114.08 28.79 9.6173 162.21
loop-calibration-Q 201.4 30.825 18.418 211.53
loop-calibration-E 376.22 35.079 36.029 930.49
loop-calibration-S 724.58 42.298 71.213 450.41
loop-calibration 67.925 25.283 5.1421 128.93
insn-nop 16.747 6.086 1.2884 6.1914
insn-add 16.762 6.1009 1.2889 3.0943
insn-and 16.769 6.1088 1.2892 6.2788
insn-mov 16.76 6.0992 1.2889 5.1092
insn-lsr 16.764 6.1032 1.289 6.4375
insn-mul 50.378 18.396 3.8494 20.599
insn-nop 17.309 6.6485 1.3058 6.584
insn-add 17.307 6.6462 1.3058 8.0992
insn-and 17.315 6.6548 1.306 6.9669
insn-mov 17.307 6.6462 1.3057 3.7529
insn-lsr 17.314 6.6532 1.306 5.0697
insn-mul 51.967 19.985 3.8987 8.9715
insn-mul-H 82.482 18.518 7.1462 97.676
insn-mul-Q 145.81 17.884 13.707 145.18
insn-mul-E 272.07 16.211 26.818 245.46
insn-mul-S 524.32 12.614 53.034 120.3
insn-nop-H 27.422 6.1012 2.3924 24.747
insn-nop-Q 48.638 5.9956 4.5942 44.488
insn-nop-E 90.792 5.5071 8.9897 87.111
insn-nop-S 174.93 4.3556 17.776 115.9

Table 7: Effective results (part 1)
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bench name energy (nJ)| eff _energy (nJ)| error_meas (pJ) error_stdev (pJ
AHB1-access 101.33 37.362 7.7132 154
AHB1l-access 101.49 37.528 7.7194 24.95
AHB1-access-H 169.97 42.039 14.426 161.89
AHB1-access-Q 303.26 47.402 27.733 389.56
AHB1-access-E 568.79 57.077 54.319 390.06
AHB1-access-S 1098.2 74.733 107.44 774.36
AHB2-access 300 108.11 22.998 542.9
AHB2-access 300.45 108.56 22.99 235.33
AHB2-access-H 505.74 121.96 43.068 522.74
AHB2-access-Q 905.39 137.83 82.903 823.1
AHB2-access-E 1702.8 167.69 162.52 3224.9
AHB2-access-S 3289.2 218.97 321.5 1203.4
timer-test_on(nop) 16.754 5.9714 1.285 27.298
timer-test_off(nop) 16.732 5.9937 1.2857 6.0922
Dcache-access_ldr 17.146 6.4852 1.3007 5.942
Dcache-access_str 34.341 13.02 2.603 13.381
Dcache-access_|Idr 17.66 6.9996 1.3167 3.801
Dcache-access_str 35.364 14.043 2.6348 12.459
mem-access_|dr 775.44 349.02 54,551 171.04
mem-access_str 543 244.5 38.296 231.29
mem-access_|dr 775.29 348.87 54,553 87.694
mem-access_str 543.08 244.58 38.308 132.05
spm-access_|dr 131.72 46.436 10.168 38.48
spm-access_str 115.37 40.746 8.9021 21.916
spm-access_Idr 135.82 50.53 10.295 32.952
spm-access_str 118.79 44.162 9.0074 19.565

Table 8: Effective results (part 2)
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