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ON THE WATER WAVES EQUATIONS WITH SURFACE
TENSION

T. ALAZARD, N. BURQ, AND C. ZUILY

ABSTRACT. The purpose of this article is to clarify the Cauchy theory of the
water waves equations as well in terms of regularity indexes for the initial
conditions as for the smoothness of the bottom of the domain (namely no
regularity assumption is assumed on the bottom). Our main result is that,
following the approach developped in [], after suitable paralinearizations, the
system can be arranged into an explicit symmetric system of Schrédinger type.
We then show that the smoothing effect for the (one dimensional) surface
tension water waves proved in [E], is in fact a rather direct consequence of
this reduction, which allows also to lower the regularity indexes of the initial
data, and to obtain the natural weights in the estimates.
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1. INTRODUCTION

We consider a solution of the incompressible Euler equations for a potential
flow in a domain with free boundary, of the form

{(t,,9) €[0,T] x R xR : (w,y) € U},
where €); is the domain located between a free surface
Y ={(x,y) € RIxR:y= n(t,z) },

and a given bottom denoted by I' = 9€; \ ;. The only assumption we shall
make on the domain is that the top boundary, ¥, and the bottom boundary, I'
are separated by a ”strip” of fixed length.

More precisely, we assume that the initial domain satisfy the following as-
sumption for ¢ = 0.

Support by the french Agence Nationale de la Recherche, project EDP Dispersives, référence
ANR-07-BLAN-0250, is acknowledged.
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H;) The domain 2 is the intersection of the half space, denoted by €24,
located below the free surface 3,

Q= {(z,y) eR* xR : y <n(t,z)}

and an open set Qy C R such that €y contains a fixed strip around
3¢, which means that there exists h > 0 such that,

{(z,y) eR¥x R : nt,z) —h <y <n(tz)} C Q.

We shall also assume that the domain Q9 (and hence the domain Q; =
Q1+ N Q) is connected.

We emphasize that no regularity assumption is made on the domain (apart from
the regularity of the top boundary ¥;). Notice that our setting contains both
cases of infinite depth and bounded depth bottoms (and all cases in-between).

2t

The domain

A key feature of the water waves equations is that there are two boundary
conditions on the free surface 3¥; = {y = n(t, z)}. Namely, we consider a potential
flow so that the velocity field is the gradient of a potential ¢ = ¢(t, z, y) which is
a harmonic function. The water waves equations are then given by the Neumann
boundary condition on the bottom I', and the classical kinematic and dynamic
boundary conditions on the free surface ;. The system reads

Ap+ 926 =0 in Q,
On = 0y¢—Vn-Vo on Xy,

(1.1) 1 1
O = —gn+wH(n) = 5 |VoI" = 5 |9y0]" on Sy,

an¢:0 OHF,

where V = (0y, )1<i<d, A = Z?Zl 92, n is the normal to the boundary I', g > 0
denotes the acceleration of gravity, x > 0 is the coefficient of surface tension and
H(n) is the mean curvature of the free surface:

\%
H(n) = div 1),
V1+ |V
We are concerned with the problem with surface tension and then we set k = 1.

Since we make no regularity assumption on the bottom, to make sense of the
system ([L.1)) requires some care (see Section P for a precise definition). Following
Zakharov we shall first define ¢ = ¢(¢,x) € R by

w(t7 LZ') = ¢(t7 z, 77(’57 ‘T))a
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and for x € C§°(] — 1, 1]) equal to 1 near 0,

3t = x (D) e o),

The function ¢ being harmonic, ¢ — {/; = 5 will be defined as the variational
solution of the system

_A:E,yg = A-’E,y{; in Qt7 5 |2t: 07 81’L¢S |F: 0.

Let us now define the Dirichlet-Neumann operator by

(Gw)(t,x) = V1+ ViR 8ndly=yr0),
= (0y9)(t, 2, n(t, z)) — Vn(t,z) - (V) (t, 2, n(t, z)).
Now (n,1)) solves
9 — G(n)p =0,

(1.2) 1 (V- Vi +Gn)y)?

2 1+ |Vn|?

The fact that the Cauchy problem (without bottom) is well posed was proved
by Beyer and Giinther in [[j]. This result, as well as related uniform estimates
with respect to x, have been obtained by different proofs in 3, 4, [, [L], R4,
BI]. The purpose of this article is twofold: first we want to clarify the Cauchy
theory as well in terms of regularity indexes for the initial conditions as for
the smoothness of the bottom (to our knowledge, previous results required the
bottom to be the graph of an H' function). Second we want to show that the
smoothing effect for the (one dimensional) surface tension water waves, as proved
in [J], is in fact a rather direct consequence of the paralinearization approach
developped in [].

1
O+ gn — H(n) + 5 [VI* = =0.

Our first result (Cauchy theory) is the following

Theorem 1.1. Let d > 1, s > 2+ d/2 and (ng, 1) € H5+%(Rd) x H5(R?) be
such that the assumption Hy—qy is satisfied. Then there exists T > 0 such that
the Cauchy problem for (L.9) with initial data (no,vo) has a unique solution

(n,w) € CO([0,T); H**%(R) x H*(R7))
such that the assumption Hy is satisfied for t € [0,T].

Remark 1.2. The assumption 19 € H¥(R?) could be replaced by Vg €
H5"1(RY). We then obtain solutions such that 1) — ¢y € C°([0,T]; H5(R?)) (cf
[l6)). Notice that our thresholds of regularities appear to be the natural ones,
as they control the Lipschitz norm of the non-linearities. However, working at
that level of regularity gives rise to many technical difficulties, which would be
avoided by choosing s > 3 + %.

Our second result is the following 1/4-smoothing effect for 2D-water waves.

Theorem 1.3. Assume that d = 1 and let s > 5/2 and T > 0. Consider a
solution (n,%) of ([L.2) on the time interval [0,T], such that Q satisfies the
assumption Hy. If

(n,4) € C°([0, T); H*"2(R) x H*(R)),
then
(x)"270(n,v) € L*(0,T; H*+ 1 (R) x H*'1(R)),

for any 6 > 0.
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This 1/4-smoothing effect was first established recently by Christianson, Hur
and Staffilani in [f] by a different method. Theorem [[.J improves the result in [g]
in the following directions. Firstly, we obtain the smoothing effect on the lifespan
of the solution and not only for a time small enough. Secondly, we lower the
index of regularity (in [fJ] the authors require s > 15) and we improve the decay
rate in space to the optimal one (in [ the authors require § > 5/2). In addition,
we allow much more general domains, which is interesting for applications to the
cases where one takes into account the surface tension effect. Notice finally that
our proof would apply to the radial case in dimension 3.

Many variations are possible concerning the fluid domain. Our method
would apply to the case where the free surface is not a graph over the hyperplane
R x {0}, but rather a graph over a fixed hypersurface. Our results hold also
in the case where the bottom is time-dependent, under an additional Lipschitz
regularity assumption on the bottom and we prove (see Appendix [A])

Theorem 1.4. Assume that the domain is time dependent and satisfies the
assumptions Hoy), H3) in Appendiz [4. Then the conclusions in Theorems
and [1.3 still hold for the system of the water-wave equations with time dependent

bottom ([A1]).

To prove Theorem [[.3, we start in §f by defining and proving regularity
properties of the Dirichlet-Neumann operator. Then in §f we perform several
reductions to a paradifferential system on the boundary by means of the analysis
in [J. The key technical lemma in this paper in a reduction of the system ([.9)
to a simple hyperbolic form. To perform this reduction, we prove in §f] the
existence of a paradifferential symmetrizer. We deduce Theorem from this
symmetrization in §f. Theorem [[.3 is then proved in §f] by means of Doi’s
approach [, []. Finaly, we give in Appendix [A] the modifications required
to prove Theorem [.4. Note that our strategy is based on a direct analysis in
Eulerian coordinates. In this direction it is influenced by the important paper
by Lannes ([Ld]).

As it was shown by Zakharov (see [2J] and references there in), the system
([.2) is a Hamiltonian one, of the form

on 6H oy  OH

ot sy ot oy’
where H is the total energy of the system. Denoting by Hy the Hamiltonian
associated to the linearized system at the origin, we have

o =5 [ (161198 + (o + )] .

where f denotes the Fourier transform, f(£) = [e~®€f(z)dr. An important
observation is that the canonical transformation (n,) — a with

:L{<g+1512>%_i< H >”ﬂ;}
NAGT TP ’

diagonalizes the Hamiltonian Hy and reduces the analysis of the linearized sys-
tem to one complex equation (see [2J]). We shall show that there exists a similar
diagonalization for the nonlinear equation, by using paradifferential calculus in-
stead of Fourier transform. As already mentionned, this is the main technical
result in this paper. In fact, we strongly believe that all dispersive estimates
on the water waves system with surface tension could be obtained by using our
reduction.

Q)



2. THE DIRICHLET-NEUMANN OPERATOR

2.1. Definition of the operator. The purpose of this section is to define the
Dirichlet-Neumann operator and prove some basic regularity properties. Let us
recall that we assume that 2; is the intersection of the half space located below
the free surface

Q= {(z,y) eR xR : y < n(t,z)}

and an open set Qs C R*! and that Qs contains a fixed strip around ¥, which
means that there exists h > 0 such that

{(‘Tay) ERd xR : T,(tv‘r) —hﬁyén(tax)} C Q.

We shall also assume that the domain Q9 (and hence the domain €2;) is connected.
In the remainder of this subsection, we will drop the time dependence of the
domain, and it will appear clearly from the proofs that all estimates are uniform
as long as 7(t, z) remains bounded in the set of functions such that ||n(Z, -)|| s (ra)
remains bounded.

Below we use the following notations

V = (02;)1<i<ds Vay=(V,0y), A= Z wy:A+6§.

1<i<d

Notation 2.1. Denote by Z the space of functions u € C*°(£2) such that V, ,u €
L?(Q). We then define %, as the subspace of functions u € 2 such that u is
equal to 0 near the top boundary X.

Proposition 2.2. There exists a positive weight g € LS (2), equal to 1 near the
top boundary of Q and a positive constant C' such that

(2.) [ st lute. )P dady < € [ 920wl dody,
for all u € Z.

Here is the proof. Let us set
Olz{(%y)GRde : n(x)—h<y<n(w)},

Oy = {(x,y) €N y<n(x) —h}.

To prove Proposition P.2, the starting point is the following Poincaré inequality
on O1.

(2.2)

Lemma 2.3. For all u € 9y we have

/ \u!dedy§h2/ |V yul® dzdy.
01 Q

Proof. For (z,y) € O1 we can write u(x,y) = — fT7 (Oyu)(z, z) dz, so using the
Holder inequality we obtain
) n(z) 5
ue)P<h [ (@) ) de
n

(z)=h

Integrating on O; we obtain the desired conclusion. O
Lemma 2.4. Let mgy € Q and § > 0 such that

B(mg,26) = {m € REx R : |m —mo| < 20} C Q.
5



Then for any my € B(mg,0) and any u € 2,
(2.3) / lu? dedy < 2/ lul* dedy + 252/ |Vm7yu|2 dxdy.
B(mg,9) B(m1,9) B(mo,29)

Proof. Denote by v = my — my and write
u(m +v) = u(m) + /01 v+ Vg yu(m + tv)dt
As a consequence, we get
lu(m + v)[? < 2Ju(m)? + 2|v|? /01 |V yu(m + tv)|2 dt,

and integrating this last inequality on B(mq,0) C B(mg,20) C €, we ob-
tain (2.9). O

Corollary 2.5. For any compact K C Os, there exists a constant C(K) > 0
such that, for all u € %y, we have

/K lu? dedy < C(K) /Q |V yul® dzdy.

Proof. Consider now an arbitrary point mg € Os. Since €2 is open and connected,
there exists a continuous map + : [0, 1] — Q such that v(0) = mg and (1) € O;.
By compactness, there exists § > 0 such that for any ¢ € [0,1] B(vy(t),26) C Q.
Taking smaller ¢ if necessary, we can also assume that B(y(1),d) C O; so that

by Lemma P.3
/ lu|? dedy < C/ |V yul? dxdy.
B(»(1),0) Q

We now can find a sequence ty = 0,%1, -+ ,ty = 1 such that the points m, =
v(t,) satisfy my.1 € B(my,d). Applying Lemma P.4 successively, we obtain

/ lu|? dedy < C"/ V2 yul? drdy.
B(mo,d) Q

Then Corollary .j follows by compactness. O

Proof of Proposition [2.3. Writing Oy = US° , K,,, and taking a partition of unity
(xn) such that 0 < x,, < 1 and supp x, C K,, we can define the continuous

function
o

~ Xn(l‘,y)
g(x,y) = nZ::l W7

which is clearly positive. Then by Corollary B.J,

~ 2 > 1 / 2
x, ul” dxdy < E _ u|” dxdy
/02 9( y) | | L (1 + C’( Kn))n2 K. | |

(2.4)
< 2/ |Vm7yu|2 dxdy.
O2

Finally, let us set

g(@,y) =1 for (z,y) € Or, glz,y) =g(z,y) for (z,y) € Os.
Then Proposition R.3 follows from Lemma R.3 and (.4). O
We now introduce the space in which we shall solve the variational formula-

tion of our Dirichlet problem.
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Definition 2.6. Denote by H"?(Q) the space of functions u on Q such that there
exists a sequence (uy) € Py such that,

Voytn — Vayu in L*(Q, dzdy), U — u in L2(Q, g(z, y)dzdy).
We endow the space HO with the norm

[ul = ||vm7y“||L2(Q)'

The key point is that the space H%?(Q) is a Hilbert space. Indeed, passing
to the limit in (R.1)), we obtain first that by definition, the norm on H°(Q) is
equivalent to

”v%yu”LQ(dedy) + ”u”LQ(Q,g(gE,y)dxdy) :

As a consequence, if (u,) is a Cauchy sequence in H'(Q), we obtain easily
from the completeness of L? spaces that there exists u € L?(€, g(x,y)dzdy) and
v € L*(Q, dzdy) such that

u, — u in L*(Q, g(z, y)dzdy), Vet — v in L(Q, dzdy).

But the convergence in L?($, g(x,y)dxdy) implies the convergence in D’'(§2) and
consequently v = V, ,u in D'(Q2) and it is easy to see that u € H10(Q).

We are now in position to define the Dirichlet-Neumann operator. Let ¢(x) €
HYRY). For y € C5°(] — 1,1]) equal to 1 near 0, we first define

S = (L) ute) € AR,

which is the most simple lifting of 1. Then the map
v (Amﬂz,v} = —/ Vm,?;- Vv dxdy
Q

is a bounded linear form on H LO(Q). It follows from the Riesz theorem that
there exists a unique ¢ € H%(Q) such that

(2.5) Yo € Hl’O(Q), /er,yﬁg‘ Vv drdy = (Amﬂ;, v).

Then gz~5 solves the problem
Boyd=Dayd mD(Q),  Fz=0, 06 |r=0,
the latter condition being justified as soon as the bottom I' is regular enough.
We now set ¢ = 5 + {/; and define the Dirichlet-Neumann operator by

G(T/)w($) =v1i+ |V77|28n¢|y:77(m),
= (9y0)(z,n(x)) — Vn(z) - (Vo) (z,n(z)),
Notice that a simple calculation shows that this definition is independent on

the choice of the lifting function {/; as long as it remains bounded in H'(f)) and
vanishes near the bottom.

2.2. Boundedness on Sobolev spaces.

Proposition 2.7. Letd > 1, s > 2—1—% and 1 <o <s. Considern € Hs+%(Rd).
Then G(n) maps H°(RY) to H°~Y(R®). Moreover, there exists a function C such
that, for all p € H°(RY) and n € H"2(RY),
1G] a1 ay < C (Il yery ) IVl gros -
7



Proof. The proof is in two steps.

First step: A localization argument. Let us define (by regularizing the
function 1), a smooth function 77 € H*(R?) such that |77 — || < h/100 and
|17 — | grs+1/2 < h/100. We now set

)
m=n 20
Then 7, satisfies
h h
(26) n(w) — 5 <mi@) < n(e) - &

Lemma 2.8. Consider for —3h/4 < a <b < h/5, the strip
Sa,b = {(.’L’,y) € Rd+1;a <y-— ?’]1(1') < b}a

which is included in Q0. Let k > 1 and assume that ||¢|| g (s, ,) < +00. Then for
any a < a’ < b < b there exists C > 0 such that

10l mrsr(s,, ) < Cllollaes, ,)-

Proof. Choose a function x € C§°(a,b) equal to 1 on (a’,¥). The function
w = x(y —n(x))o(z,y) is solution to

Agyw = [Dgy, X(y — m(2))]0,

and since the assumption implies that the right hand side is bounded in H*~1,
the result follows from the (explicit) elliptic regularity of the operator A, in
R4+ (]

Lemma 2.9. Assume that —3h/4 < a < b < h/5 then the strip S, = {(z,y) €
R g < y—mi(x) < b} is included in Q and for any k > 1, there exists C > 0
such that

101l irx(5,) < ClYN ar ma)-

Proof. 1t follows from the variational problem (B.5), the definition of ¢ = qz~5 + T,Z,
that

||V:v,y¢||L2(Q) <c ||7/)||H1(Rd) :
Noticing that S, C O1 (cf (B.d)) and applying Lemma P.J we obtain the a
priori H' bound
16llaracs, o < Ilscony < (14 B) Vol oy < 1+ B) 4671 e

Since it is always possible to chose a < as < -+ < ap =a < b =by < ---
by < b, we deduce Lemma R.9 from Lemma P.§.

O A

We next introduce xo € C*°(R) such that 0 < yo <1,
1
xo(z) =1 forz>0, xo(z)=0 forz< ~2

Then the function

®(z,y) = xo <%1($)> o(,y)

is solution to



In view of (P.), notice that f is supported in a set where ¢ is H> according to
Lemma P.9, we find that

fe H>(Il,) wherell, := {(:L',y) eRIxR :px)—h<y< n(x)}

In addition, using that xo(0) = 1 and that ®(x,y) is identically equal to 0
near the set {y = n — h}, we immediately verify that ® satisfies the boundary
conditions

D |y—n(@)= (), B® ly—p@)-n=0, @ [y—p@)-n=0

The fact that the strip 1I,, depends on 7 and not on 7; is not a typographical
error. Indeed, with this choice, the strip I, is made of two parallel curves. As a
result, a very simple (affine) change of variables will flatten both the top surface
{y = n(x)} and the bottom surface {y = n(z) — h}.

Second step: Elliptic estimates. To prove elliptic estimates, we shall consider
the most simple change of variables. Namely, introduce

p(x,z) = hz 4+ n(z).
Then
(2, 2) = (2, p(, 2)),
is a diffeomorphism from the strip R% x [~1,0] to the set
{@y) eRI xR :yla) —h <y <) .
Let us define the function v: R? x [~1,0] — R by
(2.7 0(,2) = B(, p(z, 2).

From A,,® = f with f € H*(Il,), we deduce that v satisfies the elliptic
equation

(2.8) (%pazy v+ <V - gj’;@;)z v=g,

where g(, 2) = f(x, hz +n(x)) is in C?([-1,0]; Hs+%(Rg)). This yields
(2.9) ad*v+ Av + - Vdu — 9,0 = g,

where

(2.10) o= 1+ Val® +}22V77‘2, 8= —”%, = %

Also v satisfies the boundary conditions

(2.11) vl ., =1, 0v),=—1 =0, v|,—_1=0.

We are now in position to apply elliptic regularity results obtained by Alvarez-
Samaniego and Lannes in [J, Section 2.2] to deduce the following result.

Lemma 2.10. Suppose that v satisfies the elliptic equation (R.9) with the bound-
ary condtions (R.11)) with ¢ € H°(R?) and n € Hs+%(Rd) where 1 < o < s,
s>2+ 9 dist(Z,T) > 0. Then

_1
Vv, 0.0 € L([-1,0; Hy 2(RY).
9



It follows from Lemma and a classical interpolation argument that
(Vv,0,v) are continuous in z € [—1,0] with values in H°'(R%). Now note
that, by definition,
1+ |Vn[?
G =—

(n)¥ 3 o
Therefore, we conclude that G(n)y € H°~1(R?). Moreover we have the desired
estimate.

d,v—Vn-Vou

This completes the proof of Proposition R.7. O

2.3. Linearization of the Dirichlet-Neumann operator. The next pro-
position gives an explicit expression of the shape derivative of the Dirichlet-
Neumann operator, that is, of its derivative with respect to the surface parame-
trization.

Proposition 2.11. Let ¢ € H°(R?) and n € H5+%(Rd) with 1 < o < s,
s> 2+ %l be such that dist(X,I') > 0. Then there exists a neighborhood U, C
HS+%(Rd) of n such that the mapping

o €U, C H*":(RY) — G(o)yp € H*'(RY)
1s differentiable. Moreover, for all h € HS+%(Rd), we have
1 .
AGNY - b= lim ~{ G+ e} — G(n)} = ~Gln) (Bh) — div(Vh),

where
g V- Vot G(n)y
= 2
1+ |Vn|

. V=V BV

The above result goes back to Zakharov [PY. Notice that in the previous
paragraph we reduced the analysis to studying an elliptic equation in a flat strip
R? x [~1,0]. As a consequence, the proof of this result by Lannes (4] applies

(see also , g, III])

Let us mention a key cancellation in the previous formula, which is proved
in [, Lemma 1] (see also [Iq]).

Lemma 2.12. We have G(n)B = —divV.
Proof. Recalling that, by definition,

G = (@,0— V- V)|,
and using the chain rule to write

Vi = V(Bly=y) = (VO +0,6Vn) [, _,,

we obtain
oo V-Vt G(n)y
= 2
1+ |V
g {Vn- (Vo +0,6Vn) + 0,0 — V- Vol | _ = (0y0)],_,.

Therefore the function ® defined by ®(x,y) = 0y¢(x,y) is the solution to the
system
Apy® =0, @y =B, 0,0 =0.
10



Consequently, directly from the definition of the Dirichlet-Neumann operator,
we have

G(n)®B =0,9—Vn V| .
Now we have 0, = 8§¢ = —A¢ and hence
Gn)B=—-Ap—Vn- -V | _—
On the other hand, directly from the definition of V', we have
divV =div(Vy — BVn) = Ay — div(BVn).
Using that ¢(x) = ¢(x,n(x)), we check that
Ay = div V¢ = div (qu | y=n T Oy | y:nVn)
= (Ap+VOy¢ - Vn) | = + div (ay¢ | y:nVn)
= (8¢ +Vyo- V) |, + div(BVn)

so that
divV = Ay — div(BVn) = (A¢+ V¢ - V) | -
— (MG +VR-Vn)| _ = ~Gn)B,
which is the desired identity. O

3. PARALINEARIZATION

3.1. Paradifferential calculus. In this paragraph we review notations and re-
sults about Bony’s paradifferential calculus. We refer to [fi, [3, [, [[9, B for
the general theory. Here we follow the presentation by Métivier in [[[7].

For p € N, according to the usual definition, we denote by W (R%) the
Sobolev spaces of L functions whose derivatives of order p are in L*°. For
p €]0, +00[\N, we denote by W*>°(R%) the space of bounded functions whose
derivatives of order [p] are uniformly Holder continuous with exponent p — [p].
Recall also that, for all C*™ function F, if u € W#>°(R?) for some p > 0 then
F(u) € WP>(RY).

Definition 3.1. Given p > 0 and m € R, F;”(Rd) denotes the space of locally
bounded functions a(x, &) on R x (R%\ 0), which are C™ with respect to & for
€ # 0 and such that, for all « € N and all £ # 0, the function x — 8?a(x,£)

belongs to WP>°(R?) and there exists a constant C, such that,
1 QU m—|x
(3.1) Ylel > 5 080l €]y < Call+lEN™ .

We next introduce the spaces of (poly)homogeneous symbols.

Definition 3.2. i) I";”(Rd) denotes the subspace of F?(Rd) which consists of
symbols a(x,&) which are homogeneous of degree m with respect to &.

ii) If
a= ¥ a9 (jeN),
0<j<p

where a("1) ¢ f;n__jj(Rd), then we say that o™ is the principal symbol of a.
11



Given a symbol a, we define the paradifferential operator T, by

—

(3.2) Tou(€) = (2m) / (& — num)a(E — n.m)b(n)a(n) du,

where @(0,¢) = [ e ®Y%(z,£) dz is the Fourier transform of a with respect to
the first variable; x and v are two fixed C'*° functions such that:

P(n) =0 for |n[ <1, Y(n) =1 for |n|>2,

and x(6,7n) is homogeneous of degree 0 and satisfies, for 0 < &1 < &9 small
enough,

x(0,m) =1 if 0] <e1nl, x(0,m) =0 if [0] >ea|n|.

We shall use quantitative results from [[[7] about operator norms estimates
in symbolic calculus. To do so, introduce the following semi-norms.

Definition 3.3. Form e R, p >0 and a € F;”(Rd), we set

(33 MP@= sw  sw [+ "0ga(,0)| .
g la]<d414p 1€>1/2 ¢ Weee(Rd)
Remark 3.4. If a is homogeneous of degree m in &£, then
M;n(a) S Kd,m Sup Sup Ha§ é.)HWp,oo(Rd) *

la|<g+1+p [€]=1

The main features of symbolic calculus for paradifferential operators are
given by the following theorems.

Definition 3.5. Let m € R. An operator T is said of order m if, for all u € R,
it is bounded from H" to HF™™.

Theorem 3.6. Let m € R. If a € T(RY), then T, is of order m. Moreover,
for all u € R there exists a constant K such that

(3.4) HTaHHu_J{ufm < KM{"(a).

Theorem 3.7 (Composition). Let m € R and p > 0. Ifa € F?(Rd),b €
F?/(Rd) then T,Ty, — Toyp is of order m+m/ — p where

a#tb =Y T ‘ |agaaa

loel<p

Moreover, for all p € R there exists a constant K such that

(3.5) ITa T — Tasoll i pv—m—r v < KM (@) M™ (D).
Remark 3.8. We have the following corollary for poly-homogeneous symbols:
if

a:Z ZFmJRd mek Zrmde

0<ji<p 0<j<p 0<k<p 0<k<p
with m, m’ € R and p > 0, then T, Tb — T, is of order m +m’ — p with
— (m—j) gop(m'—k)
c= Z \al '8§ a Oyb

|| +j+Ek<p
12



Remark 3.9. Clearly a paradifferential operator is not invertible (T,u = 0 for
any function u whose spectrum is included in the ball |£| < 1/2). However,
the previous result implies that there are left and right parametrix for elliptic
symbols. Namely, assume that a € I')' is an elliptic symbol (such that [a| >
K [¢]™ for some K > 0), then there exists b,b’ € T',™ such that

T, 1, — I and T, Ty — I are of order — p.
Consequently, if u € H® and T,u € H* then v € H" with r = min{u +m, s+ p}.

Theorem 3.10 (Adjoint). Letm € R, p >0 and a € F;”(Rd). Denote by (T,)*
the adjoint operator of Ty, and by @ the complex-conjugated of a. Then (T,)* — Ty
is of order m — p where

1
* a o=
a = —_— a.
> O
loo<p

Moreover, for all v there exists a constant K such that
(3'6) ”(Ta)* — T~ ”HM—>HH*7”+P < KM;TL(Q)

If a = a(z) is a function of x only, the paradifferential operator Ty, is a called
a paraproduct. It follows from Theorem B.7 and Theorem that:

(i) If a € H*(RY) and b € H*(R?) with a > ¢, 8 > &, then
d
(3.7) ToTy — Typ is of order — <min{a,5} — 5) .
(i) If a € H*(R?) with a > ¢, then

(3.8) (To)" — Ty is of order — <a - g) .

We also have operator norm estimates in terms of the Sobolev norms of the
functions.

A first nice feature of paraproducts is that they are well defined for functions
a = a(x) which are not in L* but merely in some Sobolev spaces H" with
r<d/2.

Lemma 3.11. Let m > 0. Ifa € H%_m(Rd) and v € H*(R?) then
T,u € H*™(RY).

Moreover,

1 Tawll gu—m < K lall g [0l

for some positive constant K independent of a and u.

On the other hand, a key feature of paraproducts is that one can replace
nonlinear expressions by paradifferential expressions, to the price of error terms
which are smoother than the main terms.

Theorem 3.12. Let o, 8 € R be such that o > %l, 8> %l, then
(i) For all C™ function F, if a € H*(R?) then

F(a) = F(0) — Tpr(gya € H**~2(RY).
13



(i) If a € H*(RY) and b € HP(R?), then ab — Tyb — Tha € H‘”ﬁ_g(Rd).
Moreover,

Jab —Tab — Tba||Ha+B—%(Rd) <K Ha||Ha(Rd) ||b||Hﬁ(Rd) )

for some positive constant K independent of a, b.

We also recall the usual nonlinear estimates in Sobolev spaces (see chapter
8 in [[J)):
o If u; € H%(RY), j = 1,2, and s1 + s2 > 0 then ujus € H(R?) and
(3.9) Jurue| oo < K [lull gor [Juzll gss
if
so <sj, j=1,2, and sy <s1 452 —d/2,
where the last inequality is strict if s; or sy or —sj is equal to d/2.

e For all C* function F vanishing at the origin, if u € H¥(R?) with s > d/2
then

(3.10) IE @) s < C (ullgs) s
for some non-decreasing function C depending only on F.
3.2. Symbol of the Dirichlet-Neumann operator. Givenn € C®°(R?), con-
sider the domain (without bottom)
Q={(z,y) eR* xR : y <n(x)}.

It is well known that the Dirichlet-Neumann operator associated to €2 is a classical
elliptic pseudo-differential operator of order 1, whose symbol has an asymptotic
expansion of the form

where A¥) are homogeneous of degree k in &, and the principal symbol A() and
the sub-principal symbol A() are given by (cf [[[J])

AD = \/(1 + (V) €7 = (V- )2,

(3.11)

2
A0 _ 1;’771)"‘ {aiv (a®Vn) +i0A® - Vo,
with )
m__ 1 oL,
a\ = + iV .
e v¢)

The symbols A=Y, ... are defined by induction and we can prove that A*) in-
volves only derivatives of 7 of order |k| + 2.

In our case the function 7 will not be C* but only at least C?, so we shall
set

(3.12) A=A L A0

which will be well-defined in the C? case.

The following observation contains one of the key dichotomy between 2D
waves and 3D waves.

Proposition 3.13. If d =1 then A simplifies to
Az, &) = [¢].-

14



Also, directly from (B.I1]), one can check the following formula (which holds
for all d > 1)

1
(3.13) A = —2 (0 - 2:)AY,

which reflects the fact that the Dirichlet-Neumann operator is a symmetric op-
erator.

3.3. Paralinearization of the Dirichlet-Neumann operator. Here is the
main result of this section. Following the analysis in [[lf], we shall paralinearize

the Dirichlet-Neumann operator. The main novelties are that we consider the
case of finite depth (with a general bottom) and that we lower the regularity
assumptions.

Proposition 3.14. Let d > 1 and s > 2+ d/2. Assume that
(n.v) € B3 (RY) x HY(RY),

and that n is such that dist(X,T") > 0. Then

(3.14) Gy =Ta(y — Ten) — Ty - Vi + f(n,9),

where \ is given by (B.11)) and (B.12),

w .o V-V + Gy
' L+ [Vp2

V :=Vy —BVn,

and f(n,) € Hs+%(Rd). Moreover, we have the estimate

1F @0 sy < € (19l cy ) I8 e

for some non-decreasing function C depending only on dist(X,I") > 0.

Remark 3.15. It is well known that B and V play a key role in the study of the
water waves (these are simply the projection of the velocity field on the vertical
and horizontal directions). The reason to introduce the unknown v —Tsn, which
is related to the so-called good unknown of Alinhac ([]), is explained in [} (see

also [[[d, 4)).

3.4. Proof of Proposition B.14. Let v be given by (2.7). According to (£.9),
v solves

ad2v + Av+ - Vo.v —v0.v = g,
where g € C’?([—l,O];HSJr%(Rd)) is given by (.§) and

1+ |Vn|? \Y% A
a::%, [3::—2—77, ’y::—n.

3.15
Also v satisfies the boundary conditions
v | 2=0 = w7 U’ZZ—l = 07 827}‘2:—1 = 0.
Henceforth we make intensive use of the following notations.

Notation 3.16. C?(H) denotes the space of continuous functions in z € [—1,0]
with values in H"(RY).
It follows from Proposition and a classical interpolation argument that

(Vv,8.0) € CY(HE™).
15



In addition, directly from the equation (R.9) and the usual product rule in
Sobolev spaces (cf (B.9)), we obtain

d2v e CI(H?).

3.4.1. The good unknown of Alinhac. Below, we use the tangential paradiffer-
ential calculus, that is the paradifferential quantization T, of symbols a(z;x, &)
depending on the phase space variables (z,¢) € T*R? and the parameter z €
[—1,0]. In particular, denote by T,u the operator acting on functions u = u(z; x)
so that for each fixed 2, (Tou)(z) = Toeyu(2).

Note that a simple computation shows
1+ |Vp|?
Gy = 7‘}1 |

Our purpose is to express 9,v|.—¢ in terms of tangential derivatives. To do this,
the key technical point is to obtain an equation for ¥ — Tyn.

Note that

d,v —Vn - Vo

z=0

Y= Twn=v-Toup|
We thus introduce
0,v
h
since Tp(hz) = 0, so that ¢ — Tesn = u|,—o.

b:=

and wu:=v—"Tep=v—Tun,

Lemma 3.17. The good unknown uw = v — Typ satisfies the paradifferential
equation

(3.16) Tod?u+ Au+Ts - Vo,u —Toydu =g+ f,

s+l
where o, B, are as defined in (B19), g € C} (H3'2) is given by (Bg) and
0 25— 5td
feCl(Hy *).

25— 54d

Proof. We shall use the notation f; ~ f to say that f; — fo € C? (Hm T)
Introduce the operators

E:=ad>+ A+ 3-V0, — 0.,
and

P =T, 02+ A+ T V0, —T)0..

1
We shall prove that Pu ~ g, where g; € C? (H;Jr?). To do so, we begin with
the paralinearization formula for products. Recall that

n e HS+%(Rd) and 0v e Cg(H;‘k) for k € {1,2}.
According to Theorem B.19, ii), we have
Ev~ Pv+ Tagva + Tvg)zv -0 - T@zv’y.

1
s+35

Since Ev = g € CY (Hx ) and since v = u + Ty, this yields
Pu+ PTyn+ Tagva + 10,0 - B—To,0y ~g.
Hence, we need only prove that
41
(3.17) PTyn + Tpzpo+ Tyo - B — Ty ~ g2 € CO(Hy ?).
16



By using the Leibniz rule and (B7]), we have
PTen ~ Tgen + 2Tve - Vn + To,6 - Vi + TeAn.

The first key observation is that
0.9

— 0 S+2
Eb=—=¢cC; (Hz'?).
To establish this identity, note that by definition (cf (B.§)) we have
1 i 1 1
Bb = [(50.)" + (V- ~10.) } 0.0 = 30 Ev, = 0.9

It follows that
Trpen € C’S(H;Jr%).
On the other hand, according to (B.15), we have
To.vy = ThAm 1,00 = —21vpVn,

To.sVn = Ta%vnvn ~ =Tz,

T2
where the last equivalence is a consequence of (i) in Theorem B.13 and (B.7).
Consequently, we end up with the second key cancelation
+
Tyzo0r+ Tous 8~ Touwy + 2Ty - V0 + Thou - Y + Tyl ~ g5 € CO(HTE).
This concludes the proof of (B.17) and hence of the lemma. O

3.4.2. Reduction to the boundary. Our next task is to perform a decoupling into
forward and backward elliptic evolution equations.

Lemma 3.18. Assume that n € Hs+%(Rd). Set

. (1 d
5:m1n{§,s—2— 5} > 0.

There exist two symbols a = a(z,§), A = A(x,€) (independent of z) with

a=a" +aely, ;(RY) + 17, 5RY,

A=AW 4 A0 €Ty, s(RY) +TY 5 5(RY),
such that,
(318) To02+A+T5-VI, —T,0, = Ta(0: — Tu)(9; — Ta)u+ Ro + R19;,
where Ry is of order 1/2 —§ and Ry is of order —1/2 —§
Proof. We seek a and A such that

2
a0 A0 4 Lo g a0 4 o040 4 g g — _IEF
(3.19) i a

1
a+ A= a(—iﬁ‘f+7)-
According to Theorem @ and (@),

1
Ry =T, T,T4 — A isoforder2—g—5:§—5,
while the second equation gives
3 1
Ry = T, (T, +Ty) + (Tﬁ-V—Tfy) is of order 1 — 3 -0 = —3 — 0.

We thus obtain the desired result (B.1§) from (B.14).
17



To solve (B.19), we first solve the principal system:

(1) 40 _ 45
a 9
aV + AW = _zﬁf’
«
by setting
1
1) — — | _4p.6— 2_ (3.
a <z,:c,£>—2a< i€ \/1aleP - (4 £>2>,

AD (z,2,6) = 2i (—iﬂ e+ \/1aleP — (8- s)?) :

(07

Directly from the definition of o and (3 note that

VaaleP — (502 > 2 el

so that the symbols a), A®) belong to fé/2+5(Rd) (actually o™, A®M belong to
f;_(dﬂ)/z(Rd) provided that s — (d + 1)/2 is not an integer).

We next solve the system

dO AW 4 M40 L Lo mp a0 g,
1
2 4 40 _
(6%

It is found that

1
O __ = (ig.qD. o _ 2,0
a\“V = 10— a® (zﬁga 0z A aa ) ,
1
O~ (i8:a. 1) _ X 4m
AO = s (0ca® - 9,40 = 1AW,
so that the symbols a(®, A© belong to f‘?/2+6(Rd). O

We shall need the following elliptic regularity result.
Proposition 3.19. Let a € T1(R?) and b € TY(RY), with the assumption that
Rea(z,§) = c|¢],

for some positive constant c. If w € CL(H;>) solves the elliptic evolution equa-
tion

o,w + T,w = Thw + |,
with f € C’S(H;) for some r € R, then

(3.20) w(0) € H™H17¢(RY),
for all e > 0.

Remark 3.20. This is a local result which means that the conclusion (j.20)
remains true if we only assume that, for some § > 0,

flacecms € C¥=1, =0 H°(R?)),  fl-s<z<0 € C°([-6,0); H"(R?)).

In addition, the result still holds true for symbols depending on z, such that
a € CAT'}) and b € CY(TY), with the assumption that Rea > c|¢], for some
positive constant c.

18



Proof. The following proof gives the stronger conclusion that w is continuous in
z €] — 1,0] with values in H™*1~¢(R%). Therefore, by an elementary induction
argument, we can assume without loss of generality that b = 0 and w € C? (H ;)
In addition one can assume that there exists § > 0 such that w(z,z) = 0 for
z < —1/2.

For z € [—1,0], introduce the symbol

e(z;z,€) = exp (za(z,)) ,

so that e|,—g = 1 and
d.e = ea.
According to our assumption that Rea > c|{], we have the simple estimates
(=l &)™ e(z3 2, &) < O
Write
az (Tew) = Tef + (Taze - TeTa)w7

and integrate on [—1,0] to obtain

0 0

Tw(0) = [ (To.c - TLywldy + [ (@0
Since w(0) — Tyw(0) € HT>(RY) it remains only to prove that the right-hand
side belongs to H™t175(R%). Set
0 0
w© = [ (T~ TT)u@dy, wl0) = [ (@0 ds

—1 _

To prove that wo(0) belongs to H™'~¢(R), the key observation is that,
since Rea > ¢|¢], the family

{(ylleD) ely;2,€) - -1 <y <0}

is bounded in T9(R%). According to the operator norm estimate (B.4), we thus
obtain that there is a constant K such that, for all —1 < y < 0 and all v €
H"(RY),

[yl D)5 (Tev) || e < K 0]l -
Consequently, there is a constant K such that, for all y € [-1,0],

K
ITef) Wl grar—e < e 1F @)l e -

Since |y| 7% € L1(] — 1,0[), this implies that wy(0) € H™1~¢(R4).
With regards to the first term, we claim that, similarly,

K
H(Tﬁze - TeTa)(y)‘|HT—>HT+1*€ < |y|1—e‘

Indeed, since d,e = ea, this follows from (B.H) applied with (m,m’,r) = (-1 +
e,1,1) and the fact that M;=((|y|' " e(y; -, -)) is uniformly bounded for —1 <
y < 0. This yields the desired result. ([

We are now in position to describe the boundary value of 0,u up to an error
1
in H°72 (RY).

Corollary 3.21. Let A be as given by Lemma B.1§. Then, on the boundary
{z =0}, there holds

(0.u — Tau)|.—o € H 2 (RY).
19



Proof. Introduce w := (0, — T4)u and write
dw —T,mw = T,ow+ f,

_1
with f/ € CY (H; 2+6). Since Rea®) < —¢ |€|, the previous proposition applied
with a = —a™, b= a® and e = § > 0 implies that w|,—g € HS+%(Rd). O

By definition

1+ |Vn|?
G = ~FIvalr [V 0,v —Vn-Vu »
As before, we find that
1 2
LV gy

= T1+\vm2 0.v+ 2Tbvn : v77 - Th1+\vn\2 h
h h
- (TVn Vv + Ty, - V) + R,

_34d
where R € C? (His 2 ) We next replace d,v and Vv by 0.(u + Typ) and
V(u + Typ) in the right hand-side to obtain, after a few computations,

1+ |Vnf?
h
= T1+\Vn\2 Ou — TVn -Vu — TVU—an -Vp— Tdiv(VU—an)p + Rly
h

d,v—Vn-Vou

_34d
with R' € C? (His 27). Furthermore, Corollary implies that

(321) T1+\Vn\2 azu — Tvn -Vu

= T)\U—I-’r’,

h ‘ z=0

with U = u|,—0 = v — Tpp|s=0 = ¢ — Tmn, r € HS+%(Rd) and

1+ [Vnf?
h 2=0

After a few computations, we check that X is as given by (B.11))-(B.19).

This concludes the analysis of the Dirichlet-Neumann operator. Indeed, we
have obtained

Gy = ToU — Tyv—vvy - V1 — Taivvo—svn e + f(10,7),
with f(n,¢) € H stg (RY). This yields the first equation in (B.14) since
V =Vov—0bVn|,—0, Vn|.=0=Vn,

(3.22) A= A—iVnp-€

and since X
Taivvn € H2(RY).

3.5. A simpler case. Let us remark that if (n,v) € Hs+%(Rd) x H571(R%),
the expressions above can be simplified and we have the following result that we
shall use in Section .9

Proposition 3.22. Letd>1,s>2+d/2 and 1 <o <s—1. Assume that
(n,4) € H*2(R?) x H7(RY),
and that n is such that dist(X,T") > 0. Then

Gn)Y = Th\oy¥ + F(n, ),
20



where F(n,v) € H°(RY) (and recall that X\ denotes the principal symbol ,of
the Dirichlet-Neumann operator). Moreover,

1E0, ) e < € (190 ) 19012

for some non-decreasing function C depending only on dist(X,T") > 0.
Remark 3.23. Notice that the proof below would still work assuming only
ne€ HP(RY), veC(HI),

with the same conclusion. A more involved proof (using regularized lifting for
the function 7 following Lannes [[[§]) would give the result assuming only

(n,%) € H*(R?) x H*(RY).
Proof. We follow the proof of Proposition B.14. Let v be as given by (£.7): v

solves
ad*v+ Av + - Vdu — 0,0 = g,
where g € C’O([—l,O];HSJr%(Rd)) is given by (B.§) and
(1+ [V W An
= = —2— = —
a h2 ) /8 h ) ’7 h
Comparing with the proof of Proposition .14, an important simplification is that
we need only in this proof to paralinearize with respect to v. In this direction,
we claim that
_1
(3.23) Tod20 + Av + Tp - Vo0 — Thd,0 € CY(Hy 2).
To see this we first apply point (ii) in Theorem to obtain

0020 — Tudv — Typ,a € CO(HS 7727 € e (ml™?),

and similarly
1
B-Vou—Ts - Vov—Tys.,-8€CH, ?),

o1
70 v —T,0,v — Ty, vy € CB (Hx 2).
Moreover, writing o —2 = d/2 — (d/2 + 2 — o), using Lemma with m =
d/2 + 2 — o, we obtain

—%—(d/2+2—a))

Tyeya € CO(HS c oo(HT ),

and X
Tyo., B € CY(Hy ?).
Similarly, we have
_1
T@ZU’}/ S CS(H; 2).
Therefore, summing up directly gives the desired result (B.23).
Now, by applying Lemma B.1§, we obtain that
Toa02 + Av+Tj - Vo0 — T,0,0 = Ta(9, — To) (0. — Ta)v + f
with f = Rov + R10,v € C(HZ™1%9) where § = min {4,5s —2— 4} > 0.
Then, as in Corollary B.21], we deduce that

(0.0 — Tav)|.—0 € H(R?).
21



Since v(0) € HS~1(R?) we deduce T y0)v|,=0 € H*~'(R?) (A is the subprinci-
pal symbol of A, which is of order 0) and hence

(821) — TA(O)'U)’Z:O S Ho(Rd).
The rest of the proof is as in the proof of Proposition g

3.6. Paralinearization of the full system. Consider a given solution (7, )
of ([L.2) on the time interval [0,7] with 0 < T < 400, such that

(n,4) € C°([0,T); H**2(R%) x HY(RY),

for some s > 2 4 d/2, with d > 1.

In the sequel we consider functions of (t,z), considered as functions of ¢
with values in various spaces of functions of z. In particular, denote by T,u the
operator acting on u so that for each fixed ¢, (Tou)(t) = T,pu(t).

Our first result is a paralinearization of the water-waves system ([.9).
Proposition 3.24. Introduce
U=y —Twyn.
Then (n,U) satisfies a system of the form

(3.24) {at77+TV'V77_T>\U:f17
U +Ty - VU +Typn = fo,
with
fr e L®(0,T; HF2(RY)), fo € L0, T; H3(RY)).
Moreover,

[CA SRy ol ([ X NP
for some function C depending only on dist(Xo,T").

We have already performed the paralinearization of the Dirichlet-Neumann
operator. We now paralinearize the nonlinear terms which appear in the dynamic
boundary condition. This step is much easier.

Lemma 3.25. There holds

where h = h(® + W with

1 2
h(2) -1 \V4 2\ "2 ( 2 _ M) ,
(3.25) (+1vaf) < 1+ [Vn?

W= Yo, 9)n®

h 2(895 O¢)h'?,

and f € L=(0,T; H*~2=42) is such that
(3.26) il

for some non-decreasing function C.

Lo°(0,T;H?2~ %) < C(HUH L00(07T;H5+1/2))7

Proof. Theorem applied with & = s — 1/2 implies that
Vi

W:TMVU—FJC
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where

1 Vn & Vn

VITIViE (L [Py

and f € L°°(0,T; H2S_1_%) is such that

Hﬂ‘Lw(o,T;H%**%) = C(”nHLw(&T;H”%))’
for some non-decreasing function C'. Since
div(TrVn) = T me-e+idiv MeN,
we obtain the desired result with h® = M¢- ¢ hY = —idivME and f =
div f. O

Recall the notations
g V-V + Gy
L+ |Vp[2

V = Vi — BV

Lemma 3.26. We have
1(Vn: VY +Gn)y)’
2 1+ |V
=Tv -V =TTy - Vi — TG ()¢ + f,
with "€ L*>(0,T; H2S_2_%(Rd)) satisfies
171 <c (I v)l

d
L=(0,T;H>7272) —
for some non-decreasing function C.

1 2
5 V™ —

1
Lee(0,T;H " 2 st)) !

Proof. Again, we shall use the paralinearization lemma. Note that for
1(a-b+c)?

F(%@C)Zgw

(a e RE,beRY ceR)

there holds
aF_(a-b—l—c)( _(a-b+0) (a-b+c) (a-b+c)
1+ af? 1+ af? 1+ af? 1+ a2’
Using these identities for a = Vn, b = V4 and ¢ = G(n)v, the paralinearization
lemma (cf (¢) in Theorem B.13) implies that
1(V- Vo + Gn)y)”
2 14|V
with r € L*°(0, T} H%72% (RY)) satisfies the desired estimate. Since V = V) —
BVn, this yields
1L (V- Vi + Gn)y)
2 1+ |V

with 7 € L>(0,T; H25_2_%(Rd)). Since by (B.7)

a, O.F =

a>, OpF =

= {Tve - Vn + Tuv, Vi + TsG(n)Y} + 1,

1
5 Vol = {Tv - Vi = Ty - Vi) — TG ()¢} + 1’

d
Ty — TegTy  is of order — <s—1—§>,

this completes the proof. O
Lemma 3.27. There exists a function C such that,

e <€ (1000t )
23

o, m]



Proof. a) We claim that

(327) 10l + 100 ey + 1Bl s + 1V lgres < C (1000 ery ) -
The proof of this claim is straightforward. Indeed, recall that

o _ V1V + Gy
1+ |Vn2
It follows from Proposition P.7 that we have the estimate

IGOEs-1 < C (N0 ety ) -

Using that H5~! is an algebra since s — 1 > d/2, we thus get the desired estimate
for 9. This in turn implies that V = Vi — BV satisfies the desired estimate.
In addition, since 0y = G(n)1, this gives the estimate of ||0¢n|| ;s—1. To estimate
Oy we simply write that

8t¢ = F(v¢7 V777 V277)7

for some C'* function F' vanishing at the origin. Consequently, since s — 3/2 >
d/2, the usual nonlinear rule in Sobolev space implies that

”8t¢HHs—3/2 S C (H(V¢7 V777 V277)‘ HS*3/2) S C (“(7]7 ¢)|’Ht~+% XHS> .
b) We are now in position to estimate 9;8. We claim that

(3.28) 16:B]] .5 < C (|r<n,w>HHs+%st) :

In view of (B.27) and the product rule (B.9), the only non trivial point is to
estimate 0;[G(n)y]. To do so, we use the identity for the shape derivative of the
Dirichlet-Neumann (see §.3) to obtain

W G(mY] = G(n) (O — BIn) — div(VIen).
Therefore (B.27) and the boundedness of G(n) on Sobolev spaces (cf Proposi-
tion R.4) imply that

1G@YI g < C (10D ety ) -
This proves (B.2§).

c) Next we use Lemma with m = 1/2 (which asserts that if a € H53 (RY)
then the paraproduct Ty, is of order 1/2). Therefore, since by assumption s —
5/2>d/2 —1/2 for all d > 1, we conclude

e <ol eyl ey <€ (10000 iy )

This completes the proof. O

ITo,5m|

4. SYMMETRIZATION

Consider a given solution (n,7) of ([.J) on the time interval [0,7] with
0 < T < 400, such that

(n,) € C°([0,T); H**2(R%) x H*(RY)),

for some s > 2 + d/2, with d > 1. We proved in Proposition that 7 and
U = ¢ — Tyn satisfy the system

(4.1) 0, + Ty - V) (Z) + <£h _(?A> (Z) — f,
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where f € L>(0,T; H 3 (RY) x H*(R%)). The main result of this section is that
there exists a symmetrizer S of the form

— TP 0
S‘<0 Tq>’
0

which conjugates <T;L _E)F A > to a skew-symmetric operator. Indeed we shall prove
that there exists S such that, modulo admissible remainders,

(o o) =(mr 0)s

In addition, we shall obtain that the new unknown
_ n
3-S5 <U>

0 -1, _
(4.2) 8 + Ty - VO + <(Tv)* 0 ) =F

with I € L>(0,T; H5(RY) x H3(R%)); morevoer ||(n, )]
by means of ||®|| .

satisfies a system of the form

S is controlled
X

This symmetrization has many consequences. In particular, in the following
sections, we shall deduce our two main results from this symmetrization.

4.1. Symbolic calculus with low regularity. All the symbols which we con-
sider below are of the form

where

(i) al™) is a real-valued elliptic symbol, homogenous of degree m in ¢ and
depends only on the first order-derivatives of n;
(ii) a™=1) is homogenous of degree m — 1 in € and depends also, but only
linearly, on the second order-derivatives of 7.
1

Recall that in this section n € CO([0,T]; H5" 2 (R%)) is a fixed given function.

Definition 4.1. Given m € R, X denotes the class of symbols a of the form

with

a"™ (t,2,€) = F(Vn(t,2),€), a™ V(t,2,8) = Y Ga(Vn(t,z),)dn(t, x),
|a|=2

such that

(i) T, maps real-valued functions to real valued functions;

(ii) F is a C* real-valued function of (¢,€) € R? x (R%\ 0), homogeneous of
order m in &; and such that there exists a continuous function K = K(() >
0 such that

F((,6) > K(Q)[§™,
for all (¢,€) € R* x (R*\ 0);
(iii) Gy is a C°° complex-valued function of (¢,€) € R%x (R%\0), homogeneous
of order m — 1 in &.
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Notice that, as we only assume s > 2+d/2, some technical difficulties appear.
To overcome these problems, the observation that for all our symbols, the sub-
principal terms have only a linear dependence on the second order derivative of
n will play a crucial role.

Our first result contains the important observation that the previous class of
symbols is stable by the standard rules of symbolic calculus (this explains why
all the symbols which we shall introduce below are of this form). We shall state
a symbolic calculus result modulo admissible remainders. To clarify the meaning
of admissible remainder, we introduce the following notation.

Definition 4.2. Let m € R and consider two families of operators order m,
(A(t) s te 0,71}, {B(t) : te0,T]}.

We shall say that A ~ B if A — B is of order m — 3/2 (see Definition and
satisfies the following estimate: for all p € R, there exists a continuous function
C such that

1A® = BNy, sy < C (MO0 ety )
for all t € [0,T].
Proposition 4.3. Let m,m' € R. Then
(1) Ifa e ¥™ and b € Y™ then T, T ~ Tasp where affb € st s given by

atb = a™pm) 4 g(m=Dp(m’) 4 qm)pm’=1) | %aga(m) - 9,b™").
(2) If a € 3™ then (Ty)* ~ Ty where b € ¥™ is given by
— 1
b=al™ +am=1) 4 g(@x - 9e)al™ .

Proof. Tt follows from (B.5) applied with p = 3/2 that

|

On the other hand, (B.5) applied with p = 1/2 implies that

Ty Tymty = Tym ) 1.1 ggam) ., b HHu_)HW,Hn,WQ < CIVnllws/,e0)-

HTa(m)Tb(m/*l) - Ta(m)b(mlfl) HH,u_)Hufmfm’+3/2 S C(an|’W3/2v°°)7

HTa(mﬂ)Tb(m’) =T (m—=1) p(m’) || gp_ gp—m—m/+3/2 < C(‘|V77||W3/2’oo)-

a

Eventually (B.4)) implies that

HTa(mfl)Tb(mlfl) HHLL_>Hufmfm’+2 < C(an”Wloo)
The first point in the proposition then follows from the Sobolev embedding
Hs+%(Rd) C W%’OO(Rd). Furthermore, we easily verify that afb € 2™+
Similarly, the second point is a straightforward consequence of Theorem B.1(]
and the fact that a(™ is, by assumption, a real-valued symbol. O

Given that a € Y™, since a1 involves two derivatives of 7, the usual
boundedness result for paradifferential operators and the embedding H*(R%) C
W2 (R%) implies that we have estimates of the form
(43) 1ol g = 2 Nt )l < O (n(®) )

Our second observation concerning the class X" is that one can prove a continuity

result which requires only an estimate of ||| ys-1.
26



Proposition 4.4. Let m € R and p € R. Then there exists a function C' such
that for all symbol a € ¥™ and all t € [0,T],

[ Tatey ]l g—m < CUME prs=1) el -

Remark 4.5. This result is obvious for s > 34d/2 since the L>-norm of a(t, -, &)
is controlled by ||7(t)|| ys—1 in this case. As alluded to above, this proposition
solves the technical difficulty which appears since we only assume s > 2 + d/2.

Proof. By abuse of notations, we omit the dependence in time.
a) Consider a symbol p = p(x, £) homogeneous of degree r in £ such that

z— O¢p(-,§) belongs to H3(RY) Vae N%

Let g be defined by
7(6,6) = 20850,

where x1 = 1 on suppx, 1 = 1 on supp® (see (B-2)), ¥1(£) = 0 for [¢] < %,
X1(0,€) = 0 for |0] > |¢] and f(0,€) = [ e~ f(x,€) dx. Then

(4.4) T, |D,| = Ty,

and

o£a0.9)] < (6)7 Y |0¢(6.9)|.
B<a

Therefore we have

(4.5) [0a(-,€)|

e S |[08(,)

Bl

Hs—3 ’

Now, it follows from the above estimate and the embedding H5~2(R%) C L>(R?)
that ¢ is L* in z and hence ¢ € Fg_l C T. Then, according to (B.4) applied
with m = r (and not m = r — 1), we have for all 0 € R,

ITgvll o S sup  sup [E[77|02q( €)|] oo V] o -
la]<d+1 €[>

Applying this inequality with v = |D,|u, 0 = p— 1 and using again the Sobolev
embedding and (f.4), ({.5), we obtain

(4.6) I Tpull gu—rs S sup  sup ||0¢p(-, )|
laf<g+1 [¢]=1

pros [l -

b) Consider a symbol a € X™ of the form

(4.7) a=a™ +al™ V= F(Vn,&)+ Y Ga(Vn,€)0n.
|a|=2
Up to substracting the symbol of a Fourier multiplier of order m, we can assume
without loss of generality that F'(0,&) = 0.
It follows from the previous estimates that

‘uﬁmumﬂﬂn§ﬁmHMmeMH#ﬂWmW,

and
HTMW*DUHHuﬂniSEF%Haon_D(W£”hF*3HuHHu'
27



Now since s > 2 + d/2 it follows from the usual nonlinear estimates in Sobolev

spaces (see (B.I()) that

ps 10t (&) =2 = s (V7 O)llz=s < C (lall o)

On the other hand, by using the product rule (B.9) with (so, s1,82) = (s — 3,5 —
2,5 — 3) we obtain

@D ()| gems < Z 1Ga(Vn, )05l prs—s

|af=2

S (1Ga(0,01+ 3 1Ga(V1,€) = Ga(0,)l -2 ) 1957 o-s

|ar|=2
for all [¢| < 1. Therefore, (3.10) implies that

™D ()= < ClImll go—)-
This completes the proof. O

Similarly we have the following result about elliptic regularity where one
controls the various constants by the H¥~'-norm of 7 only.

Proposition 4.6. Let m € R and p € R. Then there exists a function C' such
that for all a € ¥™ and all t € [0,T], we have

el g < CUnCE g2 { | Tacey el g + Nl g2 } -

Remark 4.7. As mentionned in Remark B.9, the classical result is that, for all
elliptic symbol a € F?(Rd) with p > 0, there holds

[l < KN Taf NIz + (1 Fll 22}

where K depends only on M;"(a). Hence, if we use the natural estimate

My a0 () < CUm®)llyara) < Ol )

for p > 0 small enough, then we obtain an estimate which is worse than the one
just stated for 2+ d/2 < s < 3+d/2.

Proof. Again, by abuse of notations, we omit the dependence in time.
Introduce b = 1/a(™ and consider ¢ such that
0 <e <min{s —2—d/2,1}.

By applying (B.H) with p = ¢ we find that Ty, (m) = I +r where r is of order —¢
and satisfies

lrull e < CUNVllypece) ull e < CUMl o) 1wl g -

Then
u="TyT,u—ru—"TyT m.
Set
R=—r —TyT n.
Then

(I — R)u = TyT,u.

We claim that there exists a function C such that

[T gm0 tull e < CUN grs=o) el g -
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To see this, notice that the previous proof applies with the decomposition T, =
T, |D.|'~¢ where

(0,6 = 2CEp00.)

Once this claim is granted, since T}, is of order —m, we find that R satisfies

Rl e < CUlnll o) l[wll g -
Writing
(I+R+--+RNYI-Ru=I+R+---+RTyT,u
we get
u=I+R+---+RVT,T,u+ RN u.
The first term in the right hand side is estimated by means of the obvious

inequality

T+ R+ +RBRNT| s

S H(I + R + -+ RN)“HH+M_>HM+77L ||Tb||H/,L_)H,u,+m )
so that
H([ + R+ + RN)TbTauHHu+m < ClInll gs—1) N1 Tawll g -
Choosing N so large that (N + 1)e > pu + m, we obtain that

N
IR e S N Bl gem—e e =~ IRl g pricse < CUInllro—1),
which yields the desired estimate for the second term. O

4.2. Symmetrization. The main result of this section is that one can sym-
metrize the equations. Namely, we shall prove that there exist three symbols
P, q,7y such that

T,T\ ~T,1,,
(4.8) Tth ~ T’yTpa
T, ~ (1),
where recall that the notation A ~ B was introduced in Definition [£.3.

We want to explain how we find p,q,v by a systematic method. We first
observe that if ({.§) holds true then ~ is of order 3/2. To be definite, we chose ¢
of order 0, and then necessarily p is of order 1/2. Therefore we seek p, ¢,y under
the form

where (™) is a symbol homogeneous in & of order m € R.

Let us list some necessary contrainsts on these symbols. Firstly, we seek real
elliptic symbols such that,

PV K (O 2K AP kg,

for some positive constant K. Secondly, in order for T, Ty, T, to map real valued
functions to real valued functions, we must have

(4.10)  p(t,2,&) = p(t,z, =€), q(t,z,8) =q(t,2,8), (t2,8) =7t 2, =£).
According to Proposition [l.3, in order for T, to satisfy the last identity in ({.§),
~(1/2) must satisfy
(4.11) A1/ = (@ - 0,712,
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Our strategy is then to seek ¢ and ~ such that
(4.12) T,Th Ty ~ T, T,1,.

The idea is that if this identity is satisfied then the first two equations in (f.§)
are compatible; this means that if any of these two equations is satisfied, then
the second one is automaticaly satisfied. Therefore, once ¢ and v are so chosen
that ([.12) is satisfied, then one can define p by solving either one of the first
two equations. The latter task being immediate.

Recall that the symbol A = A + A©) (resp. h = h®) + A1) is defined by
(BI0) (resp. (B-29)). In particular, by notation,

AD = \/(1 +[Vn?) [ = (V- )2,

@ — 2\~ 2_M>
W = (14 190P) 7 (16 - s )

(4.13)

Introduce the notations
hiA = hOAD L WD) 4 p N0 4 %agh@) oD,
and
(32) o 1/2,63/2) | Lo (3/2) 5 - (3/2)
VY = (7 ) 2B A SOy Oy

By symbolic calculus, to solve ([E12), it is enough to find ¢ and ~ such that
1

(4.14) O (ngA) + ¢VRAND 4 _.35(1(0) -9y (RPIA)
i

2 o1
= (g + (4972)" ¢ 20 HD132) . 9,40,

We set
B2 = /@A),

so that the leading symbols of both sides of ([.14) are equal. Then Im~(*/?) has
to be fixed by means of ([.11). We set

1
1/2) — _Z(9. . (3/2)
Im 5 (0 - O]y
It next remains only to determine ¢, ¢ and Re ’y(l/ 2) such that
1 1 1
(4.15) 7¢© = - { X6 Aa),q(m} _ ?aﬁ(h(z) ADY. 9,40 — ;agq@) 9y (RN,
where
= laéh@) O AL £ R NG L RN 27(1/2)7(3/2) + Z'aw(?»/?) . am7(3/2)‘
i

Since ¢~ does not appear in this equation, one can freely set ¢(~1) = 0. We
next take the real part of the right-hand side of ({.17). Since ¢, @ XD are
real-valued symbol we find ReT = 0. Since h(l)(t,az,f) € iR, we deduce that
Re~(1/2) must be given by solving the equation

h® Re A = 24(3/2) Re~(1/2),

that is
2 0 0
Re~1/2) = h® ReA® — h2) ReA®)
2+(3/2) A2
It remains only to define ¢(® such that
(4.16) ¢9Tmr = — { OGS q<o>} ,
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Since

A0 = 20, -00h®, TmA® = (0, - B, Ty = (9, -0y,

we find
Im7 = —9ch® - oA — % AD @ - 9,)h® — % 1 (8 - 9,)A0
443D (B - 0,)73/2) 1 8y 3/2) - 9,4/,
Writing

1 2 1
7(3/2)((9& 9, )73/ 4 agfy(?»/?) S RVIC /e 5@: - O <’Y(3/2)) — 5@: . 85(h(2))\(1)),
we thus obtain
Im 7 — %a@ﬂ) L9,k %agh@) L9,
and hence (4.16) simplifies to
1
Z 1@ L0 @\ 0L _
(4.17) 2{h A }q +{h AW ¢ } 0.
The key observation is the following relation between h(?) and AV (see ([E13)):
2 _3
h? = <c)\(1)) with c¢= (1+|Vn[*) *.
Consequently ([E17) reduces to
—OM29, 2. 85)\(1) + 302()‘(1))266)‘(1) - 0,q©) — agq(o) 0, <C2()\(1))3> =0.
Seeking a solution ¢© which does not depend on &, we are led to solve
af)\(l) - 0,q©) B laf)‘(l) Oy
q© 3 c ’
We find the following explicit solution:

N

1 —_
¢ =c3 = (1+|Vn?)
Then, we define p by solving the equation
1,1y, ~ T, T,.
By symbolic calculus, this yields
_ 1
gh® 4+ gnH = 7(3/2)1)(1/2) + 7(1/2)]9(1/2) + 7(3/2)1)( 1/2) 5357(3/2) - 0,pM2.

Therefore, by identifying terms with the same homogeneity in £, we successively
find that

0, h@ s
q
P =T = = (L VIl VA,

and
1

(4.18) P12 a7 {q(m B — U2p0/2) 4 5/ .ampa/m} _

Note that the precise value of p(~/2) is meaningless since we have freely imposed
q(_l) = 0

Gathering the previous results, and noting that 41/2 and p(~/2) depend
only linearly on the second order derivatives of 7, we have proved the following

result.
31



Proposition 4.8. Let g € X0, p € ©1/2, v € ¥3/2 be defined by
g=(1+|Vnf*) 2,

5
p=(1+[Vnf) T VAD 4 pl=1/2),

2 ReA©®) i
v = Vh®AD 4 ,/%% — 20 0V RO,

where p(=1/2) is given by (EI3). Then
T,T5 ~ T, T,
T4Th ~ Ty T,
Ty~ (1)

[NIES

By combining this symmetrization with the paralinearization, we thus obtain
the following symmetrization of the equations.

Corollary 4.9. Introduce the new unknowns
& =Ty and Po=T,U.
Then &1, ®y € C°([0,T]; H*(R?Y)) and
0y + Ty - VO, — T, @y = F,
{ 0i®Po + Ty - VO3 + TP = Fy,
where Fy, Fy € L=(0,T; H(R?%)). Moreover

(4.19)

IE B oy < € (108 e g )
for some function C depending only on dist(Xo,T").

To prove Corollary [I.9, we first note that it follows from Proposition [.§ and
Proposition .24 that
0;®1 + Ty - VO — T, 3 = Bin + f1,
0i®Po + Ty - VO + T, @1 = BoU + fo,

with f1, fa € L>®(0,T; H5(R%)),

11 )ty < C (101, s ey oy )
and
By = [af’Tp] +[Tv - V7Tp] )
BQ = [8t,Tq] + [TV ' vaq] .
Writing
1Bunllge < 1B ey 1l
|1 B2Ull s < | Ball grs . ggs 1U ] s »

it remains only to estimate || Bi| and || Ba|| gs_, = To do so, the only

H 2 s
non trivial point is to prove the following lemma.

Lemma 4.10. For all p € R there exists a non-decreasing function C' such that,
for all t € [0,T],

HTatp(t)HH,u_)HM*% + HTatq(t)HH“—J{“ < ¢ (H(n(t)’w(t))HHer%XHs) ’
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Proof. 1t follows from the Sobolev embedding and (B.27) that
9nllwse < 0z < C (1000 vy ) -

This implies that

Joua(t Moe + sup 000200, < € (Um0 o)

On applying Theorem .4, this bound implies that

[y R Y] P el (ICTORTO) E

He—H!* 2'

It remains only to estimate HTatp(—l/2)(t HH e . Since we only assume
s > 2+ d/2, a technical difficulty appears. Indeed since 0; has the weight

of 3/2 spatial derivatives, and since the explicit definition of p=Y2) involves 2
spatial derivatives of 7, the symbol 8,p(~1/2) do not belong to L™ in general. To
overcome this technical problem, write p{~1/2) under the form

pVP =Y Pa(Vn, )0,

|af=2

where the P, are smooth functions of their arguments for £ # 0, homogeneous
of degree —1/2 in . Now write

(4.20) Ty, p-172) = Z T(0, Po (Vi €))02n Z Tp, (Vn,€):00n-
|oe|=2 lo|=2

As above, we obtain

sup 10 Pa(Vn(0), )l < O (1600 e ) -

On the other hand we have the obvious estimate [0S0 S |7l On
L ~ Hb+2

applying Theorem B.§, these bounds imply that the first term in the right hand
side of (f:2Q) is uniformly of order —1/2.

The analysis of the second term in the right hand side of ([£.20) is based on
the operator norm estimate ([.f). By applying this estimate with r = —1/2, we
obtain

HTPa(Vn,E)atagr]HHH_>HH—1/2 5 HPOJ(Vnﬂ &)8ta:?n”Hb*3 :
Now the product rule (B.9) implies that

||P04(V77> g)atatxx"?HHsz
S AP0, + [[Pa(Vn, §) = Pa(0, )| g1} [0:05 | gro-s

and hence
1T w1002 | < Ol 186l s < € (N0 vy ) -

This completes the proof. O
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5. A PRIORI ESTIMATES

Consider the Cauchy problem
I — Gn)p =0,
(5.1) 1 (V- VY + G)*
2 1+ |Vn|?

1
O +gn — H(n) + 5 [VeI* - =0,

with initial data

Nlt=0 =10, Y=o = 0.
In this section we prove a priori estimates for solutions to the system (.1]) and
approximates systems. These estimates are crucial in the proof of existence and
uniqueness of solutions to (5.1]) .

5.1. Reformulation. The first step is the following reformulation, whose proof
is an immediate computation.

Lemma 5.1. (1,%) solves (b.1) if and only if

(5 Do o () (0 (e D)= (R)

where
f1=Gmy — {Th(v — Tsn) — Ty - Vn},
1 1(Vn- Vi + Gn)y)?
5.2 2 _Z 242 H
(52 F= g VU 4 g S B 4 H )
+ Ty VY — Ty - Vi — TG (n)y + Tyn — gn.
Since

() (5 D=0,

we thus find that (1, ) solves (p.J]) if and only if

@+1v-5+£) (1) = fonv)
(1, 9)]t=0 = (10, %)

(D6 T (D w4 D)

5.2. Approximate equations. We shall seek solutions of the Cauchy prob-
lem (f.3) as limits of solutions of approximating systems. The definition de-
pends on two operators. The first one is a well-chosen mollifier. The second one

is an approximate right-parametrix for the symmetrizer S = (%’ qu) defined in
Section [.
Mollifiers. To regularize the equations, we cannot use usual mollifiers of the

form y(eD.). Instead we use the following variant. Given e € [0, 1], we define
J. as the paradifferential operator with symbol j. = 5.(¢,z, &) given by

(O - O¢) exp (— E’y(?’/z)).

- 1

The important facts are that

. 1
5e € U0, TG (RY), - AP =0, Tm ™) = == (9 - 9)”.
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Of course, for any ¢ > 0, 5. € C’O([O,T];I‘g’b(Rd)) for all m < 0. However,
the important fact is that j. is uniformly bounded in C°([0, T]; T} /2 (R9)) for all
e € [0,1]. Therefore, we have the following uniform estimates:

1Ty = Ty el gpu— e < CUIVlyyrs/2.00 ),
H(Ja)* - JEHHH_>HLL+3/2 < C(”Vn”wwloo)a

for some non-decreasing function C' independent of ¢ € [0, 1]. In other words, we
have

JTy ~TyJe, (J) ~ Je,
uniformly in €.

Parametrix for the symmetrizer. Recall that the class of symbols %" have
been defined in Definition [i.]. We seek

such that

- - 19y (-1j2) , ] -
phip = p1Dp1D) 4 U/ (812) 4 DG 4 291/ 51D =1,

To solve this equation we explicitely set

1
(-1/2) =
o T Ly

(5.4) X X
¢4muz_aﬁ§<¢4ﬂ@eum+g%¢4ﬁyawum>,

Therefore

T,T, ~ 1,
where recall that the notation A ~ B is as defined in Definition [.2.

1
On the other hand, since ¢ = (1 + |V77|2)_5 does not depend on &, it follows
from (B.7) that we have

T, Ty~ 1.

Hence, with o and ¢ as defined above, we have

T, 0\ (T, 0Y (I 0
0 T,)\0 Ty, 0 1)

Approximate system. We then define

e (I 0V (0 -T) (Ty).T, 0 I 0
T\ry 1) \T 0 0 Ty Ty \-Tw 1)

(At first one may not expect to have to introduce J. and £°. We explain the
reason to introduce these operators in §b.4 below.) We seek solutions (,1))
of (b.9) as limits of solutions of the following Cauchy problems

(&t +Tyv -VJ. + Ee) <Z> = f(Ja??, Jd/}),
(17,9 li=0 = (10, Yo).
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5.3. Uniform estimates. Our main task will consist in proving uniform esti-
mates for this system. Namely, we shall prove the following proposition.

Proposition 5.2. Let d > 1 and s > 2+d/2. Then there exist a non-decreasing
function C such that, for alle €]0,1, all T €]0,1] and all solution (n,) of (B.3)
such that

(n,4) € CH([0, T]; H¥* 2 (R) x H*(RY)),
the norm

M(T) = ||, )l

1
Lo(0,T;H T2 x H5)’
satisfies the estimate

M(T) < C(Mg) +TC(M(T)),
with Mo := || (10, %o)||

Remark 5.3. Notice that the estimates holds for ¢ = 0. In particular this
proposition contains a priori estimates for the water waves system itself.

e L .
H*V2 xHs

5.4. The key identities. To ease the reading, we here explain what are the key
identities in the proof of Proposition .2

By definition of £¢, using that (_:{«% 7 (TI% 2)=(%9), we have
T, 0 I 0 re
0 T,) \-Ts I

(T, O\ [0 -1\ (T,J.T, 0 I 0
“\o 1,)\1n o© 0 TygJeTy) \-Tw 1)

Now recall that

T, 0 0 -1y N 0 -7, T, O
0 T T, O ()" 0 0 7,)°
so that

T, 0 I 0.
0 T,)\~Tw I

(0 -\ (T, 0\ (T,J.T, 0 I 0
T)* o )\o T, 0 TygdTy) \~Tws I

uniformly in e (notice that the remainders associated to the notation ~ are
uniformly bounded). We next use

T, 0\ (T, 0\ (I 0
0 T,)\0 Ty, 0 1)

to obtain that, uniformly in €, we have the key identity

T, 0 I 0\ e 0o -T,0.\ (T, 0 I 0
0 T,) \-Ty I (T)*J. 0 0 T,)\-Tw 1)

In other words, the symmetrizer

(% 1) (r 1)

conjugates L° to a simple operator which is skew symmetric in the following

sense:
( 0 —T7J€>* o ( 0 —TVJE>
(Ty)*J- 0 () J. 0 )
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This is our second key identity, which comes from the fact that

() ~Ty, J:~Jde, TyJ.~J.T,.
In particular, it is essential to chose a good mollifier so that the last two identities
hold true.

We could mention that, in the proof of Proposition .9 below, the main argu-
ment is the fact that the term F5 . in (5.§) is uniformly bounded in L*°(0, T'; H® x
H?). The other arguments are only technical arguments. However, since we only
assume that s > 2 + %l, this requires some care and we give a complete proof.

5.5. Proof of Proposition p.3. We now prove Proposition p.2.

a) Let us set

B (T (T, 0 I 0\ /(n
U =1 —Tygn, <I>—<T§U>_<Op Tq> <—T% I) <1/’>

We claim that ® satisfies an equation of the form

0 -T.J
(5.6) O+ Ty -VJ.) D+ <T7J€ N > d=F.,

where the remainder satisfies
(5.7) Vel e oy < C (1000 g et o))

for some non-decreasing function C independent of €. To prove this claim,
we begin by commuting the equation (f.5) with the matrix

7, 0\( I 0
o 17,)\ -1y 1)
to obtain that ® satisfies (b.4) with F. = Fy . + Fb . + F3 . where (cf §5.4)

F — Tpfl(J€n7 Jaw)
Le qu2(<]a777 Jal/}) ’

B 0 —(T,T\T) )y J: — Ty J:)
(5.8) Foe = <(TthTpJ€ —T,J.) 0 ®,

_ ' T, 0 I 0 i
Fs. = |:8t +1v - VJ, <0p Tq> <—T% I>] <¢> )

The estimate of the first term follows from Proposition B.14, Lemma B.2§ and
Lemma (clearly, these results applies with (n,) replaced by (J.n, J-1)).
For the second term we use that,

TyT\ ~ 1Ty, Tolh ~ 11y, TpTp ~ 1, Tqu/q ~ I,

5

to obtain

T,T0\Ty g ~ Ty, TThT, ~T,.
Eventually, we estimate the last term as in the proof of Corollary [I.9.
b) We next claim that

(5.9) 1(n, )

We prove the desired estimate for d;n only. To do so, using the obvious inequality

t
I gr < 7O os + /O 180l 7o

< Mo + T |9en|l oo (0.1, 111y »
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we see that it is enough to prove that
(5.10) 10l oo 0,151y < C(M(T)).

This in turn follows directly from the equation for n. Indeed, directly from (f.5),
write

o = —Tv - Ve + T\Ty ) JTo (Y — Ten) + f1(Jen, Jep).
The last term is estimated by means of Proposition B.14. Moving to the first

two terms, by the usual continuity estimate for paradifferential operators (B.4),
we have

1Ty - VJenll goa < IVl oo 1enll s »
and
| TATy /g J-Ty () — Tom) || o
< NINT g e To| o e UM s + 1B oo 1l g}
and hence, since H5"}(R?) c L®(RY), the estimates for B and V in (B:27)

imply that 0,1 satisfies the desired estimate (p.10). The estimate of ||9)|| ys—s/2
is analoguous. This completes the proof of the claim.

c¢) To obtain estimates in Sobolev, we shall commute the equation with an elliptic
operator of order s and then use an L?-energy estimate. Again, one has to chose
carefully the elliptic operator. The most natural choice consists in introducing
the paradifferential operator T with symbol

(5.11) = <7<3/2))% e ¥,

The key point is that, since 8 and g§°) are (nonlinear) functions of ~3/2) we have

e - 9,732 = 557(3/2) - 0,03,
el - 051" = 0" - 0,.
Therefore, as above, we find that [Ts,7,] is of order s, while [Tg, J.] is of order
s—3/2. Also the commutator [T3, Ty - VJ.] is clearly of order s. With regards to
the commutator [T3,Ty,] = —Tp,s notice that there is no difficulty. Indeed, since
f3 is of the form 3 = B(Vn, &), the most direct estimate shows that the L°(R9)-
norm of 9;3 is estimated by the L°(R%)-norm of (V7,9;Vn) and hence by
C(M(T)) in view of (F.10) and the Sobolev embedding H5~*(R%) ¢ WH>(R).
We thus end up with the following uniform estimates
175, T3] Jell s 2 < C(M(T)),
HT*/ [T67 Ja]”Hs_>L2 < C(M(T)),
175, Tv - VIl sz < C(M(T)),
1[5, Oulll e 2 < C(M(T)),
for some non-decreasing function C' independent of ¢ € [0,1]. Therefore, by
commuting the equation (p.6) with Tj3, we find that

o :=TsP
satisfies
0 -1, J: o
(512) (8t+TV VJg)(,O"F <T7J€ 0 > (,D—FE,
with
[E2 e 0,212y < CM(TY),
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for some non-decreasing function C' independent of ¢ € [0, 1].

d) Since by assumption (n,v) is C! in time with values in H5+2 (R%) x H¥(R%),
we have

¢ € C'([0,T]; L*(RY) x L*(R?)),

and hence we can write

d
E <€07 (10> =2Re (@cp, (10> )

where (-,-) denotes the scalar product in L?(R%) x L?(R%). Therefore, (f.19)
implies that

d 0 -T,J
E<907(P>:2Re<_TV‘VJa(P_ (TyJa 0 €>¢>+Fé,<p>

and hence

d
7 ($9) = (Zp,0) + 2Re (Fl, o),

where %° is the matrix-valued operator

€ . _ . * . 0 _TvJe 0 _T“/Je "
% = —{(Tv -VJ.)" +Tv VJE}I—’_<T»ng 0 + Ty Je 0 .

Now recall that
() ~Ty, (Jo)" ~Jey, TyJe ~ JT,.
Moreover, we easily verify that

sup - sup [|Z°(t)|| 2 2 g2z < C(M(T)).
€€[0,1] t€[0,T]

Therefore, integrating in time we conclude that for all ¢ € [0, 77,
2 2 T 2 /1|2 /
POz = B O euzz < COITN [ (Ielonsn + 1P .
which immediately implies that

el 0.7:22 22y < C(Mo) + TC(M(T)).

By definition of ¢, this yields

(5:13) I T5Tpnll o sy + IT5TU | e o risy < C(Mo) + TC(M(T)).
First of all, we use Proposition [.§ to obtain

G14) Il ey < B {ITBTM e om0+ 10 gt

(5.15) ||¢||LOO(O’T;HS) <K {HTQTQTZ)HLOO(O,T;L?) + HTZJHLOO(O,T;LQ)} ’

where K depends only on [|1]| e (o 7, rs—1)-
Let us prove that the constant K satisfies an inequality of the form

(5.16) K < C(My)+TC(M(T)).
To see this, notice that one can assume without loss of generality that

K < F(HWH%OO(O,T;HS%))
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for some non-decreasing function F € C'(R). Set €(t) = F(|[n(t)||5-1). We
then obtain the desired bound (f.14) from (p.10) and the inequality

K <%(0) + /\%/ )| dt

< F(Mp) + /0 2 (I s) 106l gos 1l o .

Consequently, (p.13) and (p.14]) imply that we have
< C(My) +TC(M(T)).

—

It remains to prove an estimate for . To do this, we begin by noting that,
since ¥ = U + Twn, we have

||T6Tq¢||Loo(o,T;L2)
< HTBTqUHLOO(o,T;L?) + HTBTqT%||Loo(0,T;HS—>L2) ||77||L°°(0,T;HS) )
Now we have
1T8T4 Tl oo (0.1, 15— 1.2y

< sup sup [|B(t, )| oo 19l oo (0,7;1.00) 1Bl Lo (0,7,1.0)
t€[0,T7] ¢]=1

and hence

(5.17) [l < K" {NTqU N ggs + 10 g2 + lll s }

where K’ depends only on [[(1,¥)| oo (0,7, prs—1 x grs-3/2)- By using the inequality
(B-13) for || T3U]| 2, the estiumate (B.9) for [|¢)[;2, the previous estimate for ),
and the fact that K’ satisfies the same estimate as K does, we conclude that

[l e o110y < C(Mo) + TC(M(T)).

We end up with M(T) < C(My) + TC(M(T)). This completes the proof of
Proposition [5.3.

5.6. Consider (n,) € C°([0,7T7; Hs+%(Rd) x H3(R%)) solution to the system

@+ Ty - VI, + L) (Z) — F(en, ),
(,Y)|t=0 = (M0, ¥0)-

We now prove uniform estimates for solutions (7, 1[) to the linear system

n
0+ Ty - VJ. + L) >
(5.18) 0+ Ty W

(7,9 |e=0 = (7i0s Yo)-

To clarify notations, write (5.§) in the compact form

E(e,n,v) <Z> = f(Jen, Jt)

Then, with this notations, we shall prove estimates for the system

E(e,n,%) <Z> = F
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We shall also use the following notation: given » > 0, T" > 0 and two real-valued
functions w1, ug, we set

(5.19) )y = 100 w2l st

We shall prove the following extension of Proposition f.3.

Proposition 5.4. Let d > 1, s > 2+ d/2 and 0 < o < s. Then there exist
a non-decreasing function C such that, for all € € [0,1], all T €]0,1] and all
m,%,n,v, F such that

Bens) (1) = 1 a, B (1) =F

and such that
(n,0) € CO([0,T]; H**3(RY) x H*(RY)),
(7,9) € CH([0,T); H*+3 (R?) x H’(RY)),
F = (P, F) € L%((0,T); H"3(R%) x H?(RY)),

we have

(5:20) || )]

X°(T) = GH(%’%)‘

1
H°t2xHe

+70 (I 9y . 9)

where C = C (H(%ﬂﬁo)HHH%Xm) +7TC (H(mw)”xs(n).

Remark 5.5. By applying this proposition with (n,v) = (7,1) we obtain
Propositon .3

- + T Fl xo(ry

Proof. We still denote by p, ¢, 7, g the symbols already introduced above. They
are functions of 7 only. Similarly, 8 and V are functions of the coefficient (7, ).
We use tildas to indicate that the new unknowns we introduce depend linearly
on (7,1), with some coefficients depending on the coefficients (1, 1)).

i) Let us set
T - & _ (T
U= ¢ TsBT], P = <TqU> .
As above, we begin by computing that ® satisfies

=~ 0 -T,J:\ = £
(8t+TV'VJE)(I)+<Tﬁ/J€ 0 )‘I)—F,

with F = Fl + 1*:'2 + Fg where
~ T,F
=7
1 <TqF2> )
= < 0 —(TPTATl/an — T7J5)> &
(T, T Tyd: — T, Je) 0

e fren s (f £) (4 D))
Then we find that
|7] <O (om0l ) | 9|

Loo(0,T;He x Ho)

)

Xo(T) 1 xo 1y >

for some non-decreasing function C' independent of €.
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ii) Next, we introduce the symbol

20
3= <’Y(3/2)> 5oy
As above, we find that

15 ] Tl o g2 < COI A xey)s
17, T3, T o g2 < CUI ) xey):
15, Tv - VIl o2 < CUL ) o)
15, 00l 1 12 < CUI ) o)

0

for some non-decreasing function C' independent of ¢ € [0,1]. Therefore, by

commuting the equation (p.6) with T3, we find that

Q= Tﬁé
satisfies
~ O _T'yJa ~ _ 1
(8t+TVvJ€)(’D+<T,yJ€ 0 >(10_F7
with

|

for some non-decreasing function C' independent of ¢ € [0, 1].

iii) Therefore, we obtain that for all t € [0, 7], [|(t)|| 72, 12 — |#(0)||32, ;2 is
bounded by

L (0,T;L2 x L?) < C(H(n?¢)||X5(T))||(ﬁ7¢)||XU(T) + ||F||X‘7(T)

T
CUmxery) [ (2 aso + 1)

which immediately implies that ||3| 0 7,12 12) is bounded by

18O o2 + TCU M DN xs (1)) 191l Lo 0,722 22) + T I | () -

Once this is granted, we end the proof as above. O

6. CAUCHY PROBLEM

In this section we conclude the proof of Theorem [[.1 We divide the proof
into two independent parts: (a) Existence; (b) Uniqueness. We shall prove the
uniqueness by an estimate for the difference of two solutions. With regards to
the existence, as mentioned above, we shall obtain solutions to the system ([[.2)
as limits of solutions to the approximate systems (f.§) which were studied in the
previous section. To do that, we shall begin by proving that:

(1) For any ¢ > 0, the approximate systems (f.J) are well-posed locally in
time (ODE argument).

(2) The solutions (1.,%.) of the approximate system (5.H) are uniformly
bounded with respect to ¢ (by means of the uniform estimates in Propo-

sition p.2).

The next task is to show that the functions {(7e,%.)} converge to a limit
(n,%) which is a solution of the water-waves system ([.7). To do this, one cannot
apply standard compactness results since the Dirichlet-Neumann operator is not
a local operator, at least with our very general geometric assumptions (notice
however that in the case of infinite depth or flat bottom, one can show this local
property). To overcome this difficulty, as in [If], we shall prove that
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(3) The solutions (7e,1.) form a Cauchy sequence in an appropriate big-
ger space (by an estimate of the difference of two solutions (7.,.) and

(Mer, ver))-
We next deduce that
(4) (n,%) is a solution to ([.9).
The next task is to prove that
(5) (m ) € CO0.T): H*3 (R) x H*(R7)).

Notice that, as usual once we know the uniqueness of the limit system, one can
assert that the whole family {(7.,1.)} converges to (n,v).

Clearly, to achieve these various goals, the main part of the work was already
accomplished in the previous section.

6.1. Existence.

Lemma 6.1. For all (no,v0) € Hs+%(Rd) x H%(R), and any € > 0, the Cauchy
problem

O+ Ty -V + L) (g) — F(Len, ),

(T,a 1/’)’t:0 = (7707 ¢0)
has a unique mazimal solution (n.,:) € CY([0,T[; Hs+%(Rd) x H3(R%))

Proof. Write (B.5) in the compact form
(6.1) Y =F.(Y), Y=o ="Yo.
Since Je is a smoothing operator, (B.]) is an ODE with values in a Banach

space for any € > 0. Indeed, it is easily checked that the function F. is C*
from H er%(Rd) x HS(R?) to itself (the only non trivial terms come from the
Dirichlet-Neumann operator, whose regularity follows from Proposition P.11]).
The Cauchy Lipschitz theorem then implies the desired result. O
Lemma 6.2. There exists Ty > 0 such that T. > Ty for all € €]0,1] and such
that {(n, <) }eeroa) is bounded in CO([0, To); H**2 (R%) x H5(RH)).

Proof. The proof is standard. For ¢ €]0,1] and T < T, set
M(T) := |[(7e, ¢€)HL°°(0 TS < H%)

Notice that automatically (n.,.) € C([0,T:; Hs+%(Rd) x H%(R%)), so that
one can apply Proposition . to obtain that there exists a continuous function
C' such that, for all € €]0,1] and all T < T

(6.2) M.(T) < C(My) +TC(M(T)),

where we recall that My = H(no,wo)HHH%XHS. Let us set M; = 2C(Mp) and

choose 0 < Ty < 1 small enough such that C(My) + ToC (M) < M;. We claim
that
M. (T) < My, VT €1 :=][0,min{Tp, T}
Indeed, since M.(0) = My < M, assume that there exists 7' € I such that
M.(T) = M then
M = Ma(T) < C(M()) + TC(ME(T)) < C(MO) + T()C(Ml) < My,

hence the contradiction.
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The continuation principle for ordinary differential equations then implies
that T, > Tp for all ¢ €]0, 1], and we have

sup sup M. (T) < M;.
56}071} TG[O,TO}

This completes the proof. O

Lemma 6.3. Let s < s — % Then there exists 0 < 11 < Ty such that

{(778,1/15)}56}071} is a Cauchy sequence in CO([O,Tl];HS/JF%(Rd) X HS/(Rd)).
Proof. The proof is sketched in §p.3 below. O

Then, as explains in the introduction to this section, the existence of a
classical solution follows from standard arguments.

6.2. Uniqueness. To complete the proof of Theorem [[.], it remains to prove
the uniqueness.

1

Lemma 6.4. Let (n;,v;) € C°([0,T]); H 2 (R?) x H5(RY)), j = 1,2, be two
solutions of system ([L.2) with the same initial data, and such that the assumption
H; is satisfied for all t € [0,T]. Then (n1,v1) = (n2,12).

As we shall see, the proof of Lemma [.4 requires a lot of care.
Recall (see §b.1)) that (n,) solves ([[.2) if and only if

@+10-5+£) (1) = o)

with

N T [E e 1}

where .
fH=Gmy — {Th(v — Twn) — Ty - Vn},
1(Vn- VY +Gn)y)’
2 14|V
+TvVp =TTy - Vg — T G(n)Y + Thn — gn.
Introduce the notation
Vi, - Vi + G
(6.4) B = ——————2—,
1+ [Vn;]
and denote by A;, h; the symbols obtained by replacing n by 7; in (B.11)), (B.29)
respectively. Similarly, denote by £ the operator obtained by replacing (8, A, h)

by (B1,A1,h1) in (B.3). To prove the uniqueness, the main technical lemma is
the following.

2= 5 v+ +H()

Vi = Vi —B; Vi,

Lemma 6.5. The differences on :=n1 — ny and 0 = 1p1 — s satisfy a system
of the form

(at+TV1’V+£1) <§Z> :f7

for some remainder term such that

£l < C(My, M3)N,

3
Loo(0,T;Hs— 1 x HS™2)
where

M; = ||(n;,%;)]| N = [|(on, v
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Assume this technical lemma for a moment, and let us deduce the desired
result: (n1,%1) = (n2,12). To see this we use our previous analysis. Introducing

0U = d1p — Tog, 0m = 1 — 2 — T, (M — 12),

[ Tpon
5@._.<T%5U ,
we obtain that d® solves a system of the form
0 -7,
T, 0

and

8t5<I>+TV1-V5<I>+< >5<1>:F

with

1N oo g3 o) < OV, Mo)N.

Then it follows from the estimate (5.20)) applied with

3
6207 028_57 ﬁ:5777 w:&l/}a

that N satisfies and estimate of the form
N <TC(My, M3)N.

By chosing T small enough, this implies N = 0 which is the desired result.
Now clearly it suffices to prove the uniqueness for 7' small enough, so that this
completes the proof.

It remains to prove Lemma [6.5. To do this, we begin with the following
lemma.

Lemma 6.6. We have
Vi = Vall g < C[(0n,69)]
1B1 = Bal| . 5 < C|[(0n,60)]

Ho~1xH™ 3

Hs~1xH 3

sup (128 (037 (€)= 25" (- €0) [ 19¢ (47 () = 227 (. €))L < Clélze-r,

sup (108 (R (,€) = b () + 1108 (B () = BV () ls—s) < C |16n]| s

for all « € N and some constant C' depending only on My, My and o.

Proof. The last two estimates are obtained from the product rule in Sobolev
spaces (using similar arguments as in the end of the proof of Lemma [[.10). With
regards to the first two estimates, notice that, by definition of B, V; (see (£.4)),
to prove them the only non trivial point is to prove that

1G ()1 = Gne)dall o5 < Cll(dn,69)]|
Indeed, setting 1, = tm + (1 — t)n2 we have

3.
Hs—1xH"2

1
G(m)y1 — G(n2)p2 = G(m1)oyp +/0 dG(ny ) - 6ndt =: A+ B.

It follows from Proposition P.7q that
IA]l 5 < C(M) [|69]] .5 -

Now thanks to Proposition we can write

1
B=- / (G ) (B18n) + div(Vion)] dt,
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where B, = B(n;,¥2), V = V(ne,12). Using again Proposition .7 we obtain
(63 I1B],5.5 < COMy, Ma) 81l
which completes the proof. O
Corollary 6.7. We have
1Tvi—va - V2l gsr < C (00, 60 oy e
1Tvi—vs - Vol g < Cll(0n,6¢)]]
1T, ~xo 2l gor < Cl(87, 09|
1 Ths—namzll -3 < C N 6D oy om0
for some constant C' depending only on My and Ms.

Proof. According to Lemma B.11], we have

| Taulg < Nl g Il

Ho~1xH 3

Hs— 15 H 3

HHJr% *

so using the previous lemma we obtain the first two estimates. The last two
estimates comes from the bounds for A\; — Ay and hy — h2 and Proposition [£.4
(again it suffices to apply the usual operators norm estimate (B.4) for s > 3 +
d/2). O

Similarly, we obtain that, for any u € H*+3,
1T, —mull e < CllGR OB, 0
Therefore, to prove Lemma [.5, it remains only to estimate the difference

Fnu, 1) = f(n2,2),

where f(n,%) is defined in (f.d). To do this, the most delicate part is to obtain
an estimate for

gl ey

FHm,n) = (e, 02),

where recall the notation

(6.6) L) = G — {Tn(¢¥ — Twn) — Tv - Vi }.
We claim that

£ (s abn) = 1 (s )| R

To prove this claim, we shall prove an estimate for the partial derivative of
fY(n,4) with respect to n (since f!(n,%) is linear with respect to 1, the cor-
responding result for the partial derivative with respect to v is easy). Let
(n,v) e H sty (R?) x H3(R?) (again we forget the time dependence) and consider
n € H~Y(RY). Introduce the notation
i 1 i
dyfH(n, ) -1 = lim = (f(n+ 0, 0) = f(n,4))

Then, to complete the proof of the uniqueness, it remains only to prove the
following technical lemma.

o1 < C(My, M) [|[(n,69) ||

Lemma 6.8. Let s > 2+ d/2. Then, for all (n,v) € Hs+%(Rd) x H5(RY), and
for allp € HT2(R),
|‘d17f1(777¢) ’ 77‘ Hs—1 <C H";}HHS*1 ’

for some constant C which depends only on the H5+%(Rd) x HS(RY)-norm of
(m, ).
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Remark 6.9. The assumption nn € H S+%(R) ensures that d,f1(n,¢)n is well
defined. However, of course, a key point is that we estimate the latter term in
H*~! by means of only the H3~! norm of 7.

Proof. To prove this estimate we begin by computing d, ftn, ). Given a
coefficient ¢ = ¢(n,1) we use the notation

é = lim = (el + i, 4) — (0, v).

Using this notation for )\, ‘B, V, we have
(6.7)
dy 1 (1,4) -1y = =G (n)(Bry) — div(V7))
—{T5 (v — Tsn) — Th\Tign — Th\T1) — Ty, - Vp — Ty - Vi }
We split the right-hand side into four terms (three of which are easy to estimate,
whereas the last one requires some care): set

I =V-Vn—-Tv -V,

Iy = =G(n)(Bn) — (div V)i + TaTan.

To estimate I, we use that, for all function a € H%(R%) with sg > 1 + d/2, we
have
lau — Toul| g < K |[al] geo llull g
whenever u € H*(R?) for some 0 < p < sy — 1. By applying this estimate with
so = s — 1, we obtain
Iillgrees = IV = T0) - Vil s S IVl e 190l gecas < € 1l g
With regards to the second term, we use the arguments in the proof of Propo-

sition .4 (notice that here, our symbol A has not exactly the form (7)), but
rather

F(Vn,6)Vi + G(Vn, )V + K (Vn, ) Viv2y
and the proof of Proposition [.4 applies.) We obtain
2]l sy < Cllll o1 -
To estimate I3, notice that (B.4) implies that

HI?)HHS*l 5 M(%()‘) HTMHHHH <C HT'%UHHsflﬂ .
Next, using the general estimate
[Taull g < K lall g lttll e

we conclude ‘
Vsl s < CIBI| 5 ]y -
Therefore, the desired result for I3 will follow from the claim
IB],g < Clillges
To see this, the only non-trivial point is to bound dG(n)v -7, which was precisely
done above (cf (B.H)).
It remains to estimate 14, which is the most delicate part. Indeed, one cannot

estimate the terms separately, and we have to use a cancellation which comes
from the identity G(n)®B = —divV (see Lemma P.19).
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It follows from Proposition that
G(n)(B1) = T\ (B7) + F(n,Bn), Gn)B =T\0B + F(n,B),

where
1E B s < Cllntllgs—r s 1F (0, B)]| s < C.

Therefore

Iy = =G (n)(Bn) — (div V)i + ThTw)
= —T\(Bn) — F(n,Bn) —ndivV + T\Tpn
= —T\(Bn) — F(n,Bn) — T; divV — (n— Tﬁ) divV 4+ Th\Twn
and hence using divV = —G(n)B

Iy = =T\(Bn) — F(n,Bn) + T,G(n)B + () — T;) div V' + Th\Tpn)

and paralinearizing G (1) and gathering terms we conclude

Q:%ﬂ%m—FW%m+ﬂﬂn%+mm%0+m—nmwv+ﬂnm
then commuting T}; and T we conclude that
Iy =T+ Ja,
where
i = =Ty (Bi) — Ty — T
Ty = ~Tyo (B0) + [T, TAIB + Ty F (0, B) + () — T;) div V — F(5,%B1).

Now both terms J; and Jy are estimated using symbolic calculus (namely we
estimate the first term by means of (ii) in Theorem B.12; and we estimate J, by
means of (B.4), (B.§) and (ii) in Theorem B.13). O

6.3. Sketch of the proof of Lemma .3 Let 0 < £; < &2 and consider two

solutions (ne;,%:;) € CO([O,T];HSJF%(Rd) x H*(R%)) of (F). Introduce the

notation

. vnsj : v¢€j + G(nsj)¢€j

= " ,
1+ |V77€ j|

and denote by Aj, h; the symbols obtained by replacing 7 by 7, in (B11), (B-29)

respectively. Here, the main technical lemma is the following.

(68) %Ej V:sj = Vwaj - %jvnaja

Lemma 6.10. Let 0 < &1 < €9, consider s’ such that

Lod_,_ 03
2 "2 2’

and set

@=5—5— s
Then the differences dn := 1z, — Nz, and 0V 1= 1., — Ve, satisfy a system of the
form

(6.9) (@+I%.v¢faﬁw<%>=ﬁ

for some remainder term such that
1l iy < C {100, 86)| oy + (2 = 1)}

for some constant C' depending only on sup.¢)g 1 H(Uaﬂ/’a)HXs(T).
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To prove Lemma .10, we proceed as in the previous paragraph. The only
difference is that we use the fact that

||J€2 - J€1 ||Hu_>Hufa < 0(52 - 51)a-
Now, since for t = 0 we have dn = 0 = 01, it follows from Lemma and
(b-20) applied with
o=5, e=¢, H=0n P=20,
that IV satisfies and estimate of the form
N <TC{N + (g2 —€1)"}.

By chosing T and €2 small enough, this implies N = O((e2 —1)%), which proves
Lemma [.3.

7. THE KATO SMOOTHING EFFECT

We consider a given solution (n,1) of (.F) on the time interval [0, 7] with
0 < T < 400, such that the assumption H, is satisfied for all ¢ € [0, 7] and such
that

(n,4) € C°([0, T); H*"2(R) x H*(R)),

for some s > % In this section we prove Theorem [[.3. Namely, we shall prove
that

()27 (n, ) € L*(0,T; B 1 (R) x H*Hi(R)).
for any § > 0.
7.1. Reduction to an L? estimate. Let ®;, ®5 be as defined in Corollary @

Then the complex-valued unknown ® = &, 4 i®, satisfies a scalar equation of
the form

(7.1) ® + Ty 0, + iT,® = F,

with F = F} +iFy € L>(0,T; H*(R?)). Recall from Proposition and (B.23)
that, if d = 1 then

A =g, AD =0, r®=ce,
with
3
c=(1+0:n*)71.
Therefore, directly from the definition of v (cf Proposition [E.§), notice that if
d = 1 then ~ simplifies to

3 3 _1
v=clel? - 12 de,

3 3
and hence modulo an error term of order 0, T’ is given by |Dg|* T¢ |D,|4%.

In this paragraph we shall prove that one can deduce Theorem from the
following proposition.

Proposition 7.1. Assume that ¢ € C°([0,T]; L?>(R)) satisfies
O+ Tvoup + 150 = f,
with f € LY(0,T; L*(R)). Then, for all § > 0,

(2)"2 700 € L*(0,T; Hi (R)).
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We postpone the proof of Proposition [[] to the next paragraph.

The fact that one can deduce Theorem from the above proposition,
though elementary, contains the idea that one simplify hardly all the nonlin-
ear analysis by means of paradifferential calculus.

Proof of Theorem given Proposition [7_]. As in the proof of Proposition [.9
(cf §b.3), with
(7.2) B = s leff.

we find that the commutators [Tg,0;], [13,T] and [T, Ty 0,] are of order s.
Consequently, (f-]]) implies that

(O + Ty Oy +14T,) Tg® € L=(0,T; L*(R)),
and hence,

(0 + Ty 0y +iT,) Tp® € L'(0,T; L*(R)).
Therefore it follows from Proposition [7.] that

(z)"27T3® € L2(0,T; Hi(R)).
Since, by definition, ® = T},n+i1T,U where T,n and T,U are real valued functions,
this yields
()2 TsTyn € LX0,T; Hi(R)), (x)” 2 °T4T,U € L*(0,T; H1(R)),

and hence, since ¥ = U + Ty,
(7.3) ()72 °TyTyn € L0, TiHA(R)), (@) 72" TyTyh € L(0.T: Hi (R)),

Since <x>_%_6 € Fg(Rd) for any p > 0, Theorem B.7 implies that the commuta-
tors

(@) 20,15, ] [0 2 0. 1T,
are of order s — 1/2 and s — 1, respectively. Therefore, directly from ([.3) and
the assumption

n e CO0,T); H 2(R)), ¢ € C°([0,T]; H*(R)),
we obtain
TyT,(x) 2 °n e L*(0,T; Hi(R)), TsT,(x) > %¢ e L*(0,T; Hi(R)).

Now since 3, p, q are elliptic symbols of order s, 1/2, 0, respectively, we conclude
(cf Remark B.9 or Proposition [£.6)

()72 e (0, Ts HVA(R)),  (2) 727" € L2(0, T H V3 (R)).
This proves Theorem [[.3. O
7.2. Proof of Proposition [f.1. To complete the proof of Theorem [.3, it re-

mains to prove Proposition .1l To do so, following the Doi approach, we begin
with the following lemma.

Lemma 7.2. There exists a symbol

a=a(zx,§) eT% (R) := m fg(R),
p=0

such that, for any § > 0 one can find K > 0 such that
3 TV SRS
{elel? a} 2,6 = K@) l¢)?,

forallt € [0,T], z€ R, { € R\ {0}.
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Proof. Consider an increasing function ¢ € C*°(R) such that 0 < ¢ <1 and
Pp(y) =1fory >2, ¢(y)=0fory<1.

Now with € > 0 a small constant chosen later on we set

(7.4) { 0+) =6 (2), 6-0) =6 (-2) =6+ (-v)

do(y) =1 —(¢+(y) + o-(v)) -
These are C*°-functions and we see easily that,
o+ ¢ + 6L =0,
¢+(y) — o-(y) =sgn(y)o+(lyl) (y € R),
¢\ (y) —o(y) =\ (ly) (yeR),
¢o(y) = —sen(y)¢,(ly)) (y € R).

(7.5)

Now we set

(7.6) ap(z,§) =z
and we introduce

(7.7 (8 =00 (35). valn=os (35).

Let us note that on the support of ¢, (resp. ¥_) we have ay > e(z) (resp.
ap < —e(x)) and that |a| is a small function on R x R\ 0. Finally we set

(7.8)  a(z,&) = gz, &) + 26 + F(lao))] (4 (z,€) — ¥ (z,€)),

(x)
where *
f(a):/o (y)t+o

5
3
I:={c[¢]?,a} = Z[j,
=1

%, v ER,EAD,

We compute

where

{c\f\%,ao}

leTwo, fzzao{ I3k W}T/Jo, 112%{015\%7%},
1= {elel? . £ (laoD) | (04 (2,6) = v-(2,))

I5 = (22 + f(laoD)] ({elel?  vs } = {elel? - }).

Using the obvious identity 0¢(&/ [£|) = 0 for £ 75 0, we have

(elelt o) = {elelt ot} = Jertll? & = Selelt

Therefore
1
3 €2
. I =— .
(7.9) 1= 5¢ ) Yo
Now

{c|£|%,<71>}=85(c|5|3)aw<%>: - ,5, Bk (gi
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so that

I = 3E Do
= P
On the support of ¢y we have, by ([.7) and ([.4), |ao| < e(x). It follows that

1
3ecl|?
5 (0

s ap ao ,, ( laol
cl¢| ,E}Sgnwﬁh <@>7
which 1mphes

&
(7.11) I = —ladl {c\g\%,ﬂ}¢’+ <@>
Using (777) and (T4) we see that
I = £ (Jaol) {cl€]? a0 } s + f' (~a0) {cl¢]? a0} v,
so by ([.9) and (.6),
(7.12) I =

(7.10) || <

1 3 1
W§C|f|2 (g +o).

Is = [2a+f(!ao!)]{016\37<%} <¢+ << >> & << >>>

which, using ([.5), implies

Finally,

_ " |aol
(r13) by = o+ fao)] {eleft 25 b o, (1),
Using ([[.9) and ([[.1() we see that if € is small enough,
I+ 1> C<|é>.|1+51)[)0

Therefore by ([.12) we have

II+I2+I4>C<‘>‘1+5(¢0+¢++¢—) <>1+5

Now by (FT1) and (F-T3) we have,
110 fa = [ 4 fGal) - | {elelf L (25)).

The function ¢ being increasing one has ¢/, > 0. On the support of ¢/, <“°>)
we have ¢ < |ag| /(z) < 2/e so 2e — |ag| /{x) > 0. By definition, f’ > 0. Finally,
by (.9) and ([7.1() we have {c\f\% ,ao/(x>} > 0. This ensures that

(7.15) Iy + 15 > 0.

We conclude, using ([7.14) and ([(.15) that

{c ’5‘% ’a} <|§|1+57

which proves the proposition since ¢ > K1 (1 + HnHLw(QT;H&l))_Z > 0. O
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We are now in position to prove Proposition [/.1].

Proof of Proposition [7.1. We begin by remarking that we can assume without
loss of generality that ¢ € C1(I; L*(R)) (A word of caution: to do so, instead of
using the usual Friedrichs mollifiers, we need to use the operators J. introduced
in §6.9). This allows us to write

d
pn (Tap, ) = (To,ap, 0) + (TuOrp, v) + (Tup, Orp)

= (To,ap: ¥)
—(TuTv0rp + T,iTyp — Tof, )
— (Tap, +Tv 0z +iTyp — f)
where (-,-) denotes the L? scalar product. Introduce the commutator
C:=[iT,,T,].
Since d.a = 0, the previous identity yields
9 (Tap,) = (O, 0) + (0T — T Tagp, )
(7.16) + (0 (TvTap) — TuTvOrp, )
+ (Taf, @) + (Tap, f)
Since a € fg, it follows from the usual estimates for paradifferential operators
that

2
|(Tap, )| S llellzz2 s
and

(Lo, 1) + [Taf. 0)| < K llel 72 + K117z
for some positive constant K. One easily obtains similar bounds for the second
and third terms in the right hand-side of ([/.16). Indeed, by definition of v we
know that 77 — T, is of order 0. On the other hand, as alredy seen, it follows
from Theorems B.7 that 8,.(TyT,-) — T, Ty O, is of order 0. Therefore, integrating
([F-16) in time, we end up with

T T
/'w%@ﬁSM{wwﬁﬁwwm@+/‘@m;+wﬁgﬁ}
0 0

where M depends only on the L>(0, T} HS+%(R) x H(R))-norm of (n,1)).

Hence to complete the proof it remains only to obtain a lower bound for the
left hand-side. To do so, write

4

and recall that, by definition of a (see Lemma [l.9) there exists a constant K
such that

. ) 3 3 1
iT, = iT. |Dg|2 + —T%axc |D.|2,

{ett.2)lel7 sa(@, &)} = K@) 772 g2,

for some positive constant K > 0. Since
1
|:Ta,T§8 . ]DIP} is of order 0,
[er=e
Proposition [7.d below then implies that

Co0) 2 a5 | - Alelds,
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for some positive constants a, A. This completes the proof of Proposition [.]]
and hence of Theorem [[.3 O

Proposition 7.3. Letd > 1 and § > 0. Assume that d € F%g(Rd) is such that,
for some positive constant K, we have
d(x, ) 2 K@) [¢]2,
for all (z,€) € R x R\ {0}. Then there exist two positive constants 0 < a < A
such that
1 12 2
(Tau,u) = | (@) 75 %|| ) = Alul2

Remark 7.4. This proposition has been used for d = 1. However, it might be
useful for d > 1.

Proof. Again, the difficulty comes from our low regularity assumption. Indeed,

with more regularity (say d € I‘,l)/ 2 (R%) with p > 2) this follows from the sharp
Garding inequality proved in
Consider a partition of unity as a sum of squares, such that

1=03(x) + i 02(277x) = i 9]2-(:5),
j=1 J=0

where 0y € C§°(R) and § € C*°(R) is supported in the annulus {x € R : 1 <

|z| < 3}.
Then -
I = (Tyu,u) = Z <6j2-Tdu,u> .
j=0

The following result is an illustration of the pseudo-local property of paradiffer-
ential operators (see [, p435] for similar results in this direction).

Lemma 7.5. Let 0 € C3°(]1/2,4]) equal to 1 on the support of 8, and set gj(x) =
0277 |z|) for j > 1. Also introduce 0y € C°(R) equal to 1 on the support of 0.
Then for all p € R, all j € N, and all N € N, the operator R; = 0;T4(1 — 0;)

is continuous from HH to H*N with norm bounded by Cn2~IN.

Proof. Writing (see (B.9))

0;Ta(1 = 0;)u(x)

- (2717)2 / @YY, (2)(1 — 0;(y))d(€ — n,n)(n)x (€ — n,n)uly)dydnde,

we have

0;Ta(1 — 0;)u(x)

~

B ﬁ / eI, () (1 — 0 (y))d(C )W ()X (¢, m)uly)dydnd.

We then obtain the desired result from a non-stationary phase argument. Indeed,
using that on the support of this integral we have |z —y| > ¢2/, we can integrate
by parts using the operator
I = (z —y) '2677‘
|z -yl
Since x((,n) is homogeneous of degree 0 in ({,n), we obtain that N such inte-
gration by parts gain N powers of 277 and of |n|~!. O
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Now, write
0;Tqu
= 0, Tybju+ 0;T4(1 — 6;)u
= T40;0, + 10, Tal0; + 0;T4(1 — 0;)u
=TTy 0; + Ta(0; — T3 )6; + [0, Tul0; + 0;Ta(L — 6)u
=Tj 0; + (TuTy —Tj )6; + Ty(0; — T;)6; + 16, Ta10; + 0;T4(1 — 6;)u.

The last term in the right hand side is estimated by means of Lemma [7.§. With
regards to the second term in the right-hand side, we use (B.§) to obtain

< 0 (@NM2(q) <
212 "~ ]Sglg ]\41/2(93)]\41/2 (d) S 1.

sup HT~_Td -1
e 1170 0,d
The third term is estimated by means of the following inequality (see [[7])

165 =75, .. S 16 lyrey S 1.

L
Therefore, we conclude that
(6T, w) = (T 0. 05) + (U, 65)

for some sequence (U;) such that

[e.e] [e.e]

2 N —7 2
S U312 S 3 (1650l 1650l 2 + 27l 2 1650l ) Sl
j=0 j=0

We want to prove

oo

_15 |12 2
S (15 050050 2 a5 0u]|y — Aul3a
=0
To do this, it suffices to prove
—4 k) 2 2
(T3, 05 05u) = @270 gu)? 4 — AU |7,
for some U}’ such that
- 2
D_TF Iz < Alhullz
=0
Since (@d)% € Fig(Rd), by applying Theorem B.7 (with m = m’ = 1/2 and
p =1/2), we have

<T§jd6ju, 6’ju> = ‘

where R; is uniformly bounded from L? to L?. Now by assumption on d, we
have

2
+ (R]Hju, 0]u> s
L2

Taarb

(B w)itr. ) > Ky )2 7G40 gl

where we used 0 < gj < 1. Therefore the symbol e; defined by

1
~ 2 (L ~ 1
e (2.€) 1= (Gi(w)d(,€))* + K2IGH) (1 —(2)) el
satisfies the elliptic boundedness inequality

j(w,€) > K210 g
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As a result
(L
279G 0yl g < K |T, 050 + K 11050l 2

The desired result then follows from the fact that (1 — @-)9]- = 0 which implies
that

T 10,—T,0,=27G)T

. — /.~.
(6,07 % = 1505

(18 () lglF 77
for some operator R;- uniformly bounded from L? to L.
This completes the proof of Proposition [7.3. O

APPENDIX A. THE CASE OF TIME DEPENDENT BOTTOMS

The purpose of this section is to show that our analysis is still valid in the
case of a time-dependent bottom. The only difference is indeed the definition of
the Dirichlet-Neumann operator. In this case, we make the additional Lipschitz
regularity assumption on the domain

H3) We assume that the domain Q9 depends now on the time variable and
its boundary is locally the graph of a function which is continuous in
time with values in Lipschitz functions of z, and moreover C'! in time
with values in L. Namely, for any point (xg,yo,t) € Ty = 0 \ Xy,
there exists an orthonormal coordinate system (z/,x441) and a function
b:[0,T] x R% + b(t,2') which is C! in time with values L>° and C° in
time with values Lipshitz function with respect to the 2’ variable such
that near (zg,yo), {2 coincides with the set

{(@',2g41,t) + Ty, > b(t,2)}.

In this setting, the natural boundary condition at the bottom is to ask the normal
velocity of the fluid to be equal to the displacement velocity of the bottom. As
a consequence, the water-wave problem reads

A¢+a§¢zo in Qt,
O =y — Vn-Vo on X,
1 1
(A1) Ohd = —gn+rHm) =51V’ = 5 19,6° on 3,
2 2
Opp(m) = Cfi_T -n(m) for m € I'y,

where here % is the time derivative of the point m on the boundary I';. Notice
that clearly, this quantity is dependent on the choice of coordinates defining the
domain, but dd—? -n(m) is not. In the coordinate system above, the point on the
boundary is m(z’,t) = (2/,b(t,2")),
Vb, 1 dm
n(m) — u _ = (m’,@tb),

V |Vx’b|2+1’ dt

and the boundary condition reads
(Vb V) (t, 2’ b(t,2")) + &cdﬂqb(t,x', b(t, ")) = Osb.

Consequently, to define the Dirichlet-Neumann operator, the crucial step is to
solve the system
foler dm

= — -n(m) = k(t,m).

(A2) Aw,y¢ =01in Qta ¢ |Et: ¢7 % |1"t dt
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The Poincaré inequality obtained in Section P.]] can be precised. We shall show
that one can so chose the weight g = g(m) in Corollary corog so that g does not
blow up as long as the point m remains in a bounded set.

Recall (cf Notation R.1) that 2, is the space of functions u € C°°(Q) such
that V. ,u € L*(2), and u equals to 0 near the top boundary .

Lemma A.1. For any point mg € I' there exists m1 € Q, C > 0 and dg > 0
such that for any 0 < 6 < &g, and any u € Yy,

/ lu|? dzdy < C’/ |u|? dxdy + C/ |Vu|? dzdy.
B(mg,5)NQ B(m1,6)NQ Q

Indeed, using assumption H2) and performing a Lipschitz change of variables
near myg, we are reduced to the case where the domain is

Q= {(zp,2");2, >0}

and the point mo = (0,0). Choosing m; = (¢,0), Lemma P.4 follows now from
the same proof as for Lemma P.4.

We now deduce easily using Lemma P.3,

Lemma A.2. Assume that the domain Q satisfies the assumptions above. For
any mo = (zg,10) € Q there exists a neighboorhood w of mqy in R4 and C >0
such that for any function u € 9y, we have

/ lul? dzdy < C/ V2 yul? drdy.
w2 Q

o)

Corollary A.3. There exists a weight g € Lloc(ﬁ), positive everywhere, equal to
1 near the top boundary X of 2, and such that for any function u € %Yy equal to
0 near X, we have

[ st w)lup dody < C [ V0 dsdy
Q Q

As a consequence of this result and usual trace theorems,
Corollary A.4. There exists a weight g in Llog’c(ﬁ) equal to 1 such that the map
u € Py v ulr € LA, gdo)
extends uniquely to a continuous map
u e HYO(Q) — ulr € L*(T, gdo).
We are now in position to define the Dirichlet-Neumann operator. Let ¢(z) €
HY(R?). For xy € C§°(—1,1) equal to 1 near 0, we first define

9= (L) via) € iR

Then let 5 be the unique variational solution of the system
_Ax,yg = A:c,y{pvy 5‘2 = 07 8n$‘f‘ =k
which is the unique function ¢ € H}(Q) of

(A.3) Yo e HYO0(Q), /Q Vayd - Vg = /Q VAL — / kv|pdo.
r

Here notice that the first term in the right hand side of ([A.J) is, as in the
time independent case, a bounded linear form on H'°(Q). Now, we make the
additional assumption (which is always satisfied if the domain is time dependent
only on a bounded zone).
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Hj3) Assume that the time dependence of the domain (i.e. the function k)
decays sufficiently fast near infinity, so that

D nm)g(m)' " = km, 1)g(m)* € L2(0,7: L2(D)).

Then, according to Corollary [A.4 the second term of the r.h.s. of (A.J) is a
bounded linear form on H°(Q) (uniformly with respect to time), and conse-
quently ([A3) has a unique variational solution.

We now define ¢ = 5 + {bv and

G(n, k)(z) =1+ ’VT/P 8n¢‘y=n(w)a
= (0y9)(z,n(x)) — Vn(z) - (Vo) (z,n(z)).
Notice that as in the previous section, a simple calculation shows that this defi-

nition is independent on the choice of the lifting function {bv as long as it remains
bounded in H' and localized in the strip —h < y < 0.

Now, the proof of Theorem [[.4 is exactly the same as the proof of Theo-
rems [L.1] and [L.J, using this new definition of the Dirichlet-Neumann operator.
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