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Abstract

We extend de Groote’s approach to natural language or Montague seman-
tics with labels and combine it with Parsons event semantics. We argue
that within this framework continuations allow one to deal with adverbs.

1 Introduction

The use of A-calculus in Montague semantics does not only allow one to parse
natural language sentences but also to provide a formal semantics for them as
statements in predicate logic. It has been argued by de Groote in [dG01] and by
Barker in [Bar02] that the type raising mechanism introduced by Montague in
[Mon73] is closely related to continuations, a technical device used in the study
of programming language that also provides means to give a computational in-
terpretation of proofs in classical logic. The cornerstone in Montague’s proposal
consists in the observation that noun phrases and proper nouns can be treated
in the same fashion if their corresponding types are raised by a sort of double-
negation translation; with respect to the encoding of lexical entries as A-terms
this means that they have to carry around a parameter, a so-called continuation,
that takes into account the environment of the actual computation. Montague
showed that with the help of type raising one can give a uniform treatment of
quantification in English. For instance, a singular indefinite article occurring in
a noun phrase deep inside a sentence gets interpreted as an existential quantifier
that may have scope over larger parts of the sentence than just the noun phrase,
thus accommodating the fact that the surface structure of a sentence may differ
from the structure of the proposition it expresses.

Since the pioneering work of de Groote and Barker it has been argued that
continuations play a major role in natural language semantics and that they
provide a uniform treatment for various linguistic phenomena (see for instance
the list of problems tackled in [Bar02, Bar04, Sha04, dG06, BMO07]). In this
note we consider a new item on the list of phenomena that can benefit from a
continuation-based approach to natural language and show how one can deal
with action sentences containing certain adverbial modifiers. The problem we
consider is basically as follows. In general, if a sentence contains a negated verb
then the negation should apply to the whole sentence. However, when both a
negation and an adverb occur in the sentence then one would like to get also a
semantic reading where the negation applies only to the adverb. We introduce
a type-theoretic framework that is based on de Groote’s Au-calculus approach



advocated in [dGO01] and that accounts for such a behavior. Using Au-calculus
instead of pure A-calculus has the advantage that type raising can be kept at
a minimum level and that, as a consequence thereof, one can work with less
complex terms (compare for instance the encoding of lexical entries in [dGO1]
with the one given in [Bar02]).

It is worth mentioning that de Groote exploits the fact that the Au-calculus with
both p and g’ reductions is not confluent: surface and inverse scope readings
of a sentence containing an existential and a universal quantifier are obtained
by varying the order of application of the u and p’ reductions. We modify
de Groote’s framework in such a way that this feature can be avoided. The basic
idea is to use a call-by-value variant of the Ap-calculus (see for instance chapter
6 of [Py98]): introducing values provides means to eliminate the critical (u, u’)
pair and thus to get a confluent calculus. To account for the different readings
we introduce labels that allow one to push certain A-applications inside a Au-
term and thus to get the §-redex needed for the computation of the semantic
reading of a sentence. Hence, instead of varying the order of application of the
u and g’ reductions we vary the order of the A-applications when assembling
the various parts of the sentence under consideration. Note that it is essential
for our approach to work with sets of parse trees.

To be able to deal properly with action sentences we need to be more specific
about their logical form. Based on a remark by Ramsey, Davidson proposes to
regard action sentences as propositions that quantify over some underlying event
(see essay 6 in [Dav01]). Parsons takes the idea further in [Par90] and develops
a coherent framework that shows how one can explain various linguistic data in
terms of it.! Roughly speaking, the main idea of the framework is that an action
sentence such as Brutus stabbed Caesar may be analyzed as follows: for some
event e we have (a) that e is a stabbing, (b) that Brutus is the agent of e, and
(c) that Caesar is the object or theme of e. Hence, instead of encoding a verb
expressing an action as a predicate one encodes it as an existential quantification
over an event. The advantage of the approach is that one can easily account for
inferences such as if Brutus stabbed Caesar violently then Brutus stabbed Caesar
that cause troubles to other approaches.

We show in detail how one can get the intended semantic readings of the French
sentences Nicolas mange vite une pomme, Nicolas ne mange pas une pomme,
and Nicolas ne mange pas vite une pomme within our framework. The first
example sentence serves the purpose to illustrate the abovementioned treatment
of action sentences. The second and the third one serve the purpose to illustrate
the behavior with respect to negation: in the former case we get that there does
not exist an event which is the eating of an apple by Nicolas; in the latter that
there exists an event which is the eating of an apple by Nicolas, but that the
event under consideration is not a fast one. This semantic reading of the third
example sentence accounts for the fact that we may infer from the sentence that
Nicolas eats the apple slowly. Note that we can also get a semantic reading of
it that is analogous to the one for the second example sentence. The labels may
even be refined in such a way as to provide means to impose restrictions that
make it possible to rule out certain semantic readings.

I1We would like to thank Graham White for making us aware of Parsons’ work.



The paper is divided in two parts. In section 2 we introduce the logical frame-
work. In section 3 we deal with linguistic applications: subsection 3.1 is about
quantification and subsection 3.2 about adverbs and negation.

2 Logical framework

We provide a concise overview of our type-theoretical framework, an extension
of the Au-calculus endowed with labels and a generalized form of u-abstraction.

Definition 2.1 The set £ of labels is defined as {e,n,s,0,v,a,k,x} and the
set P of positions as {¢,x,1,r}. Throughout the paper we shall use the variables
k or [ to denote labels and ¢ or p to denote positions.

Remark 2.2 Labels are used to encode certain informations in types and thus
in terms. Indeed, n, v, and a stand for noun phrase, verb, and adverb. Further,
s and o are refinements of n that allow one to distinguish between a noun phrase
occurring in subject position and one occurring in object position. Note that k
and * are of a different sort: k is used to deal with continuations and * to deal
with negations. The marker x stands for an unspecified position, whereas 1 and
r stand for left and right. Positions allow one to keep track of directionality
issues and, as a consequence thereof, we can replace Lambek’s / and \ by the
labeled arrows —% and —7}, where k is an element of £. We prefer to work
with labeled arrows because this keeps the logical meaning of types obvious for
the nonspecialist. Further, we use the convention that if € occurs as a label or
position in a type or term then we omit writing it.

Definition 2.3 Types are defined by the grammar
An=at | X(Z)|A -] A B:=VX.A (geP,kel)
where at ranges over the set {¢,0,v,¢} of atomic types.

Remark 2.4 The type ¢ stands for individuals and the type o for truth values.
Since we are interested in linguistic applications the type L of observable entities
is defined as L =gef 0. The informal interpretation of the atomic types v and ¢
is as follows. v is a special type that allows one to quantify over event variables.
¢ allows one to deal with the fact that in French negations are formed by the
two natural language particles ne and pas, i.e. < is the type of a partial sentence
that is lacking one of the two words forming a negation.

Remark 2.5 In order to save space we introduce the following shorthand no-
tation: kK =q4of v — 0. It is also worth mentioning that both the atomic types
¢ and v may depend on parameters that provide means to express morpho-
syntactic and sentence-level features. Indeed, we shall say a bit more about this
crucial issue towards the end of section 3.2.

Remark 2.6 We use ML-like polymorphism to be able to reuse terms to in-
terpret words in more contexts. Note that the typing of schema (polymorphic
terms) is denoted by the sign F, instead of F.



Tao:AFx: A Fy, c:VX.A

o AFM:A r-M:A—-]A THN:A
T\ M: A A TH(MIN):A
DAY+ M:A Do AT E M: Ay -8 A, =i L
o At F[o]M: L CF pey kM Ay =7 A, =10 A
O+ M: A Fo, M:VX.A
Fo, AX.M:VX.A F (M A): A[Xi(Z) = Ai(p)]

Figure 1: Typing rules

Definition 2.7 Given ¢,p € P and k,l € L, we quotient the set of types by
the smallest congruence (or contextual equivalence) relation ~ such that if k # [
then A1 —>Z (A2 —>f Ag) ~ Ag —>;lD (A1 —>Z Ag)

Remark 2.8 Taking equivalence classes of types is particularly useful since,
as a consequence, both ¢t —1 + —Z o and + —% + —% o belong to the same
equivalence class, the one standing for transitive verbs. Hence, whether one
applies first the subject and then the object or vice versa does not matter at the
level of types. This is useful, for instance, to deal with subordinates and treat
both “who” and “which” uniformly. However, the order matters with respect
to normalization and thus we can obtain various semantic readings in the case
of ambiguous sentences: the rough idea is that a sentence is represented by a
set of parse trees and that the evaluation of these parse trees may then lead to
different interpretations. This issue will also be discussed in section 3.1.

Definition 2.9 Terms M and values V (a subset of M) are defined by the
following grammars:

M = z|c| Mo M| (M9 M)|pya.M|[o]M|AX.M|(MA)
Vi=zlc|MaM|[o)M|AX.M  (qeP,keLliwe L)

Remark 2.10 The typing rules for terms are provided in figure 1 and the
call-by-value (CBV) reductions we are interested in are listed in table 1. Let
us point out that, as a consequence of the generalized form of p-abstraction
we have that, although in our examples we consider transitive verbs only, the
framework applies without further modifications to intransitive verbs as well.
Since A- and p-abstractions depend on labels k € £ and words w € £* we need
to consider the commutations ¢; and co of terms. In the case of the u’ reduction
we have that none of the variables x; occurring in & also occurs freely in N; the
auxiliary term \,Z.N can simply be regarded as a lifting of the term N that



e Ma(MPV) kA1

((pwor. M) —py HwB-Ml[e] M= [B)(M'{ V)] k¢ w
(EN)E @) —p i Ml M= BN LMY | 7 ¢ N,k & w
paM  —. M[lo]M' := M if pa.M: L

Table 1: CBV reductions

A | Mz Xy.(ai z y) of type 7(M) =1 =L 1 —f o

o

-

Az pe 3y [(x y) Aaly] of type 7(U) = (1 — o) =5 ¢

C | Mz.paNy.[(z y) — [a]y] of type 7(C) = (¢t — 0) =L ¢

Table 2: Encoding as terms I

provides means to match the typing constraints imposed by the generalized form
of p-abstraction. An instance of a y’ reduction with nonempty w can be found
in figure 6 of example 3.7 below.

Remark 2.11 We shall make extended use of macro definitions for some of the
logical connectives. 3z.M(x) =g4¢r (3 Az.M(z)) where the constant 3 is of type
VX.(X — 0) — o and 3 is shorthand? for either (3.) or (3v), depending on
whether one quantifies over individuals or events; universal quantification can be
defined analogously. Mi A My =gep (A My My), My — My =g4¢p (— My M)
and ~M =g (= M) where A and — are constants of type o — 0 — o and —
is a constant of type o — o.

3 Linguistic applications

3.1 Quantifiers and scope

We show how labels can be exploited to obtain the various semantic readings
of an ambiguous sentence and compare our framework briefly with the one
de Groote proposes in [dGO1].

Example 3.1 Consider the sentence Chaque homme aime une femme to which
we associate the set of parse trees consisting of:

[[[ Chaque homme | aime ][ une femme || (1)

2This is needed because our calculus is in Church style, i.e. with type annotation in terms,
which is necessary in call-by-value: otherwise the p’ reduction would be unsound.



(Ag(Caho)3 (Uzfe))

—p, (A3 (Ciho)§ (no.Tz [(fe x) Afa]a]))
— po3z.[(fe ) Afa](A; (Ciho)§ )]
—p,  padr((fe x) Ao](A7 (1B.Vy.[(ho y) — [Bly]) 5 =)]

J(4

[€!
', [a](uB.Vy.[(ho y) — [B](AZ ys2)])]
[a](uB.Vy.[(ho y) — [B](ai = y)])]

[(ho y) — (ai z y)]]

[
[
T = |
— 2 po3z.[(fe )
—e2 Jx.[(fe x) AV

Figure 2: Reduction — quantification

[[ Chaque homme ][ aime [ une femme ]]] (2)

In (1) the subject is applied first to the transitive verb whereas in (2) the object
is applied first. If we encode aime, une, and chaque by the terms A, U, and C
provided in table 2 and, further, use the constants fe, ho of type ¢ — o then
the term (A} (CIho)Z (U fe)) of type o corresponds to the parse tree given in
(1). As shown in figure 2 it reduces to

Jz.[(fe x) AVy.[(ho y) — (ai z y)]]

The term obtained by the reduction yields the so-called inverse scope reading
of the sentence. The surface scope reading

Vy.[(ho y) — Jx.[(fe z) A (ai z y)]]

is obtained by applying the same procedure to the term (AZ (UZ fe)l (CIho))
of type o which corresponds to the parse tree given in (2). Note that this works
because 7(A) =1 =11t = o~ =T L —lo.

Remark 3.2 In contrast to de Groote’s approach in [dGO01], it is essential for
us to work with a set of parse trees. In this setup the congruence relation on
types provides means to account for both semantic readings of the example sen-
tence. It is worth mentioning that we have neither used one of the commutations
c1, ¢ nor exploited the fact of having a generalized form of p-abstraction.

Remark 3.3 We have tried to keep things as simple as possible and thus
have not discussed how one can deal with sentences that are not about actions:
Parsons holds the view that these can be treated in a way similar to action
sentence and proposes to encode verbs expressing states of affairs by quantifying
over state variables.

3.2 Adverbs and negation

We consider now the three example sentences mentioned in the introduction.
The treatment of quantification over events is inspired by de Groote’s account
of context representation provided in [dGO6].



U | Nz.pa3y.[(z y) Alaly]

of type 7(U) = (¢t — 0) =X ¢

M | ANz Xy e Te [ M(z,y,e) A (c e)]

of type 7(M) =1 -1k —%o

V| AX () Nz X pspo- (2§ (Mefa](vi e) A (c e)))
of type 7(V) =VX(1).(t =% X(1)) =% - X()
N | AX(). Nz (z )

of type 7(N) =VX(I).(c =% v —; X(I)) =7 v =5 X(I)
P | AX(D) A2y po—[a)x
of type 7(P) = VX (I).( —3 X(I)) =3 ¢ =¥t —3 X(I)
P AX (D) Xz Agy- ALz e (N (D) ((yy2)ie)
of type 7(P*) = VX (1).(c =3 X(1)) =3 (7(V)\V) =7 ¢ =1 —5 X(I)

Table 3: Encoding as terms II

Notation 3.4 For the encoding we need the following mapping from lexical
entries to closed Au-terms:

une — U mange — M vite — V' ner— N pas — P, P*

The formal definitions of the terms U, M, V, N, P, and P* are summarized
in table 3 where we make use of the following macro definitions and typing of
constants:

AT ifl=c¢

M(z,y,e) =g mae)A(agex)A(they) N() =ge {)\( Fm ifl=o

T(ag) =7(th)=v—1—0 7(ma) =7(vi) =v — o0 T(x)=¢

The macro N (1) lifts the type of the constant — introduced in remark 2.11;
as mentioned in remark 2.10 it serves the purpose to match certain typing
constraints and, further, takes into account both intransitive and transitive
verbs. Note that for pas we have two different encodings: in 7(P*) we have that
7(V)\V stands for 7(V) without the second-order quantifier. Further, every
term is well-typed: see for instance figure 3. We also have a collection of words
encoded as constants: Nicolas — ni with 7(ni) = ¢ and pomme — po with
7(po) =t — o.

Example 3.5 Consider the sentence Nicolas mange vite une pomme to which
we associate the parse tree [[ Nicolas [ mange vite |][ une pomme ]]. Since the
term V' associated with wite is prefixed by a second-order quantifier we cannot
form the application (V1 M) directly. But, if V' is shorthand for the term

(V A(0)): (bt =31 =5 k= 0) =yt =gt =g k=0 (A() =t —] K —{0)



I'ae—L X(1) (
Izik—Ee— X'(1) '+ )\e.[a](v1 e)A
zie—1 X(

ek, ocot b (xzE Nefa](vi e)

(ce):
(Lt X()
(

1) (2
ziv—1 X(1), ek b pepa.(zidefa](vi e
zie—g X(1) F Nepspo (@ dela](vi e

[
0+ Nz Nepsna.(zE e o](vi e) A (c e)): (
Fop AX(D). Xz e penya.(@k Xe. [ (vi €) A (

Figure 3: Typing of V

then the term S = ((V1M)1niZ (UZpo)) is of type k —¥ o and, furthermore,
matches the above parse tree. As shown in figure 4 the term S reduces to

pa. 3z [(po z) A [a](Mec.pf.Fe [M(ni, z,e) A[B](vi e) A (¢ €)])]

and, if we first apply the continuation Ax.T to it and then erase the p’s with
the e-reduction, we obtain the following semantic reading or interpretation of
the sentence: Jz.[(po z) A Je.[M(ni,z,e) A (vi e) A T].

Example 3.6 Consider the sentence Nicolas ne mange pas une pomme to
which we associate the parse tree [[ Nicolas [ ne [ mange pas |]|[ une pomme ]].
As above we have that the term ((NX(PLM))1niT (UZpo)) of type k —% o
matches the parse tree and reduces as shown in ﬁgure 5. Again, by first apply-
ing the continuation Ax.T to the result of the reduction given in figure 5 and
then erasing the p’s from it, we obtain the following semantic reading of the
sentence: Jx.[(po z) A —=Te.[M(ni,x,e) A T]].

Example 3.7 Consider the sentence Nicolas ne mange pas vite une pomme
and its parse tree [[ Nicolas [ ne [[ mange pas ] vite ]]][ une pomme ]]. As above
we have that the term (N (P*2MZXV))1niZ (UZpo)) of type k —% 0 matches
the parse tree and reduces as shown in ﬁgure 6. Again, by first applying the
continuation Az.T to the result of the reduction given in figure 6 and then
erasing the p’s from it, we obtain the following semantic reading of the sentence:
Jz.[(po z) A Je.[M(ni,z,e) A —=(vi e) AT

Remark 3.8 We leave it to the reader to verify that the sentence from example
3.7 may be parsed as [[ Nicolas [[[ ne [ mange pas ]]] vite ]][ une pomme ]], thus
giving rise to the term (V2 (NZ(P1M)))iniZ(UZpo)) of type x —% o and
hence yielding the semantic reading 3z.[(po z) A —~Je.[M(ni,z,e) A (vi e) AT]].

Remark 3.9 Let us point out that the framework can be refined in such a
way as to avoid certain semantic readings. For instance, if we would like to get



(V3 M)Inif (Uspo) ))
B ((V%M) ig(pa3e. [(po ) A [alz]))
[@)((V3 M) inifa)]
[ (xcuﬂﬂe[ (ni, z, e) A[B](vi e) A (e e)])]

where the last reduction expands as follows:

A
* A\

—w  podz.(po z)
=" podz.(po z)

al

((V1 M)lniZz)
=, ((Aep(so)B-(M 5 (Ae.[B](vi €) A (c €)))) snifx)

g, ((Nic-tio)B-Asy- Aoz Te. [M(y, z,e) A (Ne.[B](vi ) A (c €)) e)])sniga)
s (N0 BAY A5z Te. [M(y, z,e) A[B](vi e) A(c e)]) gnifx)
=22 Mepf((Asy-Asz-Te My, z,e) A[B](vi e) A(c e)])gnigz)
—pgz  AgepB.3e [ M(ni,z,e) A[B](vi e) A (c e)]

B

Figure 4: Reduction — adverb

only the semantic reading provided in example 3.7 then one should not be able
to apply a negated verb such as (N (P2 M)) to an adverb such as V. This
can be achieved by adding parameters to the type v that allow one to set a
flag whenever a verb has been negated or modified by an adverb. The above
situation can thus be ruled out by imposing the restriction that an adverbial
modifier can never be applied to a negated verb. Similarly, by adding parameters
to the type ¢ one can take care of morpho-syntactic features.

4 Conclusion

In this short note we have introduced an extension of the standard Au-calculus
and shown that, together with the tools advocated by Parsons in [Par90], one
can actually extend de Groote’s approach outlined in [dG01] in such a way as
to deal also with adverbs and negation. With respect to de Groote’s framework
we have that the use of positions allows one to restore directionality and, more
importantly, that the use of labels provides means to avoid the undesirable
requirement of having a non-confluent calculus.

Nevertheless, there is still room for improvement in our framework:

e First, that we have to lift the type of a term in the p’ reduction seems to be
a rather odd requirement. Example 3.7 shows that we cannot avoid it un-
less we give up the idea of having a generalized form of u-abstraction. We
could have avoided the problem altogether by omitting intransitive verbs
but from both a practical and a theoretical point of view it is desirable
to have a framework that can cope with transitive as well as intransitive



(N5 (P M))gnig (Ugpo))

—p, (N3 (P{M))inil(padz.((po z) Ala]a]))

= padz(po x) Afa] (N3 (PYM)) nifa)]

—p, paz(po @) A [o)(VE(Xiy.pB.o[BIM)) ini k)]

—p, poIz[(po x) A[a]((Aiy-pB.—[BIM) %) snig )]

—g, pa.drf(po z) Aa]((uBo[fIM)sni7z)]

=z podzf(po x) Ala](nB.-[B](Mgnifx))]

—pgz  padrf(po z) A [a](uB.-[B](Me.Te. [M(ni,z,e) A (c e)]))]

Figure 5: Reduction — negation

(N5 (P MTV))inif(
=5 (N3 (PyMIV)

a

(Uzpo))

)snig (nen3x.[(po x) A [a]a]))
(NE(P*IMEV))iniZa)]

(NE Ny Xie.(WN(o) (V3 M)Ec))) inita)]

a](Ae.uf.Te. M(ni, x,e) A [B]-(vi e) A (e e)])]

where the last reduction expands as follows:

(NT (XyAie.(N (o) (VIM)Ee)))

—, padz(po x) Ao

[o]
—g pa.3z[(po x) Alal
[o]

*

— pa 3z [(po x) A

=5, (NI (YA (N (0) (N piea)B-(ME Qe [B(vi €) A (c €))) E0))))

g2 (N3 A2y Xe.(W(0) ((Nie-p(so)B-A 2 NsuTe. [M(2,u,€) A[B](vi €) A (¢ €)]) £ ¢))))
—p5, (NI (XyXe. V(o) (pao)BAez-Nsu-3e.[M(z,u,e) A[B](vi e) A (c e)]))))
= (N5 (WYX pi(s0) BNz NG 30 [M (2, u,€) A [B](vi €) A (e €)])
=g, (Ny-Nepuso)B-A52-A5u.3e.[M(2,u,€) A [B]-(vi €) A (c e)]) T +)

=8, ACfi(so) S5z A5u.Te [M(z,u,e) A [B]=(vi e) A (c e)]
(Npe-ti(soyB-Abz. A 5u.3e. [ M(z,u,e) A[B]-(vi e) A (c e)]) fnifx)
=22 AepB((AgzAguTe [M(z,u,e) A [B]=(vi e) A(c e)]) gnifz)
—s, Ac.ufBIe[M(ni, z,e) A[B](vi e) A (c e)]

Figure 6: Reduction — negated adverb
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verbs without having to duplicate the encodings for adverbial modifiers.

However, the current rule probably makes the calculus incomplete if we
want enough reductions to satisfy the sub-formula property (this needs to
be clarified). There are two ways out of this problem : finding a more
general ' rule or trying to use a call-by-name strategy which means deep
changes for all terms but allows to encode p,, .M using A and pu.

e Second, we would like to have a better control of the order of quantifiers in
the semantic reading of a sentence and also the part of the sentence which
should be negated. The general consensus is that this can be achieved by
introducing delimited continuations. Section 3 of [HGO8] provides a call-
by-value variant of a Au-calculus for delimited continuations that seems
well suited for our purpose.

e Finally, the use of both A and p simplifies the terms associated to a lexical
entry. However, it is still a lot of work to adjust all definitions together and
the choice of an appropriate evaluation strategy is a very sensible issue.
Moreover, a lot of linguistic features are considered in many papers and it
would be interesting now to try to summarize all these works and produce
a system that can accommodate a large set of linguistic phenomena with
a more intelligible technique for producing the required terms.
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