G. E. Andrews, The Theory of Partitions, Encyclopedia of Math.and its Appl, vol.2
DOI : 10.1017/CBO9780511608650

C. Bessenrodt, On hooks of Young diagrams, Annals of Combinatorics, vol.1, issue.4, pp.103-110
DOI : 10.1007/BF01608481

R. Bacher and L. Manivel, Hooks and Powers of Parts in Partitions, Sém. Lothar. Combin, vol.47, p.11
URL : https://hal.archives-ouvertes.fr/hal-00012431

G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Math. and Its Appl, vol.35

G. Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, Math.CO, p.35

G. Han, La formule de longueur d?????querre de Nekrasov-Okounkov : raffinement, d??monstration ??l??mentaire, extension et applications, Annales de l???institut Fourier, vol.60, issue.1, p.28
DOI : 10.5802/aif.2515

G. Han and K. Q. Ji, Combining hook length formulas and BG-ranks for partitions via the Littlewood decomposition, preprint, p.27

A. Hoare and M. Howard, An Involution of Blocks in the Partitions of n, The American Mathematical Monthly, vol.93, issue.6, pp.475-476
DOI : 10.2307/2323477

M. S. Kirdar and T. H. Skyrme, On an Identity Related to Partitions and Repetitions of Parts, Canad, J. Math, vol.34, pp.194-195

F. W. Schmidt and R. Simion, On a partition identity, Journal of Combinatorial Theory, Series A, vol.36, issue.2, pp.249-252
DOI : 10.1016/0097-3165(84)90012-8

R. P. Stanley, Errata and Addenda to Enumerative Combinatorics, Second Printing, Rev. Feb, vol.1, issue.13, 2004.

E. W. Weisstein, Elder's Theorem, from MathWorld ? A Wolfram Web Re- source

E. W. Weisstein, Stanley's Theorem, from MathWorld ? A Wolfram Web Resource