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ABSTRACT

a semi-infinite homogeneous medium, Battagiiaal. [3] have

This paper presents two subspace-based methods, from theshown that the solution for the heat equation links thernu fl

MOESP (MIMO output-error state space) family, for statesp
identification of continuous-time fractional commensanatod-

els from sampled input-output data. The methodology used in
this paper involves a continuous-time fractional operattow-

ing to reformulate the problem so that the state-space exri
can be estimated with conventional discrete-time subsieste
niques based on QR and singular value decompositions. Hhe fir
method is a deterministic one whereas the second appro&ek ta
place in a stochastic context. The performance of both nastiso
demonstrated using Monte Carlo simulations at various &lgn
to-noise ratios. The deterministic method leads, as ergetd
biased estimates. This bias is removed in the stochasticadet
by the use of an instrumental variable. As compared to ratio-
nal systems, the commensurate differentiation order neigsb-
mated besides the state-space matrices which is done using n
linear programming. This is the first work developed for riault
input multi-output system identification using fractionaddels.

1 INTRODUCTION

Fractional models have withessed a growing interest during

to a half order derivative of the surface temperature on kvthe
flux is applied.

Time-domain system identification using fractional models
was initiated in the late nineties. Oustaloup [4] developed
method based on the discretization of the fractional déffiéel
equation using Grinwald definition and on the estimatioiisof
coefficients using least squares. Trigeassoal. [5] based their
identification method on the approximation of a fractiomaét
grator by a rational model. Then, they deduced the fractiona
model after estimating its rational approximation. Cetisil.[6]
proposed several extensions of equation error methodk,asic
the state variable filters and the instrumental variablé),(td
fractional system identification. Aowat al.[7] synthesized frac-
tional orthogonal bases generalizing various bases (lrague
Kautz,...) to fractional differentiation orders for idéitation
issues. Recently, Maltt al. [8] have extended the concept of
optimal IV methods to fractional systems. For an overview of
these identification methods refer to [9].

In this paper, we consider the problem of identification of a
continuous-time fractional system in its state-space fo@nly

the last years. Many diffusive phenomena can be modeled by few papers deal with system identification using fracticstate-

fractional transfer functions. In electrochemistry fostance,
diffusion of charges in acid batteries is governed by Randle
models [1] that involve Warburg impedance with an integrato
of order Q5. Electrochemical diffusion showed to have a tight
relation with derivatives of order.B [2]. In thermal diffusion of

*Author to whom correspondance should be addressed.

space representation [6, 10]. They are based on the minimiz:
tion of an output error criterion by nonlinear programmiagt-
nigues. These methods are well suited for single-inputlesing
output (SISO) systems, and are generally difficult to apply i
the multi-input multi-output (MIMO) case because the numbe
of parameters to estimate becomes large. Here, subspalbe me
ods are proposed to estimate the matrices of the contintimes-
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fractional state-space representation. It is an extensidhe
methods presented in the literature for rational (thus mao-f
tional) systems [11-13] to the fractional case. Other sabsp
techniques for identifying continuous-time rational misdean

be found in [14-17]. So, the proposed method inherits the ad-
vantages of subspace methods which stem from the reliabilit
of numerical algorithms using the QR and the singular value
decompositions [18]. Thus, it does not involve nonlineati-op
mization to obtain state-space matrices. In addition, mmoa

cal form (such as modal or companion realizations) of theesta
space representation is required. Finally, the proposesisice
algorithms can be applied to the identification of both SIS0 a
MIMO fractional systems. As will be seen later, the stataesp
representation of a fractional commensurate system ipgcdw
additional parameter which is the commensurate order.thtas
only parameter computed by minimizing an output error dote
with a nonlinear optimization technique.

In section 2, some recalls about fractional systems are pre-
sented. Section 3 presents the methods proposed to estimate
matrices of the continuous-time fractional state-spapeesen-
tation, followed by section 4 devoted to the estimation & th
fractional commensurate order using a nonlinear optiritnat
technique. Finally, simulation examples are given in sech.
Monte Carlo simulations are made to show the estimatosttati
cal properties.

2 FRACTIONAL SYSTEMS
A SISO fractional system is governed by a fractional differ-
ential equation:

y(t) +a D%y (t) + - +am, DMy (t) =
booPou(t) + bioPru(t) + - - + by D PmBU (1)

where (aj,b) € R?, and the differentiation orders; < az <

... <0Omy,Bo<Pr<... <PBmg are allowed to be non-integer pos-
itive numbers. State space representation was extendet®by [
to commensurate fractional systems, where all the difteaxen
tion orders are multiple integers aof The extension was done
by allowing the differentiation order of the state vectobtany
commensurate order € R™*. The fractional state space repre-
sentation is presented in a MIMO case as:

DUx(t) = AX(t) + Bu(t),
y(t) = Cx(t) + Du(t)

(1)
(2)

wherex € R" is the state vectoy € R™ the input vectory € RP
the output vectorA € R™", B € R™M C € RP*", D € RP*M

are constant matrices. Here, zero initial conditions aresich
ered:x(t) = 0 fort < 0. Matignon [20] proved that the fractional
system (1)-(2) is stable if:

O<o<2 and |arg()\k)|>org vk=1,...,n

wherel is thek"-eigenvalue ofA and—Tt < argAg) <TU
The conversion of (1)-(2) to the MIMO transfer function
form is obtained as for the rational systems by:

G(s) =C(s"1 —A)"B+D

wheresis the Laplace variable.

In the following, the pair A, B) is assumed to be reachable
and the pair, A) is assumed to be observable. The controlla-
bility and the observability conditions of a state spaceesen-
tation of a commensurate fractional system are the sameras f
rational systems [19].

One of the main difficulties with fractional models is the
time-domain simulation. This problem has been extensively
studied and an overview of the principal methods can be foun
in [21]. The most commonly used approximation of fractional
operators is the recursive distribution of zeros and pges;
posed in [22], which approximates the frequency behaviaf of
in the frequency rang&oa, wg]. Nevertheless, this approxima-
tion has null asymptotic behaviors at low and high frequesici
which can introduce a static error between the fractionad@ho
and its approximation. To avoid this drawback, Trigeassbu
al. [5] suggested to use the conventional integrator outside th
frequency rang@wa, wg|:

_ Gu Ne 1+ s/a,

s Pli+s/ox @)

—a
Soon, 8]

where:

e N is the number of cells (directly related to the quality of
the approximation),

e Gy is fixed so thas™® has the same gain Bﬁ»’im} in the
middle of the intervajwa, wg],

e W} andowy are respectively zeros and poles recursively dis-
tributed in the frequency ranggy, wn] = [0~ wa, 0wg]
whereo is generally set to 10 to minimize border effects.
They are defined by the following relations:

_ logy
logyn”

W= Yok, Okp1 = N6,

This approximation is used to simulate the fractional syste
presented in this paper (section 5) with the paramebdrs: 20,
wa = 10"% andwg = 10°.
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3 SUBSPACE ALGORITHMS FOR FRACTIONAL [18]. Unfortunately, (8) contains the successt®rder frac-

STATE-SPACE IDENTIFICATION tional derivatives of the input-ouput data which are not suead
Consider the linear continuous-time fractional statecepa  in most practical cases and which are difficult to estimatégpa
representation (1)-(2) corrupted by additive noise: ularly in a noisy framework [23].
To avoid this difficulty, the following operator (fractioha
DX (t) = AX(t) 4+ Bu(t) + v(t), (4) low-pass filter) is introduced:
y(t) =Cx(t) + Du(t) +w(t) (5)
1 1
A(s) = = itht=(1 a 9
wherev € R" andw € RP are zero-mean processes. Under some (s) 14 (i)u 1+t with T = (1/¢r) ©)
mild conditions onv andv (uniform spectrum, uncorrelation) o

[13], the state-space representation (4)-(5) can be replay

the innovations model: Let us consider the Laplace transform of (6)-(7):

DOX(t) = AX(t) +Bu(t) + Ke(t), (6)
y(t) = Cx(t) + Du(t) + e(t). 7) *X(s) = AX(s) + BU(s) + KE(s) (20)
Y(s) =CX(s)+DU(s) +E(s). (12)

The problem in this section is to estimate the system ma-
tricesA, B, C, D from sampled input-output datguy} o and Then, (10) can be expressed as:
{yk}h=g. The commensurate ordaris assumed to be known.

The case where is unknown is discussed in section 4.

To introduce the difficulty of the continuous-time fractan X(s) = (I + TA)[A(5)X(5)] + IBIA(S)U (8)] + TK[A(S)E(S)]
state-space model identification, let us consider firsty dle- = AVA(S)X(S)] + By [A(S)U (3)] + Ky [A(S)E(3)]
terministic cased(t) = 0). Then, by computing the successive
a-order fractional derivatives of (7) and by substitutidme fol-
lowing extended linear model is obtained: with Ay =1 +TA, B, = 1B andK, = tK. Application of the

inverse Laplace transform leads to the following systeningfdr
y(t) =7 x(t) + o U(t) (8  equatons:
with input and output variables: X(t) = Ay [AX(1)] + By[Au(t)] + Ky [Ae(t)] (12)
y(t) = Cx(t) + Du(t) +e(t) (13)
at) =[u®)" 2%t)" py(t)"]"
y =" 2%MnT 2"y ()]’

whereAx(t), Au(t) andAe(t) correspond to the states, the inputs
and the noise prefiltered bByin (9). Then, from (13), it is found

and by recursion that:
CA cB D y(t) = Cx(t) +Du(t) +e(t)
=] . | eRP" o = € RIPXim, = CA\MX(t)] +CBy[Au(t)] + Du(t) + CKy[Ae(t)] + e(t)
: 2 .0 :
CA™ CA~2B...CBD

. . _ |

= CANX()]+ 3 CATIBA T u(t)] +Du(t)
=1

The structure of (8) is the same than the extended linear imode " :

used in classical discrete-time subspace identificatiothous + Z CAE’jKA NI+ 1g(t)] + e(t)

=1

1The discrete-time variables are denotedxgyand correspond to the time y K . .
sampling with a constant sampling perifigof the continuous-time variablet): for k € N , whereA x(t) d_enOIeS the S|gnqls obtained froxt)
X = X(KTs). by filtering through a series & low-pass filters\. In the same

3 Copyright (© 2009 by ASME



way, it is found forl € N*;

Ay(t) = CA'x(t)] + DA u(t)] + [N e(t)]
= CANTIX(1)] +CBy A tu(t)] + DA u(t)]
+CKyA " le(t)] + (A e(t)]

- C.A‘;*' ()] + kzllc:Aii' By A+ Lu(t)]
=

+ DN u(t)] + kzl CATI Ky T+ e(t)] + [N eft)
=1

with k > I. As a consequence, the input-output data can be for-
mulated as the following extended linear model (with no time
derivatives of the data):

yO)=Tixt)+P ut)+We(t) (14)

with state, input-output and noise variablagt) = A= 1x(t)

ATy A—tu(t) A-e(t)
0 N2u(t) N—2e(t)
(1) = : ;u(t)= : ,E(t) = :
Ay (1) Mu(t) Ae(t)
y() u(t) e(t)
and:
C D 0 ---0
M= CI.A\)\ , B = CB D ,
L E .0
CA CA')\*ZB)\ ...CB, D
| 0 . 0
w_| CK |
: .0
CAi)\*ZK)\ - CKy, |

wherel; € RP*" is the extended observability matrix adg e
RIPXIMm @, c RIPXIM gre block Toeplitz matrices. Now, froid
available input-output samples observed at discrete tipes
kTs for k=0,...,N — 1, the extended linear model (14) can be
rewritten as:

N =Ti XN+ D un+WiEN (15)

where
[A?flu]o [)\f*lu]l [A?flU]Nfl
[)\ufzu]o [Nfzu]l [)\lfzu]Nil
uN — : : c RmixN
[Aulo  [Aulz Auln-1
Uo us UN-1

and [Mulx = Mu(ty) denotes the sampled filtered data. The
matriceson € RPN, xy € R™N and £y € R™*N are con-
structed in a similar way. The formulation given in (15) eleab
to use subspace identification algorithms as in their ocaigion-
factional discrete-time version. The difference is theithold of

a step in which the data are filtered (what is a classical step i
continuous-time identification [23]). This lowpass filtegiin-
duces the tuning of an additional parametgrwhose the sensi-
bility has been studied in [24].

3.1 Deterministic framework : MOESP algorithm

First, let us start by using the most popular subspace ident
fication method called MOESP (MIMO output-error state space
algorithm [18, 25]. This is a deterministic approach basethe
properties of the noiseless version of (15):

In=Ti xn+ P Un. (16)
The principle of this algorithm is as follows:
1. Compute the LQ decomposition of the data matrix:
UN L1z 07[Q]
= 17
|:9/N] |:|-21 Lzz] [QE (17)

whereLy; € RM™IM | 59 € RIPXIM | 55 ¢ RIPXIP with Lyy,
Lo, lower triangular, and); € RN*M Q, ¢ RN*IP are or-
thogonal.

. Compute the singular value decomposition (SVD) oflthie
matrix approximating the column spacelgf

Loz = [U1 Uy Fol 8} [xﬂ (18)

whereU; € RIP*N U, € RIP*(iP-M gands; € R™". The state
ordern can be estimated from the SVD singe- dimZ in
the noiseless case.
3. Estimate the extended observability matfix= U=
4. Estimate th€ matrix:C=1(1:p,1:n).

1/2
1
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5. EstimateA, by solving the linear equation:
Fi(1:p(i—1),1:n) A\=Ti(p+1:ip,1:n).  (19)

6. Estimate thé, andD matrices. For that purpose, it can be
shown that:

UJ W =UJ Lol i} (20)

which is a linear equation with respectBg andD. Define:

U;é [Ll Lo - Li]
U7 Laibyi & a1 902 - 9]

(21)
(22)

with £y € RIP=MxP and ar, € ROP-M*M for k = 1,...,i.
Thus, from (20):

£1D+ £CD+ - - +LiCAAi{ZB>\ =M1
LoD+ £3CD+ -+ + LiCA®B) = 913

Li,lDﬁLLiéD: Mi_1
£iD = 1.

Definery = [£ ... £i] € ROP-Mx(+1-Kp | —2 i and
get the following overdetermined system of linear equation

L1 L:Zfifl M1
Ly L3li-2 Mo
Li—1 Ll Mi_1
Lj 0 M

where the block coefficient matrix in the left-hand side is
i(ip—n) x (p+n)-dimensional. Estimates &, andD are
obtained by finding the least-squares solution of (23).

The matrices of the fractional continuous-time state-spapre-
sentation (10)-(11) are then deduced as follods: (A, — 1),
B = 1B,. TheC andD matrices do not change.

This method is consistent in its discrete-time version & th
output noise) is white and if there is no process noise 0).
In our framework, the filtering of the input-output data sahe
consistency into question.

3.2 Stochastic framework: PO-MOESP algorithm

In a stochastic framework, instrumental variables can be
used to remove the noise effect. The most popular method i
this context is the PO-MOESP (Past Output MIMO Output-Error
State Space) algorithm [25, 26]. First, the input and outiatia
and the noise matrices are partitioned into two parts:

u
UuN = [‘Uﬂ , IN = Bﬂ , EN =

The number of block rows int p, 7p andz p is denoted bys. The
number of block rows irti¢, ot and ¢ is theny=1i— 3. These
numbers can be chosen arbitrary, but it is generally predeio
setp =y. By considering only the second part of these matrices
(15) becomes:

Zp

|- (24)

D’f:ryXerCDy‘Uer‘-Py‘Zf. (25)

The instrumental variable introduced to remove the effettse
noise isz = [t 7, |". Hence, the principle of the PO-MOESP
algorithm is as follows:

1. Compute the LQ decomposition of the data matrix:

Ut L1 O 0 O QI
Up Lol O O |Q) (26)
9|  |Lsilszlss 0| |Q}
7t Laz Laz Laz Laa| [Q;

where all the matricekj; are lower triangular and all the
matricesQj are orthogonal (fof = 1,2,3,4).

2. Compute the SVD ofl42 L43] which approximates the col-
umn space of .

et = 2] [ ]

(27)

whereU; € RPN U, € RIP*(P-M gnd¥; € R™N, As for

the MOESP algorithm, the state-space ondean be esti-
mated by calculating the number of significant singular val-
ues of[La2 Lag].

The following steps 3, 4, 5 and 6 are the same as for the MOES
algorithm.

4 FRACTIONAL ORDER ESTIMATION
In this section, we assume that the fractional derivatideor
a € (0,2) is unknown and has to be estimated by minimizing a

Copyright (© 2009 by ASME
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Figure 1. OUTPUT DATA Y AND OUTPUT OF THE ESTIMATED

MODEL § WITH MOESP (SNR=20 dB, i = 8 AND Wt = 6).

quadratic criterion:

G =arg min —Hyc( ) = Yell3, (28)

ae(0,2) 2

wherey is the vector (of lengtipN) obtained by concatenating
the p system outputs ang(a) is the vector obtained by concate-
nating thep outputs of the state-space representation estimated
with one of the subspace methods (MOESP or PO-MOESP) for
a givena. The value ofa in (28) is obtained by a nonlinear
optimization technique. The iterative algorithm used isdzh

on a subspace trust-region method and on the interior-tisfec
Newton method described in [27]. Consequently, the proghose
subspace algorithm is executed at each iteration of thenogatt

tion technique. The number of state variabids assumed to be
known. However, it may be estimated by using order estimatio
criteria presented in [28] .

5 SIMULATION EXAMPLES

The algorithms are applied to input-output data of length
N = 1023 generated by simulating the linear system (1)-(2) with
a=0.9,

0-01 1 0 01 0
A= [1 —0.2} ,B= [o} ,C= {0.5 —0.1] D= {o]’

and zero initial conditionsx(t) = 0 fort < 0). The input sig-
nal is a pseudo-random binary sequence (PRBS) with maximum
length. The sampling period i& = 0.05s. The outputs (Fig. 1)

6

are corrupted by white noise with a signal-to-noise ratiNR®

of 20 dB. The influence of the method parameters (the numbe
of block rowsi and the filter frequencws) has been studied
in [24]. It was shown thatos can be chosen in a suitable range
over one decade, between 1 and 10 and that the choidafbf-
ences more the results: acceptable results are obtaimtidgta
fromi = 6. For this example, the algorithm parameters are fixec
toi = 8 andws = 6.

5.1 Using the MOESP algorithm
The estimation results with the MOESP algorithm are:

0.8894
0 —0.100 B 1
1-0.175 0|’
1.3782 103}

00012 01012) 5 _
~|-0.6763103|"

0.4997-0.0923’
The normalized prediction error nority — yl||2/||y|l2 equals
0.1050 (—-19.57 dB) for the first output and.0008 (-19.93 dB)
for the second one.

To analyze the statistical properties of the estimatoeehr
Monte Carlo simulations are carried out for SNR of 20, 15 and
10 dB. Each simulation is done with 500 runs with different re
alizations of noise. The means of the normalized error nprms
obtained withi = 8 andw; = 6, are given in Tab. 1. Figure 2
shows the estimated poles. The normalized mean squaread eri
(MSE) of the poles are indicated in Tab. 2. It can be seen ltieat t
pole estimator is biased. Moreover, as shown in the histogra
of the estimated order in Fig. 3, the order estimate is also bi-
ased, and the bias increases with the noise level. Thesesbias
are obviously introduced by the MOESP algorithm. Indeed, in
order to guarantee the consistency of the estimates udmglth
gorithm, the input must satisfy the persistent excitatiomdition
(verified with a PRBS for example) and the output noise have tc
be white [29]. In fact, the latter condition is not satisfiextbuse
of the data filtering.

5.2 Using the PO-MOESP algorithm
The PO-MOESP algorithm applied to the same input-outpu
data gives the following estimates:

0.9021,
0-00999 4 _[1
1-0.207 0|’
0.0006 01007
0.5008-0.102

3
D= [0.4564 10 ]

0.0491103|"
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Table 1. MEANS OF THE NORMALIZED ERROR NORMS.

output SNR=20dB SNR=15dB SNR=10dB

0.1026 01834 03327
@ (~19.78dB) (~1473dB) (—9.56dB)
g 0.1005 01797 03282

(~19.95dB) (~1491dB) (-9.68dB)
o 0.1000 01760 03038
u (~2000dB) (~1509dB) (—10.35dB)
2 0.0991 01745 03010
. (~2008dB) (~1516dB) (—10.43dB)
Table 2. NORMALIZED MSE OF THE POLES.
SNR MOESP PO-MOESP

20 dB (—0.4952+i0.8875.10* (0.4661+i0.5006).10~*
15dB (—0.2530+i0.6315.103 (0.16344i0.1976.10°2
10 dB (—0.1208+i0.5740.10 2 (0.4651+i0.7347).10°3

The normalized prediction error norm equals.0983
(—20.15 dB) for the first output and .0989 (-20.09 dB)
for the second one.

PO-MOESP algorithm.

The same Monte Carlo simulations are performed as previ-
ously. Table 1 gives the means of the normalized error norms.
Figure 4 shows the estimated poles. Their normalized MSE are

indicated in Tab. 2. The estimates are unbiased but a shght i

So the results are improved with the

0.4
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0.2

=

& o1l

S 01

>

fa

g o

(o]

©

E-01
-0.2
-03f =
0.4 ‘
<02 -0. i

Real part

(a) SNR=20 dB

Figure 2.
THE TRUE POLES.

0.4

03 4
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=
S 0.1l
S 01
>
2
g o
(@]
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E-01
-0.2
-03F A&
0.4 ‘
~0.2 0. 0
Real part

(a) SNR=20 dB

crease of the variance is observed as compared to the results

obtained with the MOESP algorithm. However, the normalized Figure 4. ESTIMATED POLES WITH PO-MOESP, WHERE + DE-
NOTES THE TRUE POLES.

MSE is smaller, especially for a low SNR.

As shown in the histograms of the estimated ordein
Fig. 5, the estimation is now unbiased. Moreover, the vagan
on the estimated parameteis improved.

6 CONCLUSION

This paper focuses on the identification of continuous-time

fractional state-space representation. Thanks to an edalata
filtering, we have shown that subspace-based algorithméean
used to estimate the state-space matrices. Results onetfig id
fication of a multivariable system with the well-known MOESP

7

0.4

03t
0.2
g
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e
g o
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£-01
-0.2
-03 o
-0.4 :
02 -01 O
Real part

(b) SNR=15 dB

0.4

03F M
0.2}
I
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(o))
5]
£-01
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-03
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Z02 -01 O
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(b) SNR=15 dB

0.4

0.3

0.2

Imaginary part

-0.4
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o

Ty, |

-02 -01 0

Real part

(c) SNR=10dB

0.4
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Imaginary part

|
o
[

-0.3

ESTIMATED POLES WITH MOESP, WHERE + DENOTES

0.1r

o

-0.4

-02 -01 0

Real part

(c) SNR=10dB

ferentiation order is estimated by using nonlinear prognamg.
Simulation examples have shown that the estimators aredias
with the MOESP algorithm. However, the PO-MOESP algo-
rithm eliminates this bias by using an instrumental vagaBlhe
limitation of this approach is that the design of the insteumts
requires an increased number of block rawge. an increase
of the series of fractional low-pass filtefgs), which leads to
an excessive computational cost. So, a future work coul@be t
and PO-MOESP algorithms are given. The commensurate dif- consider another instruments to solve this problem.
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Figure 3. HISTOGRAMS OF THE ESTIMATED COMMENSURATE ORDER O WITH MOESP.

60 60

50

50

40

30

rate (in %)
rate (in %)
rate (in %)

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.82 0.84 0.86 0.88

0.9 0.92 0.94 0.96 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96
commensurate ordér

commensurate ordér commensurate ordér
(a) SNR=20 dB (b) SNR=15 dB (c) SNR=10 dB

Figure 5. HISTOGRAMS OF THE ESTIMATED COMMENSURATE ORDER O WITH PO-MOESP.

REFERENCES 2001. “Fractional state variabe filter for system identifica

[1] Sabatier, J., Aoun, M., Oustaloup, A., Grégoire, G.gBa tion by fractional model”. In Proc. of the European Control
F., and Roy, P., 2006. “Fractional system identification for Conference.

lead acid battery sate charge estimatio®8ignal Process- [7] Aoun, M., Malti, R., Levron, F., and Oustaloup, A., 2007.

ing, 86(10), pp. 2645—-2657. “Synthesis of fractional Laguerre basis for system approxi
[2] Oldham, K. B., and Spanier, J., 1973. *“Diffusive trans- mation”. Automatica43(9), September, pp. 1640-1648.
port to planar, cylindrical and spherical electrodeElec- [8] Malti, R., Victor, S., Oustaloup, A., and Garnier, H.,G8
troanal. Chem. Interfacial Electrocherd], pp. 351-358. “An optimal instrumental variable method for continuous-
[3] Battaglia, J.-L., Cois, O., Puigsegur, L., and Oustalo., time fractional model identification”. In Proc. of the 17th
2001. “Solving an inverse heat conduction problem using IFAC World congress.
a non-integer identified model’lnt. J. of Heat and Mass [9] Malti, R., Victor, S., and Oustaloup, A., 2008. “Advarxe
Transfer,44(14), pp. 2671-2680. in system identification using fractional modelsJournal
[4] Oustaloup, A., Le Lay, L., and Mathieu, B., 1996. “Iden- of Computational and Nonlinear Dynami&2), January.
tification of non integer order system in the time-domain”. [10] Poinot, T., and Trigeassou, J.-C., 2004. “ldentificatof
In IEEE-CESA'96, SMC IMACS Multiconference. fractional systems using an output-error techniqugtn-
[5] Trigeassou, J.-C., Poinot, T., Lin, J., Oustaloup, Ada linear Dynamics38(1-2), pp. 133-154.
Levron, F., 1999. “Modeling and identification of a non [11] Haverkamp, B. R. J., Chou, C. T., Verhaegen, M., and
integer order system”. In Proc. of the European Control Johansson, R., 1996. “ldentification of continuous-time

Conference. MIMO state space models from sampled data, in the pres
[6] Cois, O., Oustaloup, A., Poinot, T., and Battaglia, J.-L ence of process and measurement noise”. In Proc. of th

8 Copyright (© 2009 by ASME



(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

35th Conference on Decision and Control. from input-output data” Automatica 30, pp. 61-74.
Johansson, R., Verhaegen, M., and Chou, C. T., 1997. [27] Coleman, T. F.,, and Li, Y., 1996. “An interior, trust ieg

“Stochastic theory of continuous-time state-space ifienti approach for nonlinear minimization subject to bounds”.
cation”. In Proc. of the 36th Conference on Decision and SIAM Journal on Optimizatiorg, pp. 418-445.

Control. [28] Bauer, D., 2001. “Order estimation for subspace method
Johansson, R., Verhaegen, M., and Chou, C. T., 1999. Automatica37, pp. 1561-1573.

“Stochastic theory of continuous-time state-space ifienti  [29] Bauer, D., and Jansson, M., 2000. “Analysis of the asymp
cation”. IEEE Trans. Signal Processing7(1), pp. 41-51. totic properties of the MOESP type of subspace algo-
Bastogne, T., Garnier, H., and Sibille, P., 2001. “A PMF rithms”. Automatica36, pp. 497-509.

based subspace method for continuous-time model identi-
fication. Application to a multivariable winding process”.
International Journal of Control74(2), pp. 118-132.
Ohsumi, A., Kameyama, K., and Yamaguchi, K.-I., 2002.
“Subspace identification for continuous-time stochastic
systems via distribution-based approacAttomatica 38,

pp. 63-79.

Li, W., Raghavan, H., and Shah, S., 2003. “Subspace
identification of continuous time models for process fault
detection and isolation”Journal of Process Controll3,

pp. 407-421.
Mercére, G., Ouvrard, R., Gilson, M., and Garnier, H.,
2007.  “Subspace-based methods for continuous-time

model identification of MIMO systems from filtered sam-
pled data”. In Proceedings of the European Control Con-
ference.

Katayama, T., 2005Subspace methods for system identifi-
cation Springer.

Matignon, D., and d’Andréa Novel, B., 1996. “Some
results on controllability and observability of finite-
dimensional fractional differential systems”. In IEEE-
CESA96, SMC IMACS Multiconference, pp. 952—-956.
Matignon, D., 1998. “Stability properties for genezad
fractional differential systems”. In ESAIM : Proceedings,
Fractional Differential Systems: Models, Methods and Ap-
plications, \ol. 5, pp. 145-158.

Aoun, M., Malti, R., Levron, F., and Oustaloup, A., 2004
“Numerical simulations of fractional systems: an overview
of existing methods and improvementsNonlinear Dy-
namics,38, pp. 117-131.

Oustaloup, A., 1995 .La dérivation non engre. Tleorie,
synttese et applicationsHermes, Paris.

Garnier, H., and Wang, L., eds., 2008dentification of
Continuous-Time Models from Sampled Da®gpringer.
Thomassin, M., and Malti, R., 2009. “Subspace methad fo
continuous-time fractional system identification”. In Bro
of the 15th IFAC Symp. on System ldentification (SYSID
2009).

Viberg, M., 1995. “Subspace-based methods for the-iden
tification of linear time-invariant systems” Automatica,
31(12), pp. 1835-1851.

Verhaegen, M., 1994. “Identification of the determiits
part of MIMO state space models given in innovations form

9 Copyright (© 2009 by ASME



