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ABSTRACT
This paper presents two subspace-based methods, from the

MOESP (MIMO output-error state space) family, for state-space
identification of continuous-time fractional commensurate mod-
els from sampled input-output data. The methodology used in
this paper involves a continuous-time fractional operatorallow-
ing to reformulate the problem so that the state-space matrices
can be estimated with conventional discrete-time subspacetech-
niques based on QR and singular value decompositions. The first
method is a deterministic one whereas the second approach takes
place in a stochastic context. The performance of both methods is
demonstrated using Monte Carlo simulations at various signal-
to-noise ratios. The deterministic method leads, as expected, to
biased estimates. This bias is removed in the stochastic method
by the use of an instrumental variable. As compared to ratio-
nal systems, the commensurate differentiation order must be esti-
mated besides the state-space matrices which is done using non-
linear programming. This is the first work developed for multi-
input multi-output system identification using fractionalmodels.

1 INTRODUCTION
Fractional models have witnessed a growing interest during

the last years. Many diffusive phenomena can be modeled by
fractional transfer functions. In electrochemistry for instance,
diffusion of charges in acid batteries is governed by Randles
models [1] that involve Warburg impedance with an integrator
of order 0.5. Electrochemical diffusion showed to have a tight
relation with derivatives of order 0.5 [2]. In thermal diffusion of

∗Author to whom correspondance should be addressed.

a semi-infinite homogeneous medium, Battagliaet al. [3] have
shown that the solution for the heat equation links thermal flux
to a half order derivative of the surface temperature on which the
flux is applied.

Time-domain system identification using fractional models
was initiated in the late nineties. Oustaloup [4] developeda
method based on the discretization of the fractional differential
equation using Grünwald definition and on the estimation ofits
coefficients using least squares. Trigeassouet al. [5] based their
identification method on the approximation of a fractional inte-
grator by a rational model. Then, they deduced the fractional
model after estimating its rational approximation. Coiset al. [6]
proposed several extensions of equation error methods, such as
the state variable filters and the instrumental variable (IV), to
fractional system identification. Aounet al.[7] synthesized frac-
tional orthogonal bases generalizing various bases (Laguerre,
Kautz,...) to fractional differentiation orders for identification
issues. Recently, Maltiet al. [8] have extended the concept of
optimal IV methods to fractional systems. For an overview of
these identification methods refer to [9].

In this paper, we consider the problem of identification of a
continuous-time fractional system in its state-space form. Only
few papers deal with system identification using fractionalstate-
space representation [6, 10]. They are based on the minimiza-
tion of an output error criterion by nonlinear programming tech-
niques. These methods are well suited for single-input single-
output (SISO) systems, and are generally difficult to apply in
the multi-input multi-output (MIMO) case because the number
of parameters to estimate becomes large. Here, subspace meth-
ods are proposed to estimate the matrices of the continuous-time
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fractional state-space representation. It is an extensionof the
methods presented in the literature for rational (thus non frac-
tional) systems [11–13] to the fractional case. Other subspace
techniques for identifying continuous-time rational models can
be found in [14–17]. So, the proposed method inherits the ad-
vantages of subspace methods which stem from the reliability
of numerical algorithms using the QR and the singular value
decompositions [18]. Thus, it does not involve nonlinear opti-
mization to obtain state-space matrices. In addition, no canoni-
cal form (such as modal or companion realizations) of the state-
space representation is required. Finally, the proposed subspace
algorithms can be applied to the identification of both SISO and
MIMO fractional systems. As will be seen later, the state-space
representation of a fractional commensurate system involves an
additional parameter which is the commensurate order. It isthe
only parameter computed by minimizing an output error criterion
with a nonlinear optimization technique.

In section 2, some recalls about fractional systems are pre-
sented. Section 3 presents the methods proposed to estimatethe
matrices of the continuous-time fractional state-space represen-
tation, followed by section 4 devoted to the estimation of the
fractional commensurate order using a nonlinear optimization
technique. Finally, simulation examples are given in section 5.
Monte Carlo simulations are made to show the estimator statisti-
cal properties.

2 FRACTIONAL SYSTEMS
A SISO fractional system is governed by a fractional differ-

ential equation:

y(t)+a1D
α1y(t)+ · · ·+amAD

αmA y(t) =

b0D
β0u(t)+b1D

β1u(t)+ · · ·+bmBD
βmB u(t)

where(a j ,bi) ∈ R
2, and the differentiation ordersα1 < α2 <

.. . < αmA,β0 < β1 < .. . < βmB are allowed to be non-integer pos-
itive numbers. State space representation was extended by [19]
to commensurate fractional systems, where all the differentia-
tion orders are multiple integers ofα. The extension was done
by allowing the differentiation order of the state vector tobe any
commensurate orderα ∈ R

+∗. The fractional state space repre-
sentation is presented in a MIMO case as:

D αx(t) = Ax(t)+Bu(t), (1)

y(t) = Cx(t)+Du(t) (2)

wherex ∈ R
n is the state vector,u ∈ R

m the input vector,y ∈ R
p

the output vector,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m

are constant matrices. Here, zero initial conditions are consid-
ered:x(t) = 0 for t ≤ 0. Matignon [20] proved that the fractional
system (1)-(2) is stable if:

0 < α < 2 and |arg(λk)| > α
π
2

∀k = 1, . . . ,n

whereλk is thekth-eigenvalue ofA and−π < arg(λk) ≤ π.
The conversion of (1)-(2) to the MIMO transfer function

form is obtained as for the rational systems by:

G(s) = C(sαI −A)−1B+D

wheres is the Laplace variable.
In the following, the pair (A, B) is assumed to be reachable

and the pair (C, A) is assumed to be observable. The controlla-
bility and the observability conditions of a state space represen-
tation of a commensurate fractional system are the same as for
rational systems [19].

One of the main difficulties with fractional models is the
time-domain simulation. This problem has been extensively
studied and an overview of the principal methods can be found
in [21]. The most commonly used approximation of fractional
operators is the recursive distribution of zeros and poles,pro-
posed in [22], which approximates the frequency behavior ofsα

in the frequency range[ωA,ωB]. Nevertheless, this approxima-
tion has null asymptotic behaviors at low and high frequencies,
which can introduce a static error between the fractional model
and its approximation. To avoid this drawback, Trigeassouet
al. [5] suggested to use the conventional integrator outside the
frequency range[ωA,ωB]:

s−α
[ωA,ωB] =

Gα

s

Nc

∏
k=1

1+s/ω′
k

1+s/ωk
(3)

where:

• Nc is the number of cells (directly related to the quality of
the approximation),

• Gα is fixed so thats−α has the same gain ass−α
[ωA,ωB]

in the

middle of the interval[ωA,ωB],
• ω′

k andωk are respectively zeros and poles recursively dis-
tributed in the frequency range[ωb,ωh] = [σ−1ωA,σωB]
whereσ is generally set to 10 to minimize border effects.
They are defined by the following relations:

ω′
k = γωk, ωk+1 = ηω′

k, α = 1−
logγ

logγη
.

This approximation is used to simulate the fractional systems
presented in this paper (section 5) with the parameters:Nc = 20,
ωA = 10−5 andωB = 105.
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3 SUBSPACE ALGORITHMS FOR FRACTIONAL
STATE-SPACE IDENTIFICATION
Consider the linear continuous-time fractional state-space

representation (1)-(2) corrupted by additive noise:

D αx(t) = Ax(t)+Bu(t)+ v(t), (4)

y(t) = Cx(t)+Du(t)+ w(t) (5)

wherev ∈ R
n andw ∈ R

p are zero-mean processes. Under some
mild conditions onv and v (uniform spectrum, uncorrelation)
[13], the state-space representation (4)-(5) can be replaced by
the innovations model:

D αx(t) = Ax(t)+Bu(t)+Ke(t), (6)

y(t) = Cx(t)+Du(t)+ e(t). (7)

The problem in this section is to estimate the system ma-
tricesA, B, C, D from sampled input-output data1 {uk}

N−1
k=0 and

{yk}
N−1
k=0 . The commensurate orderα is assumed to be known.

The case whereα is unknown is discussed in section 4.
To introduce the difficulty of the continuous-time fractional

state-space model identification, let us consider firstly the de-
terministic case (e(t) = 0). Then, by computing the successive
α-order fractional derivatives of (7) and by substitution, the fol-
lowing extended linear model is obtained:

ȳ(t) = Γ∗
i x(t)+ Φ∗

i ū(t) (8)

with input and output variables:

ū(t) = [u(t)T D αu(t)T . . . D iαu(t)T ]T

ȳ(t) = [y(t)T D αy(t)T . . . D iαy(t)T ]T

and

Γ∗
i =











C
CA
...

CAi−1











∈ R
ip×n, Φ∗

i =













D 0 · · · 0

CB D
. . .

...
...

. . .
. . . 0

CAi−2B · · · CB D













∈ R
ip×im.

The structure of (8) is the same than the extended linear model
used in classical discrete-time subspace identification methods

1The discrete-time variables are denoted byxk and correspond to the time
sampling with a constant sampling periodTs of the continuous-time variablex(t):
xk = x(kTs).

[18]. Unfortunately, (8) contains the successiveα-order frac-
tional derivatives of the input-ouput data which are not measured
in most practical cases and which are difficult to estimate partic-
ularly in a noisy framework [23].

To avoid this difficulty, the following operator (fractional
low-pass filter) is introduced:

Λ(s) =
1

1+
(

s
ω f

)α =
1

1+ τsα with τ = (1/ω f )
α. (9)

Let us consider the Laplace transform of (6)-(7):

sαX(s) = AX(s)+BU(s)+KE(s) (10)

Y(s) = CX(s)+DU(s)+E(s). (11)

Then, (10) can be expressed as:

X(s) = (I + τA)[Λ(s)X(s)]+ τB[Λ(s)U(s)]+ τK[Λ(s)E(s)]

= Aλ[Λ(s)X(s)]+Bλ[Λ(s)U(s)]+Kλ[Λ(s)E(s)]

with Aλ = I + τA, Bλ = τB and Kλ = τK. Application of the
inverse Laplace transform leads to the following system of linear
equations:

x(t) = Aλ[λx(t)]+Bλ[λu(t)]+Kλ[λe(t)] (12)

y(t) = Cx(t)+Du(t)+ e(t) (13)

whereλx(t), λu(t) andλe(t) correspond to the states, the inputs
and the noise prefiltered byΛ in (9). Then, from (13), it is found
by recursion that:

y(t) = Cx(t)+Du(t)+ e(t)

= CAλ[λx(t)]+CBλ[λu(t)]+Du(t)+CKλ[λe(t)]+ e(t)
...

= CAk
λ[λ

kx(t)]+
k

∑
j=1

CAk− j
λ Bλ[λk− j+1u(t)]+Du(t)

+
k

∑
j=1

CAk− j
λ Kλ[λk− j+1e(t)]+ e(t)

for k ∈ N
∗, whereλkx(t) denotes the signals obtained fromx(t)

by filtering through a series ofk low-pass filtersΛ. In the same
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way, it is found forl ∈ N
∗:

λly(t) = C[λl x(t)]+D[λlu(t)]+ [λle(t)]

= CAλ[λl+1x(t)]+CBλ[λl+1u(t)]+D[λlu(t)]

+CKλ[λl+1e(t)]+ [λle(t)]
...

= CAk−l
λ [λkx(t)]+

k−l

∑
j=1

CAk− j−l
λ Bλ[λk− j+1u(t)]

+D[λlu(t)]+
k−l

∑
j=1

CAk− j−l
λ Kλ[λk− j+1e(t)]+ [λle(t)]

with k ≥ l . As a consequence, the input-output data can be for-
mulated as the following extended linear model (with no time
derivatives of the data):

Y (t) = Γi X (t)+ Φi U (t)+ ΨiE (t) (14)

with state, input-output and noise variables:X (t) = λi−1x(t)

Y (t) =













λi−1y(t)
λi−2y(t)

...
λ1y(t)
y(t)













, U (t) =













λi−1u(t)
λi−2u(t)

...
λ1u(t)
u(t)













, E (t) =













λi−1e(t)
λi−2e(t)

...
λ1e(t)
e(t)













and:

Γi =











C
CAλ

...
CAi−1

λ











, Φi =













D 0 · · · 0

CBλ D
. . .

...
...

. . .
. . . 0

CAi−2
λ Bλ · · · CBλ D













,

Ψi =













I 0 · · · 0

CKλ I
. . .

...
...

. . .
. . . 0

CAi−2
λ Kλ · · · CKλ I













whereΓi ∈ R
ip×n is the extended observability matrix andΦi ∈

R
ip×im, Ψi ∈ R

ip×im are block Toeplitz matrices. Now, fromN
available input-output samples observed at discrete timestk =
kTs for k = 0, . . . ,N− 1, the extended linear model (14) can be
rewritten as:

YN = Γi XN + Φi UN + ΨiEN (15)

where

UN =















[λi−1u]0 [λi−1u]1 · · · [λi−1u]N−1

[λi−2u]0 [λi−2u]1 · · · [λi−2u]N−1
...

...
...

[λu]0 [λu]1 · · · [λu]N−1

u0 u1 · · · uN−1















∈ R
mi×N

and [λ ju]k = λ ju(tk) denotes the sampled filtered data. The
matricesYN ∈ R

pi×N, XN ∈ R
n×N and EN ∈ R

mi×N are con-
structed in a similar way. The formulation given in (15) enables
to use subspace identification algorithms as in their original non-
factional discrete-time version. The difference is the addition of
a step in which the data are filtered (what is a classical step in
continuous-time identification [23]). This lowpass filtering in-
duces the tuning of an additional parameterω f whose the sensi-
bility has been studied in [24].

3.1 Deterministic framework : MOESP algorithm
First, let us start by using the most popular subspace identi-

fication method called MOESP (MIMO output-error state space)
algorithm [18,25]. This is a deterministic approach based on the
properties of the noiseless version of (15):

YN = Γi XN + Φi UN. (16)

The principle of this algorithm is as follows:

1. Compute the LQ decomposition of the data matrix:

[

UN

YN

]

=

[

L11 0
L21 L22

][

QT
1

QT
2

]

(17)

whereL11 ∈ R
im×im, L21 ∈ R

ip×im, L22 ∈ R
ip×ip with L11,

L22 lower triangular, andQ1 ∈ R
N×im, Q2 ∈ R

N×ip are or-
thogonal.

2. Compute the singular value decomposition (SVD) of theL22

matrix approximating the column space ofΓi :

L22 =
[

U1 U2
]

[

Σ1 0
0 0

][

VT
1

VT
2

]

(18)

whereU1 ∈R
ip×n, U2 ∈R

ip×(ip−n) andΣ1 ∈R
n×n. The state

ordern can be estimated from the SVD sincen = dimΣ1 in
the noiseless case.

3. Estimate the extended observability matrix:Γ̂i = U1Σ1/2
1 .

4. Estimate theC matrix: Ĉ = Γ̂i(1 : p,1 : n).
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5. EstimateAλ by solving the linear equation:

Γ̂i
(

1 : p(i −1),1 : n
)

Aλ = Γ̂i
(

p+1 : ip,1 : n
)

. (19)

6. Estimate theBλ andD matrices. For that purpose, it can be
shown that:

UT
2 Ψi = UT

2 L21L
−1
11 (20)

which is a linear equation with respect toBλ andD. Define:

UT
2 ,

[

L1 L2 · · · L i
]

(21)

UT
2 L21L

−1
11 ,

[

M 1 M 2 · · · M i
]

(22)

with Lk ∈ R
(ip−n)×p andM k ∈ R

(ip−n)×m for k = 1, . . . , i.
Thus, from (20):

L1D+L2ĈD+ · · ·+L iĈÂi−2
λ Bλ =M 1

L2D+L3ĈD+ · · ·+L iĈÂi−3
λ Bλ =M 3

...
L i−1D+L iĈD =M i−1

L iD =M i .

DefineL̄k = [Lk . . . L i ] ∈ R
(ip−n)×(i+1−k)p, k = 2, . . . , i, and

get the following overdetermined system of linear equations:















L1 L̄2Γ̂i−1

L2 L̄3Γ̂i−2
...

...
L i−1 L̄ i Γ̂1

L i 0















[

D
Bλ

]

=















M 1

M 2
...
M i−1

M i















(23)

where the block coefficient matrix in the left-hand side is
i(ip−n)× (p+n)-dimensional. Estimates ofBλ andD are
obtained by finding the least-squares solution of (23).

The matrices of the fractional continuous-time state-space repre-
sentation (10)-(11) are then deduced as follows:Â = 1

τ (Âλ − I),
B̂ = 1

τ B̂λ. TheĈ andD̂ matrices do not change.
This method is consistent in its discrete-time version if the

output noise (w) is white and if there is no process noise (v = 0).
In our framework, the filtering of the input-output data calls the
consistency into question.

3.2 Stochastic framework: PO-MOESP algorithm
In a stochastic framework, instrumental variables can be

used to remove the noise effect. The most popular method in
this context is the PO-MOESP (Past Output MIMO Output-Error
State Space) algorithm [25, 26]. First, the input and outputdata
and the noise matrices are partitioned into two parts:

UN =

[

U p

U f

]

, YN =

[

Y p

Y f

]

, EN =

[

E p

E f

]

. (24)

The number of block rows inU p, Y p andE p is denoted byβ. The
number of block rows inU f , Y f andE f is thenγ = i −β. These
numbers can be chosen arbitrary, but it is generally preferred to
setβ = γ. By considering only the second part of these matrices,
(15) becomes:

Y f = Γγ X f + Φγ U f + ΨγE f . (25)

The instrumental variable introduced to remove the effectsof the
noise isZ = [U T

p Y
T
p ]T . Hence, the principle of the PO-MOESP

algorithm is as follows:

1. Compute the LQ decomposition of the data matrix:









U f

U p

Y p

Y f









=









L11 0 0 0
L21 L22 0 0
L31 L32 L33 0
L41 L42 L43 L44

















QT
1

QT
2

QT
3

QT
4









(26)

where all the matricesL j j are lower triangular and all the
matricesQ j are orthogonal (forj = 1,2,3,4).

2. Compute the SVD of[L42 L43] which approximates the col-
umn space ofΓγ:

[

L42 L43
]

=
[

U1 U2
]

[

Σ1 0
0 0

][

VT
1

VT
2

]

(27)

whereU1 ∈ R
ip×n, U2 ∈ R

ip×(ip−n) andΣ1 ∈ R
n×n. As for

the MOESP algorithm, the state-space ordern can be esti-
mated by calculating the number of significant singular val-
ues of

[

L42 L43
]

.

The following steps 3, 4, 5 and 6 are the same as for the MOESP
algorithm.

4 FRACTIONAL ORDER ESTIMATION
In this section, we assume that the fractional derivative order

α ∈ (0,2) is unknown and has to be estimated by minimizing a
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ŷ

Figure 1. OUTPUT DATA y AND OUTPUT OF THE ESTIMATED

MODEL ŷ WITH MOESP (SNR=20 dB, i = 8 AND ω f = 6).

quadratic criterion:

α̂ = arg min
α∈(0,2)

1
2
‖ŷc(α)−yc‖

2
2, (28)

whereyc is the vector (of lengthpN) obtained by concatenating
thep system outputs and̂yc(α) is the vector obtained by concate-
nating thep outputs of the state-space representation estimated
with one of the subspace methods (MOESP or PO-MOESP) for
a givenα. The value ofα in (28) is obtained by a nonlinear
optimization technique. The iterative algorithm used is based
on a subspace trust-region method and on the interior-reflective
Newton method described in [27]. Consequently, the proposed
subspace algorithm is executed at each iteration of the optimiza-
tion technique. The number of state variablesn is assumed to be
known. However, it may be estimated by using order estimation
criteria presented in [28] .

5 SIMULATION EXAMPLES
The algorithms are applied to input-output data of length

N = 1023 generated by simulating the linear system (1)-(2) with
α = 0.9,

A =

[

0 −0.1
1 −0.2

]

,B =

[

1
0

]

,C =

[

0 0.1
0.5 −0.1

]

,D =

[

0
0

]

,

and zero initial conditions (x(t) = 0 for t ≤ 0). The input sig-
nal is a pseudo-random binary sequence (PRBS) with maximum
length. The sampling period isTs = 0.05s. The outputs (Fig. 1)

are corrupted by white noise with a signal-to-noise ratio (SNR)
of 20 dB. The influence of the method parameters (the number
of block rows i and the filter frequencyω f ) has been studied
in [24]. It was shown thatω f can be chosen in a suitable range
over one decade, between 1 and 10 and that the choice ofi influ-
ences more the results: acceptable results are obtained starting
from i = 6. For this example, the algorithm parameters are fixed
to i = 8 andω f = 6.

5.1 Using the MOESP algorithm
The estimation results with the MOESP algorithm are:

α̂ = 0.8894,

Â =

[

0 −0.1008
1 −0.1757

]

, B̂ =

[

1
0

]

,

Ĉ =

[

0.0012 0.1012
0.4997−0.0923

]

,D̂ =

[

1.3782 10−3

−0.6763 10−3

]

.

The normalized prediction error norm‖ŷ− y‖2/‖y‖2 equals
0.1050 (−19.57 dB) for the first output and 0.1008 (−19.93 dB)
for the second one.

To analyze the statistical properties of the estimator, three
Monte Carlo simulations are carried out for SNR of 20, 15 and
10 dB. Each simulation is done with 500 runs with different re-
alizations of noise. The means of the normalized error norms,
obtained withi = 8 andω f = 6, are given in Tab. 1. Figure 2
shows the estimated poles. The normalized mean squared error
(MSE) of the poles are indicated in Tab. 2. It can be seen that the
pole estimator is biased. Moreover, as shown in the histograms
of the estimated orderα in Fig. 3, the order estimate is also bi-
ased, and the bias increases with the noise level. These biases
are obviously introduced by the MOESP algorithm. Indeed, in
order to guarantee the consistency of the estimates using this al-
gorithm, the input must satisfy the persistent excitation condition
(verified with a PRBS for example) and the output noise have to
be white [29]. In fact, the latter condition is not satisfied because
of the data filtering.

5.2 Using the PO-MOESP algorithm
The PO-MOESP algorithm applied to the same input-output

data gives the following estimates:

α̂ = 0.9021,

Â =

[

0 −0.0999
1 −0.2072

]

, B̂ =

[

1
0

]

,

Ĉ =

[

0.0006 0.1007
0.5008−0.1020

]

,D̂ =

[

0.4564 10−3

0.0491 10−3

]

.
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Table 1. MEANS OF THE NORMALIZED ERROR NORMS.

output SNR=20 dB SNR=15 dB SNR=10 dB

M
O

E
S

P 1
0.1026 0.1834 0.3327

(−19.78 dB) (−14.73 dB) (−9.56 dB)

2
0.1005 0.1797 0.3282

(−19.95 dB) (−14.91 dB) (−9.68 dB)

P
O

-M
O

E
S

P

1
0.1000 0.1760 0.3038

(−20.00 dB) (−15.09 dB) (−10.35 dB)

2
0.0991 0.1745 0.3010

(−20.08 dB) (−15.16 dB) (−10.43 dB)

Table 2. NORMALIZED MSE OF THE POLES.

SNR MOESP PO-MOESP

20 dB (−0.4952± i 0.8875).10−4 (0.4661± i 0.5006).10−4

15 dB (−0.2530± i 0.6315).10−3 (0.1634± i 0.1976).10−3

10 dB (−0.1208± i 0.5740).10−2 (0.4651± i 0.7347).10−3

The normalized prediction error norm equals 0.0983
(−20.15 dB) for the first output and 0.0989 (−20.09 dB)
for the second one. So the results are improved with the
PO-MOESP algorithm.

The same Monte Carlo simulations are performed as previ-
ously. Table 1 gives the means of the normalized error norms.
Figure 4 shows the estimated poles. Their normalized MSE are
indicated in Tab. 2. The estimates are unbiased but a slight in-
crease of the variance is observed as compared to the results
obtained with the MOESP algorithm. However, the normalized
MSE is smaller, especially for a low SNR.

As shown in the histograms of the estimated orderα in
Fig. 5, the estimation is now unbiased. Moreover, the variance
on the estimated parameterα is improved.

6 CONCLUSION
This paper focuses on the identification of continuous-time

fractional state-space representation. Thanks to an adapted data
filtering, we have shown that subspace-based algorithms canbe
used to estimate the state-space matrices. Results on the identi-
fication of a multivariable system with the well-known MOESP
and PO-MOESP algorithms are given. The commensurate dif-
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Figure 2. ESTIMATED POLES WITH MOESP, WHERE + DENOTES

THE TRUE POLES.
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Figure 4. ESTIMATED POLES WITH PO-MOESP, WHERE + DE-

NOTES THE TRUE POLES.

ferentiation order is estimated by using nonlinear programming.
Simulation examples have shown that the estimators are biased
with the MOESP algorithm. However, the PO-MOESP algo-
rithm eliminates this bias by using an instrumental variable. The
limitation of this approach is that the design of the instruments
requires an increased number of block rowsi, i.e. an increase
of the series of fractional low-pass filtersΛ(s), which leads to
an excessive computational cost. So, a future work could be to
consider another instruments to solve this problem.
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Figure 3. HISTOGRAMS OF THE ESTIMATED COMMENSURATE ORDER α WITH MOESP.
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Figure 5. HISTOGRAMS OF THE ESTIMATED COMMENSURATE ORDER α WITH PO-MOESP.
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