N
N

N

HAL

open science

Multidimensional Multifractal Random Measures

Rémi Rhodes, Vincent Vargas

» To cite this version:

Rémi Rhodes, Vincent Vargas. Multidimensional Multifractal Random Measures. 2009.

00394758

HAL Id: hal-00394758
https://hal.science/hal-00394758

Preprint submitted on 12 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-


https://hal.science/hal-00394758
https://hal.archives-ouvertes.fr

Multidimensional Multifractal Random Measures

June 12, 2009

Rémi Rhodes, Vincent Vargas
CNRS, UMR 7534, F-75016 Paris, France

Université Paris-Dauphine, Ceremade, F-75016 PariscEran
e-mail:r hodes @er enade. dauphi ne. fr,

var gas@er enade. dauphi ne. fr

Abstract

We construct and study space homogeneous and isotropemameasures (MMRM)
which generalize the so-called MRM measures constructét].irOur measures satisfy
an exact scale invariance equation (see equation (1) balusvdre therefore natural mod-
els in dimension 3 for the dissipation measure in a turbiuflent
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1 Introduction

The purpose of this paper is to introduce a natural multidisi@nal generalization (MMRM)
of the one dimensional multifractal random measures (MRitpduced by Bacry and Muzy
in[1]. The measures/ we introduce are different from zero, homogeneous in spsatppic
and satisfy the following exaccale invariancerelation: if 7' denotes some given cutoff
parameter then the following equality in distribution hefdr all A €]0, 1]:

(1) (MOAA)) acpor) ") A (M(A)) ac s



whereB(0, T) is the euclidian ball of radiug in R and(2, is an infinitely divisible random
variable independent ¢f\/(A)) 4c po,r)- Let us note that a multi-dimensional generalization
of MRM has already been proposed in the litterature ([5])weeer, this generalization is not
exactly scale invariant. Let us stress that to our knowledggtion (1) has never been studied
mathematically.

In dimensionl, MRM are non trivial stationary solutions to (1) for all €]0,1]. In
dimensiond > 2, MMRM are isotropic and homogeneous solutions to (1) fonadl]0, 1]. If
we consider a non negative random variablandependent fromd/ then the random measure
(YM(A))acra is also solution to (1) for alh €]0,1]. This leads to the following open
problem (unicity):

Open problem 1. Consider two homogeneous and isotropic random Radon mes&land
M’ on the Borebr-algebra3(R?). We suppose that there exists some cutoff pararfieseich
that M and M’ satisfy (1) for all\ €]0,1]. Can one find (in a possibly extended probability
space) a non negative random variabl€Y”) independent o/ (1’) such that the following
equality in law holds:

(law)

(YM(A))AcB(O,T) = (Y/M/(A))ACB(O,T)

The study of equation (1) is justified on mathematical andsptay grounds. Before re-
viewing in some detail the physical motivation for constimg the MRMM measures and
studying equation (1), let us just mention that equatiorhél) recently been used in the prob-
abilistic derivation of the KPZ (Knizhnik-Polyakov-Zanmalchikov) equation introduced ini-
tially in [11] (see [6], [15]).

1.1 MMRM in dimension 3: a model for the energy dissipation ina tur-
bulent flow

Equations similar to (1) were first proposed in [3] in the extbf fully developed turbulence.
In [3], the authors conjectured that the following relatghould hold between the increments
of the longitudinal velocityv at two scale$, !’ < T, whereT is an integral scale characteris-
tic of the turbulent flow: ifF;(év), Py (dv) denote the probability density functions (p.d.f.) of
the longitudinal velocity difference between two pointpa@ted by a distandel’, one has:

2 P(6v) :/RGl,l/(x)B/(e_“”cSv)e_“”dx,

whereG, ; is a p.d.f. If one makes the assumption that ¢he depend only on the factor
A = I/l (scale invariance), then it is easy to show that¢he are the p.d.fs of infinitely



divisible laws. Under the assumption of scale invarianteye taked = 1, A = [0,!],
A =1/lI'"andQ, — dIn(\) of p.d.f. G, in relation (1) (valid in fact simultaneously for all)
then equation (2) is the p.d.f. equivalent to (1).

Following the standard conventions in turbulence, we aabe (random) energy dissipa-
tion measure per unit mass andhe mean energy dissipation per unit mass in aB&ll, [):

[ — %E(B(o,z))

We believe the measures we consider in this paper can be msiaénsion3 to model the
energy dissipation in a turbulent flow. Indeed, it is believed that the velocisldiof a sta-
tionary (in time) turbulent flow at scales smaller than somtegral scalél’ (characteristic
of the turbulent flow) is homogeneous in space and isotrcgge (7]). Therefore, the mea-
suree is homogeneous and isotropic (as a function of the veloadigl¥iand according to
Kolmogorov’s refined similarity hypothesis (see for instarj4], [18] for studies of this hy-
pothesis), one has the following relation in law betweenltimgitudinal velocity increment
ov; of two points separated by a distaric@nde;:

(law

(S’Ul :) U(lEl)l/g,

whereU is a universal negatively skewed random variable indepetafe; and of law inde-
pendent of. Therefore, equations similar to (2) should also hold ferpid.f. ofe,. Finally,
let us note that the statistics of the velocity field and tHas those ot are believed to be uni-
versal at scales smaller th@nin the sense that they only depend on the average mean energy
dissipation per unit mass ¢ > defined by (note that the quantity below does not depend on
by homogeneity):

<e>=<¢ >

where<> denotes an average with respect to the randomness. Inyartithe law of
and the p.d.f’s;;, are completely universal, i.e. are the same for all flowsernéeless,
there is still a big debate in the phyics community on the ef@en of the p.d.f’'sG; . In
dimension3, the measures/ we consider are precisely models fgt.

The rest of this paper is organized as follows: in section@ set the notations and give
the main results. In section 3, we give a few remarks conogrtiie important lognormal

case. In section 4, we gather the proofs of the main theorésection 2.




2 Notations and main Results

2.1 Independently scattered infinitely divisible random masures.

The characteristic function of an infinitely divisible rand variableX can be written as
E[e’eX] = e#(@), wherey is characterized by the Lévy-Khintchine formula

o(q) = imq — %azq2 + / (e — 1 —igsin(z)) v(dr)
R*
andv(dz) is the so-called Lévy measure. It satisfigs min(1, 2?) v(dz) < 4oc.
Let G be the unitary group dR?, that is
G = {M € My(R); MM" =1}.

SinceG is a compact separable topological group, we can considentigue right translation
invariant Haar measurf with mass 1 defined on the Borelalgebral3(G). Let S be the
half-space

S={(t,y);t eR,y € R}}

with which we associate the measure (on the Beralgebra3(S))
O(dt, dy) = y2dt dy.

We consider an independently scattered infinitely divesiaindom measune associated
to (¢, H ® #) and distributed o x S (see [13]). More precisely, satisfies:
1) For every sequence of disjoint sétt, ),, in B(G™* x S), the random variablg$:.(A,,)),

are independent and

2) for any measurable setin B(G x S), u(A) is an infinitely divisible random variable
whose characteristic function is

E(eiqu(A)) — prl@)HRO(A)

We stress the fact thatis not necessarily a random signed measure. Let us additignn
mention that there exists a convex functiodefined orR such that for all non empty subsets
AofG x S:

1. ¥(q) = +oo, if E(e?A) = 400,
2. E(emA)) = e¥@HEIA) gtherwise.

Let ¢. be defined ag. = sup{q > 0;1¢(q) < +oo}. Foranyq € [0, ¢.[, ¥(q) < +oo and
¥(q) = p(—iq).



2.2 Multidimensional Multifractal Random Measures (MMRM) .

We further assume that the independently scattered iffindigisible random measurg
associated t@p, H ® 6) satisfies:
$(2) < +oo,

andi (1) = 0. The conditiony (1) is just a normalization condition. The condtign2) <
+o0 is technical and can probably be relaxed to the conditiod usé§l]: there exists > 0
such that)(1 + ¢) < +oo0. However, in the multidimensional setting, the situatismmiore
complicated because there is no strict decorrelation ptpgemilar to the one dimensional
setting: in dimensiod > 2, there does not exist some distari¢such thatV/ (A) and M (B)

are independent for two Lebesgue measurable 4efs C R? separated by a distance of
at leastR. Nevertheless, the condition(2) < +oo is general enough to cover the cases
considered in turbulence: see [3], [16], [17].

Definition 2.3. Filtration 7. Let () be the probability space on whighis defined. F; is
defined as the-algebra generated by (A x B); A C G, B C S, dist(B,R*\ S) > [}.

Let us now define the functiofi: R, — R by:

0={% 151
The cone-like subset;(¢) of S is defined by:
Al(t) ={(ssy) € Ssy =1, —f(y)/2< s —t < f(y)/2}.
For forthcoming computations, we stress thatdarreal we have:
0(Ai(s) NAi(t)) = qi([t — s|)
whereg, : R, — R is given by (with the notatiom™ = maxx, 0)):

In(T/l)+1—-%, ifz <l
9l(x):{1n+(T/x) Y ofa >

For anyz € R? andm € G, we denote by the first coordinate of the vectaiz. The
cone product;(z) is then defined as:

Ci(x) = {(m,t,y) € G x 5;(t,y) € Aulzy")}-

Definition 2.4. w(x) process.The process(z) is defined asy(z) = p(Ci(x)).



Remark 2.5. For computational purposes, it is important that— w,(z) possesses a version
with a minimum of regularity. In the 1d-case, is cadlag as a sum of Lévy processes (see
[1]). In higher dimensions, we will prove in section 4.4 thatadmits a version with at most

a countable sets of discontinuities.

Definition 2.6. M, (dx) measure.For any! > 0, we define the measufé,(dr) = e(*) dz,
that is:

for any Borel measurable subsétcC R<.

Theorem 2.7. Multidimensional Multifractal Random Measure (MMRM).
With probability one, there exists a limit measure (in thasseof weak convergence of
measures):
M (dx) = ll_i}r(g M;(dx).

This limitis called the Multidimensional Multifractal Rdom Measure. The scaling exponent
of M is defined by

Vg >0, ((g)=dq—v(q)
Moreover:

i) a.s.,vo € RY, M({z}) = 0, i.e. M has no atoms,
i) for any bounded subsét of R¢, M (K) < +oo a.s. andE[M (K)] < |K].

Proposition 2.8. Homogeneity and isotropy

1. The measurd/ is homogeneous in space, i.e. the law f(A)) 4 g« coincides with
the law of(M (x + A)) 4cga for eachz € R

2. The measurd/ is isotropic, i.e. the law of M(A)) g« coincides with the law of
(M(mA)) scra for eachm € G.

Proposition 2.9. Stochastic scale invariance.

1. For any fixed\ €]0,1] and/ < T, the two processesvy(Ax)).cpo,r/2) and (2, +
wi(x))zcB(0,r/2) have the same law, whefe, is an infinitely divisible random vari-
able independent from the proce§s(z)).cso.1/2) and its law is characterized by
E[ei] = \=#(9),



2. Forany\ €]0, 1], the law of( M (AA)) ac p(o,r/2) IS €qual to the law of WM (A)) ac po,1/2)
whereW, = M\ andQ, is an infinitely divisible random variable (independent of
(M(A))acso,r/2)) and its characteristic function is:

E[eiqm] — )\

3. If{(q) # —occand0 < t < T then:

E[M(B(0,1))1] = (2t/T)*“WE[M(B(0,7/2))"].

Proposition 2.10. Non-triviality of the MMRM.

1. The measuré/ is different fron0 if and only if there exists > 0 such that(1+¢) > d;
in that caseE(M(A)) = |A|.

2. Letq > 1 and consider the unique € N such thatn < ¢ < n+ 1. If {(¢) > d and
(n+1) < oo, thenE[M(A)?] < +oo.

3 The limit lognormal case

In the gaussian case, we hayvg;) = 72¢*/2 and the condition(1 + ¢) > d corresponds to
v? < 2d. The approximating measurég are thus defined as:

)— P2EX(@)?)
2 T

M(A) = / Xz
A
whereX; is a centered gaussian field (equald@ — E[w,])/~) with correlations given by:
E[Xi(z)Xi(y)] = H ® 0(Ci(z) N Ci(y))
= [ oy =i tam).

The limit mesures\/ = lim;_, M,(dx) we define are in the scope of the theory of gaussian
multiplicative chaos developed by Kahane in [10] (see [d4Hn introduction to this theory).
Formally, the measurg/ is defined by:

M(A) = / X @-EEE gy
A

7



whereX is a centered "gaussian field" (in fact a random tempered!tision ) with correla-
tions given by:

E[X(2)X (y)] = / W+ (T[] — ) H (dm).

Let us suppose that = 1 for simplicity. Using invariance of the Haar measufeby mul-
tiplication, it is plain to see thdf[X ()X (y)] is of the formF(|y — z|) whereF' : R, —
R, U {occ}. We have the scaling relatiafi(ab) = In(1/a) + F(b) if « < 1 andb < 1 (see
also lemma 4.7 below) which entails that fet < 7"

F(la]) = In(1/]2]) —/Gln(\eﬂ)H(dm)-

wheree = (1,0,...,0) is the first vector of the canonical basis. As a corollary, wetbe
existence of some constafit (take C' = — [, In(|ef"|) H (dm)) such thatin(1/|z]) + C'is
positive definite (as a tempered distribution) in a neighbod of0. This easily implies that
In(1/|x|) is positive definite in a neighborhood 0f to our knowledge, this result is new.
This contrasts with the fact that™(1/|z|) is positive definite in dimensiod < 3 but is not
positive definite ford > 4 (see [14]).

Remark 3.1. It is plain to see that — |z|* is positive definite in a neighborhhod @fas a
function defined iR if « < 1. Therefore, one can consider the isotropic and positivendefi
function in a neighborhhood ofin R? defined by:

F(jz]) = /G (1= |2)2) H (dm).

By scaling, one can see thal(|z|) = 1 — C|z|* for someC' > 0. It is easy to see that this
entails thatl — |z| is positive definite in a neighborhodd of 0. Using the main theorem
in [12], one can extend — |z|* (defined inV) in an isotropic and positive definite function
defined inR¢. This is in contrast with the so called Kuttner-Golubov gash which is to
determine they, x > 0 such that(1 — |z|*)% is positive definite ilR?. It is known (see [8] for
instance) that fory > 0 the function(1 — |z|®), is not positive definite ilR¢ if d > 3.

4 Proofs

4.1 Proof of Theorem 2.7

The relationE[e«(®)] = ¥(VH®0(Ci(2)) — 1 ensures that for each Borelian subdet R?, the
processV/;(A) is a martingale with respect t§,. Existence of the MMRM then results from
[9]. Properties i) and ii) result from Fatou’s lemma. O



4.2 Characteristic function of w;(x)

The crucial point is to compute the characteristic functibw; (). We considefz?, ..., 29) €
(RY)7and(Ay,. .., \,) € R?and we have to compute

d(\) = E[ez’Alwz(w1)+---+ikqwz(w4>]_

Let us denote by, the permutation group of the sft., . . ., ¢}. For a generic elemente S,
we define
—{meG;alMm <. < gl

Finally, givenz, z € Rd, we define the cone like subset product:
CY(z) = Ci(z) N B? = {(m,t,y) € B x S;(t,y) € A(z]")}

and
CY(z,z) ={(m,t,y) € B” x S;(t,y) € A (=) N A=)}

Lemma 4.3. The characteristic function of the vectaw,(z"));<;<, exactly matches:

E[exp (z’)\lwz(xl) + -+ i)\qwl(xq)ﬂ = exp < Z i i a’ (7, /{;)pg(xo(k) _ xcr(y‘)))

0eS, j=1 k=1
wherep? (z) = H ® 0(C7 (0, z)), and:
a’ (g, k) = p(r g) + 80(7’/:+1,j—1) - 80(7’/:,]'—1) - @(7“13+1,j)

J

Z)\ (or 0if k > j).

Moreover,

Proof. Without loss of generality, we assume+# 27 for i # j. We point out that the family
(B%),es, is a partition ofG up to a set of null H-measure. The functiprbreaks down as:

¢()\) K [eD\lﬂ(Cl (Il))+"'+i>\qﬂ(cl($q))]
:E[ 2oes, Z'>\1H(Cf(Il))-i""‘i'“\q#(ci’(90‘1))}

— H E iAp(CF (z)) 4 +Z>\qu(c"(wq))]

oeSy



Let us fixo € S,. We focus on the term:

¢7(A) = B[Nl @)+ +idau(CF @O)] = | [T @Dt @D,
Giveno € S; andp < ¢, we further define:

67 (\, p) = I [ePoCF @) ttidgu(CF (a2 P)]
From now on, we adapt the proof of [1, Lemma 1] and proceedsaly. We define:
ZA P (™) Cia”@)),
which stands for the contribution of the points of the abawa $hat do not belong t6;(z°@).
Moreover, the points in the sé(27(@) can be grouped into the disjoint sets:
Cl( cr(k 0 )\C( o(k—1) o‘(q)).

We stress that the latter assertion is valid since,nioe B?, the coordinates are suitably

sorted, that isz7")"™ < 253 < ... < 279 We define:

X,j’q = M(Cz(xo(k), x”(q)) \ Cl<xo(k—1)7 xo’(q)))

with the conventiorC;(z°®), 27 = C) (27 27} = (), in such a way that one has:

q
Aoyi(CF (27M)) 4 -+ Agqu(CY (27 D)) = Y7 +> 1 X7,

k=1

Furthermore, since the variabig and( X7 ), are mutually independent, we get the following
decomposition:

(3) ¢0 zY" H zrk X

k=1

Similarly, one can prove:

q
(4) ¢7(Aq—1) = E["7] [[ E[e" 1]
k=1

10



Gathering (3) and (4) yields:

q E zrkq ]
¢7(A\q) = HE T ¥
For anym € B, one hag:{# "™ < z7®"™ < 17@™ and therefore;

E [¢2XEd] _ Pl H®0 (Ci(a®) a7 @N\Cy (2o k=) 2o (@) )

_ o #(@) (H20(CY(a7 ™) 27@) ~H@0(Cy 27+ 27@)) )
Note that:
H @ 6(Cy(a”?,2°0))) :/ O(Ay(7™) 0 Ay(279™)) H (dm)

:/ 6(A4:(0) N AP — 29 H (dm)
(a7 — 270)

The proof can now be completed recursively. O

4.4 Regqularity of w;

In the previous subsection, we have computed the finite dsinaal distributions of the pro-
cessw;. To prove that the limiting measurd inherit the properties of the finite dimensional
distributions ofv;, we need to establish some regularity properties ohamely that,, admits
a version with at most a countable set of discontinuities.

Remind that the functiop can be written as

1 .
imq — §Uzq2 + / (e — 1 —igsin(x)) v(dx).

Even if it means considering another measureve may (and will) assume thatis the sum
of three independent independently scattered infinitahsitile random measures, 1, 13
respectively associated with:

1

orla) = ima, eala) = =30, eala) = [ (€ =1~ igsin(a) vida),

11



Thenw,(z) is the sum of three independent random varighl€; () )+72(Cy () +u3(Ci(x)).
It is plain to see that fop > 1:

E[lpu(Ci(2)~m (Ciy) ] < CUD)z—yl,  E[lp2(Ci(a)—n(Cily))I”] < CUT)|a—y[P?

in such a way that the Kolmogorov criterion (see [19]) ensuih@ty, (C;(z)) andus(Ci(z))
admit a continuous version. Furthermore, the restrictibpoto F; is a Poisson random
measure. Hence, for each realizatign,is of the form Zfﬁ{)) dx,, whereZ is a random
variable taking values it and(X}); is a countable collection of iid random variables taking
valuesin{(m,t,y) € G x S;y > [}. Itis therefore plain to see that(C;(x)) admits at most

a countable set of discontinuities.

4.5 Homogeneity and isotropy

Lemma 4.3 is useful to prove the main properties of the MMRM FAstance, to prove
the invariance of the law of the MMRM under translations,uffises to prove that the law
of w; is itself invariant. This results from Lemma 4.3 since eagtmtpf (z°*) — 2°@) is
invariant under translations, that i#§ remains unchanged when you replace. . ., z? by
z' +z,..., 29+ z for a givenz € R,

Lemma 4.3 is nevertheless not very convenient to prove ttmisy of the MMRM so that
we give a proof by a direct approach. Once again, it is suffi¢ceeprove that the characteristic
function ofw; is invariant undexz. This time, we compute that characteristic function in a
more direct way. We consider, ..., 27 € R%, \;,..., )\, € R andm, € G, and define the
function

q
flm,t,y) = Z My zry (M, T, ).

k=1
We have, using the right translation invariance of the Ha@asure:

E[exp <i)\1wl(mox1) +- i)\qwl(moxq)ﬂ :E[exp (z / f(mmg,t,y) u(dm, dt, dy))}
=exp (/(p o f(mmo,t,y)H(dm)Q(dt,dy)>

—exp / oo Flm. t.y)H(dm)0(dr. dy))
:E[exp <z’)\1wl(x1) +- 4 i)\qwl(xq)ﬂ .

The isotropy follows. 0J

12



4.6 Exact scaling and stochastic scale invariance

Lemma 4.7. Exact scaling ofM;(dz). For all A € (0,1] andz!,... 27 € B(0,7/2), the
functionspy satisfy the exact scaling relation

(5)

q J
53 et k(e — Aal 53
0ESy j=

€S, j=1 k=1

q

J
3" a7k (a0 — 7).

1 k=1

Proof. We remind that for: real we havefAl(O)mAl(x) 0(dt, dy) = g,(|z|). GivenB C G and
r € R?, we define:

(@) = [ Lalm)Lpeaonnepn Ol dy)H dm).
Then we can compute the functipfi:

() = [ Talm)Uepenonn ey Hamptds) = [ ([ ot dy) ) H (dm)

A (0)NA (=1")

= [ ((n@/ + 1= YD) Dy + (T D i) H )

Given\ €]0,1] andx € B(0,7):

T | Az |
phiv) = [ ((n(5) + 1= i) Bsprcn + n

:/;((h’m%)—i_l_@)ﬂx <+ In(— -

|27

T
WWMSM%ST) H(dm)
)< e |<T>H(dm)
— 111()\) / I[|x71n|§l + I[l§|xvln|§TH(dm)
B
=p(x) —In(A\)H(B)

13



We therefore obtain:

q 7
DX a7l k)t = a7
0€S, j=1 k=1

=33 S @GR =27~ () S0 ST a7 (i k) H(BY)
0€S, j=1 k=1 0€Sy j=1 k=1

=33 S @G A 7 - 270) — () S (3 A H(B)
0€S, j=1 k=1 ceS, k=1

=3 S @G (@ - 270 — (N3N O

0€Sy j=1 k=1 k=1

From Lemma 4.3, we deduce that, for any (0, 1], there exists a random variallg

law

such tha{wx (Az))zeo,r/2) = (Cx + wxi(AT))zep(0,r/2) @nd such that’y is independent of
(wni(Ax))zep0.1/2) @and its characteristic function is given Bye'?“x] = A\=#(@). By integrat-
ing the previous relation, we obtain the relation:

(Mxi(AA)) acBo,1/2) faw Wi (M (A)) acBo,1/2)

wherel, = M\e“ is a random variable independent(@;(A)) ac 5(o.7/2)-

4.8 Non-triviality of the MMRM

Suppose we can find a "cub€’; = [0, R]¢ andgq > 1 such that:
E[M(Cr)!] < +oc.

Then we can finch € N such tha0,2 "R]¢ c B(0,T/2). We split the cub&’, into 24

smaller cubes .

ctr = T[k2 ™R, (ki + 1)27"R),

1=1

wherek = (ki,...,kq) € N} “I NI [0,2" — 1]¢. For each fixed value af, the cubes
(C*™)x, where the index varies in N7 form a partition ofCr. Thus, by using the super-

14



additivity of the functionz — 2%, we have:

E[M(Cr)7] = E[( S M(C’“’"))q}

keNY

>Z M(C*™)1]

keN}

By using the translation invariance and the scale invaggroperty of the MMRM, we de-
duce:

E[(M(CF™)Y] =E[(M(C*™)"] =E[(M(27"Cg))!] = 27WE[(Cg))1].
Finally, gathering the previous inequalities yields:
E[(Cr))’] 2 2" @WE[(CR))’]

in such a way that, necessarity(g) > d. O
The proof of 1. and 2. is then a consequence of the followingea:

Lemma 4.9. Letq > 1 and consider the unique € N such that, < g <n+ 1. If {(¢) > d
and(n + 1) < oo, then we can find a consta@tsuch that:

sgp E[M([o, T)d)q] <C.

Proof. The proof is an adaptation of the one in [1] (which is itselfamiaptation of the corre-

sponding resultin [2]). Unfortunately, the multi-dimeosal setting is a bit more complicated
because there is no strict decorrelation property simildhé one dimensional setting. With
no restriction, we can suppose tiat= 1 andd = 2. We consider the following dyadic

partition of the cubéo, 1)*:

1)2 = m

0,1) O<ijg2m—1 v

whereIi(f;"”) = [2%”, i;;}) X [2{”, 2m) Let us write the above decompostion in the following
form:

[0,1)2=CLUC,UC3U Cy.

where

_ (m) _ (m)
Cl N iandL]J' evenli’j ’ Cz o i anc%Jj oddI iJ
and
Cs= U I = u I

i odd and j even v i even and j odd bJ
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Since the measur&/; is homogeneous, we get:

E[M,([0,1)%)7] < 497! ZE[MZ(CZ-)%

< 49E[My(Cy)1).
Now we get the following by subadditivity of — 2%/ (+1):
E[MC)T] =E[( D ML)]

0<i,j<am—1_1

= E[((Q_ My(I573,))" )2/ +0)]

i?j

SRS [ e

i17j1 ~~~~~ in+17jn+1 k=1

<e[ Y <f[Ml<I§2’;?2jk>>q/("“’]

11,015 0n+1,Jn+1 k=1

= 22mDE[M(I59)] + S E[[] M 15, /]
11,015 0in+1,Jn+1 k=1
< 22m=DE[M(IS9)9] + S R[] M 12(22?%)}‘”("“)

115015 5in+1:Jn+1 k=1

3
WherezilJhminﬂ’jn+1 is a sum over indices, ji, . . . 1,41, jns1 Which are not all equal and
the last inequality is a consequence of Jensen’s inequdlitgrefore each term in the above
sum is of the form:

k
(6) E[HM([(m) ) T.}Q/("‘f‘l)

20,27y
r=1
where the sequence of positive integéts);<,<x satisﬁest:1 n, + 1 and thely; ,; are
disjoint intervals wich lie at a distance of at Ieg%it We want to show that each term of the
form (6) is bounded by some quantity, independent of. We get the following computation
using Fubini:

k
e[ ] - [ o T PRI
r=1

I XX Lok

211,271 245,25
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We defineN, = n; + --- + n, for r in [1, k] and we introduce the following set, =
Al(l'l, R ,1’"+1)Z

A = U, (Un,<i<n, ,—1Ci(2")) N (UergjgNT/H—lCl(xj))~

By construction ofA4,, if 2* and 2’ are in two differently; »;, then u(C)(2*) \ A;) and
u(Ci(2?) \ A;) are independent. Therefore we get the following factoidzrat

E[ewl(rl)*"”-’-wl(rnﬂ)] — E[éﬂ (n+1)H®0(A;) }E[eﬂ(cl DNAL) A+ +H(Cl(90n+1)\441)}

k
—E[ P(n+1)HR0 Al HE ZNT<Z<N,+1 1 (G )\Az)]
r=1

E [ew(nﬂ H®6(Al)} k

H E [ew(nr H®0(A )]

E [eZNTSiSNT.Hﬂ wz(wi)} .

We have the following inequality:

HeOA)<> > HeC@)NC(@).

r<r’ Np<i<Np;i1—1

N/ <G<Np -1

Note that for each’, 27 in the above sum we haye’ —z7| > -1 and thereforé? @6(Cy(z")N

Ci(27)) is bounded by some constant dependingrobut independent of Indeed, using the
notation of section 3 foF’, we get:

H @ 0(Ci(2") N Ci(a?)) = /ng(l(xi)T — (2/)7") H (dm)
< F(ja' — 7))

5,

<F(2m

In conclusion, we get the existence of some congignsuch that:

k
E[e(@ -t ™) < ¢ T E[eXrssmmn—r @],

r=1
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Thus, we get by integrating the above relation:
k k
E[[] M5, ] < Co [[E[M(I,;)™ ]
r=1 r=1

Since each, is less or equal ta, we get by induction thaE[Ml(IQ(?:,)%)"T] is bounded
independently of and so is the above product. In conclusion, we get the existehC,,
such that we have:

E[M,([0,1]%)7] < 49122 E[M,(1{3)7] + Cp.

Using stochastic scale invariance, we get that:

2m

E[Mi([0,1]2)7] <477

< 47 S B[ M ([0, 1)] + Cin

22m
< 4T S BIMU(0, 1)) + Con.
Since¢(q) > 2, we can choose: such thatl'—! ;27 < 1 and therefore we get:
C
2\q < m
BT < T
which entails the result. O
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