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Abstract

We construct and study space homogeneous and isotropic random measures (MMRM)
which generalize the so-called MRM measures constructed in[1]. Our measures satisfy
an exact scale invariance equation (see equation (1) below)and are therefore natural mod-
els in dimension 3 for the dissipation measure in a turbulentflow.
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1 Introduction

The purpose of this paper is to introduce a natural multidimensional generalization (MMRM)
of the one dimensional multifractal random measures (MRM) introduced by Bacry and Muzy
in [1]. The measuresM we introduce are different from zero, homogeneous in space,isotropic
and satisfy the following exactscale invariancerelation: if T denotes some given cutoff
parameter then the following equality in distribution holds for allλ ∈]0, 1]:

(1) (M(λA))A⊂B(0,T )
(law)
= λdeΩλ(M(A))A⊂B(0,T ),
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whereB(0, T ) is the euclidian ball of radiusT in R
d andΩλ is an infinitely divisible random

variable independent of(M(A))A⊂B(0,T ). Let us note that a multi-dimensional generalization
of MRM has already been proposed in the litterature ([5]). However, this generalization is not
exactly scale invariant. Let us stress that to our knowledgeequation (1) has never been studied
mathematically.

In dimension1, MRM are non trivial stationary solutions to (1) for allλ ∈]0, 1]. In
dimensiond ≥ 2, MMRM are isotropic and homogeneous solutions to (1) for allλ ∈]0, 1]. If
we consider a non negative random variableY independent fromM then the random measure
(YM(A))A⊂Rd is also solution to (1) for allλ ∈]0, 1]. This leads to the following open
problem (unicity):

Open problem 1. Consider two homogeneous and isotropic random Radon measuresM and
M ′ on the Borelσ-algebraB(Rd). We suppose that there exists some cutoff parameterT such
thatM andM ′ satisfy (1) for allλ ∈]0, 1]. Can one find (in a possibly extended probability
space) a non negative random variableY (Y ′) independent ofM (M ′) such that the following
equality in law holds:

(YM(A))A⊂B(0,T )
(law)
= (Y ′M ′(A))A⊂B(0,T )

The study of equation (1) is justified on mathematical and physical grounds. Before re-
viewing in some detail the physical motivation for constructing the MRMM measures and
studying equation (1), let us just mention that equation (1)has recently been used in the prob-
abilistic derivation of the KPZ (Knizhnik-Polyakov-Zamolodchikov) equation introduced ini-
tially in [11] (see [6], [15]).

1.1 MMRM in dimension 3: a model for the energy dissipation ina tur-
bulent flow

Equations similar to (1) were first proposed in [3] in the context of fully developed turbulence.
In [3], the authors conjectured that the following relationshould hold between the increments
of the longitudinal velocityδv at two scalesl, l′ < T , whereT is an integral scale characteris-
tic of the turbulent flow: ifPl(δv), Pl′(δv) denote the probability density functions (p.d.f.) of
the longitudinal velocity difference between two points separated by a distancel, l′, one has:

(2) Pl(δv) =

∫

R

Gl,l′(x)Pl′(e
−xδv)e−xdx,

whereGl,l′ is a p.d.f. If one makes the assumption that theGl,l′ depend only on the factor
λ = l/l′ (scale invariance), then it is easy to show that theGl,l′ are the p.d.f.’s of infinitely
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divisible laws. Under the assumption of scale invariance, if we taked = 1, A = [0, l′],
λ = l/l′ andΩλ − d ln(λ) of p.d.f.Gl,l′ in relation (1) (valid in fact simultaneously for allA)
then equation (2) is the p.d.f. equivalent to (1).

Following the standard conventions in turbulence, we noteǫ the (random) energy dissipa-
tion measure per unit mass andǫl the mean energy dissipation per unit mass in a ballB(0, l):

ǫl =
3

4πl3
ǫ(B(0, l))

We believe the measures we consider in this paper can be used in dimension3 to model the
energy dissipationǫ in a turbulent flow. Indeed, it is believed that the velocity field of a sta-
tionary (in time) turbulent flow at scales smaller than some integral scaleT (characteristic
of the turbulent flow) is homogeneous in space and isotropic (see [7]). Therefore, the mea-
sureǫ is homogeneous and isotropic (as a function of the velocity field) and according to
Kolmogorov’s refined similarity hypothesis (see for instance [4], [18] for studies of this hy-
pothesis), one has the following relation in law between thelongitudinal velocity increment
δvl of two points separated by a distancel andǫl:

δvl
(law)
= U(lǫl)

1/3,

whereU is a universal negatively skewed random variable independent of ǫl and of law inde-
pendent ofl. Therefore, equations similar to (2) should also hold for the p.d.f. ofǫl. Finally,
let us note that the statistics of the velocity field and thus also those ofǫ are believed to be uni-
versal at scales smaller thanT in the sense that they only depend on the average mean energy
dissipation per unit mass< ǫ > defined by (note that the quantity below does not depend onl
by homogeneity):

< ǫ >=< ǫl >

where<> denotes an average with respect to the randomness. In particular, the law of ǫ
<ǫ>

and the p.d.f.’sGl,l′ are completely universal, i.e. are the same for all flows; nevertheless,
there is still a big debate in the phyics community on the exact form of the p.d.f.’sGl,l′. In
dimension3, the measuresM we consider are precisely models forǫ

<ǫ>
.

The rest of this paper is organized as follows: in section 2, we set the notations and give
the main results. In section 3, we give a few remarks concerning the important lognormal
case. In section 4, we gather the proofs of the main theorems of section 2.
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2 Notations and main Results

2.1 Independently scattered infinitely divisible random measures.

The characteristic function of an infinitely divisible random variableX can be written as
E[eiqX ] = eϕ(q), whereϕ is characterized by the Lévy-Khintchine formula

ϕ(q) = imq −
1

2
σ2q2 +

∫

R∗

(eiqx − 1 − iq sin(x)) ν(dx)

andν(dx) is the so-called Lévy measure. It satisfies
∫

R∗ min(1, x2) ν(dx) < +∞.
LetG be the unitary group ofRd, that is

G = {M ∈ Md(R);MM t = I}.

SinceG is a compact separable topological group, we can consider the unique right translation
invariant Haar measureH with mass 1 defined on the Borelσ-algebraB(G). Let S be the
half-space

S = {(t, y); t ∈ R, y ∈ R
∗
+}

with which we associate the measure (on the Borelσ-algebraB(S))

θ(dt, dy) = y−2dt dy.

We consider an independently scattered infinitely divisible random measureµ associated
to (ϕ,H ⊗ θ) and distributed onG× S (see [13]). More precisely,µ satisfies:

1) For every sequence of disjoint sets(An)n in B(G+×S), the random variables(µ(An))n
are independent and

µ
(

⋃

n

An
)

=
∑

n

µ(An) a.s.,

2) for any measurable setA in B(G × S), µ(A) is an infinitely divisible random variable
whose characteristic function is

E(eiqµ(A)) = eϕ(q)H⊗θ(A).

We stress the fact thatµ is not necessarily a random signed measure. Let us additionnally
mention that there exists a convex functionψ defined onR such that for all non empty subsets
A of G× S:

1. ψ(q) = +∞, if E(eqµ(A)) = +∞,

2. E(eqµ(A)) = eψ(q)H⊗θ(A) otherwise.

Let qc be defined asqc = sup{q ≥ 0;ψ(q) < +∞}. For anyq ∈ [0, qc[, ψ(q) < +∞ and
ψ(q) = ϕ(−iq).
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2.2 Multidimensional Multifractal Random Measures (MMRM) .

We further assume that the independently scattered infinitely divisible random measureµ
associated to(ϕ,H ⊗ θ) satisfies:

ψ(2) < +∞,

andψ(1) = 0. The conditionψ(1) is just a normalization condition. The condtionψ(2) <
+∞ is technical and can probably be relaxed to the condition used in [1]: there existsǫ > 0
such thatψ(1 + ǫ) < +∞. However, in the multidimensional setting, the situation is more
complicated because there is no strict decorrelation property similar to the one dimensional
setting: in dimensiond ≥ 2, there does not exist some distanceR such thatM(A) andM(B)
are independent for two Lebesgue measurable setsA,B ⊂ R

d separated by a distance of
at leastR. Nevertheless, the conditionψ(2) < +∞ is general enough to cover the cases
considered in turbulence: see [3], [16], [17].

Definition 2.3. Filtration Fl. Let Ω be the probability space on whichµ is defined.Fl is
defined as theσ-algebra generated by{µ(A× B);A ⊂ G,B ⊂ S, dist(B,R2 \ S) ≥ l}.

Let us now define the functionf : R+ → R by:

f(l) =

{

l, if l ≤ T
T if l ≥ T

The cone-like subsetAl(t) of S is defined by:

Al(t) = {(s, y) ∈ S; y ≥ l,−f(y)/2 ≤ s− t ≤ f(y)/2}.

For forthcoming computations, we stress that fors, t real we have:

θ(Al(s) ∩Al(t)) = gl(|t− s|)

wheregl : R+ → R is given by (with the notationx+ = max(x, 0)):

gl(x) =

{

ln(T/l) + 1 − x
l
, if x ≤ l

ln+(T/x) if x ≥ l

For anyx ∈ R
d andm ∈ G, we denote byxm1 the first coordinate of the vectormx. The

cone productCl(x) is then defined as:

Cl(x) = {(m, t, y) ∈ G× S; (t, y) ∈ Al(x
m
1 )}.

Definition 2.4. ωl(x) process.The processωl(x) is defined asωl(x) = µ(Cl(x)).
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Remark 2.5. For computational purposes, it is important thatx 7→ ωl(x) possesses a version
with a minimum of regularity. In the 1d-case,ωl is cadlag as a sum of Lévy processes (see
[1]). In higher dimensions, we will prove in section 4.4 thatωl admits a version with at most
a countable sets of discontinuities.

Definition 2.6. Ml(dx) measure.For any l > 0, we define the measureMl(dx) = eωl(x) dx,
that is:

Ml(A) =

∫

A

eωl(x) dx

for any Borel measurable subsetA ⊂ R
d.

Theorem 2.7. Multidimensional Multifractal Random Measure (MMRM).
With probability one, there exists a limit measure (in the sense of weak convergence of

measures):
M(dx) = lim

l→0+
Ml(dx).

This limit is called the Multidimensional Multifractal Random Measure. The scaling exponent
ofM is defined by

∀q ≥ 0, ζ(q) = dq − ψ(q).

Moreover:
i) a.s.,∀x ∈ R

d,M({x}) = 0, i.e.M has no atoms,
ii) for any bounded subsetK of R

d,M(K) < +∞ a.s. andE[M(K)] ≤ |K|.

Proposition 2.8. Homogeneity and isotropy

1. The measureM is homogeneous in space, i.e. the law of(M(A))A⊂Rd coincides with
the law of(M(x + A))A⊂Rd for eachx ∈ R

d.

2. The measureM is isotropic, i.e. the law of(M(A))A⊂Rd coincides with the law of
(M(mA))A⊂Rd for eachm ∈ G.

Proposition 2.9. Stochastic scale invariance.

1. For any fixedλ ∈]0, 1] and l ≤ T , the two processes(ωλl(λx))x⊂B(0,T/2) and (Ωλ +
ωl(x))x⊂B(0,T/2) have the same law, whereΩλ is an infinitely divisible random vari-
able independent from the process(ωl(x))x⊂B(0,T/2) and its law is characterized by
E[eiqΩλ ] = λ−ϕ(q).
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2. For anyλ ∈]0, 1], the law of(M(λA))A⊂B(0,T/2) is equal to the law of(WλM(A))A⊂B(0,T/2),
whereWλ = λdeΩλ andΩλ is an infinitely divisible random variable (independent of
(M(A))A⊂B(0,T/2)) and its characteristic function is:

E[eiqΩλ ] = λ−ϕ(q).

3. If ζ(q) 6= −∞ and0 < t < T then:

E
[

M(B(0, t))q
]

= (2t/T )ζ(q)E
[

M(B(0, T/2))q
]

.

Proposition 2.10. Non-triviality of the MMRM.

1. The measureM is different from0 if and only if there existsǫ > 0 such thatζ(1+ǫ) > d;
in that case,E(M(A)) = |A|.

2. Letq > 1 and consider the uniquen ∈ N such thatn < q ≤ n + 1. If ζ(q) > d and
ψ(n + 1) <∞, thenE[M(A)q] < +∞.

3 The limit lognormal case

In the gaussian case, we haveψ(q) = γ2q2/2 and the conditionζ(1 + ǫ) > d corresponds to
γ2 < 2d. The approximating measuresMl are thus defined as:

Ml(A) =

∫

A

eγXl(x)−
γ2

E[Xl(x)2]

2 dx

whereXl is a centered gaussian field (equal to(ωl − E[ωl])/γ) with correlations given by:

E[Xl(x)Xl(y)] = H ⊗ θ(Cl(x) ∩ Cl(y))

=

∫

G

gl(|x
m
1 − ym1 |)H(dm).

The limit mesuresM = liml→0Ml(dx) we define are in the scope of the theory of gaussian
multiplicative chaos developed by Kahane in [10] (see [14] for an introduction to this theory).
Formally, the measureM is defined by:

M(A) =

∫

A

eγX(x)− γ2
E[X(x)2]

2 dx
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whereX is a centered "gaussian field" (in fact a random tempered distribution ) with correla-
tions given by:

E[X(x)X(y)] =

∫

G

ln+(T/|xm1 − ym1 |)H(dm).

Let us suppose thatT = 1 for simplicity. Using invariance of the Haar measureH by mul-
tiplication, it is plain to see thatE[X(x)X(y)] is of the formF (|y − x|) whereF : R+ →
R+ ∪ {∞}. We have the scaling relationF (ab) = ln(1/a) + F (b) if a ≤ 1 andb ≤ 1 (see
also lemma 4.7 below) which entails that for|x| ≤ T :

F (|x|) = ln(1/|x|) −

∫

G

ln(|em1 |)H(dm).

wheree = (1, 0, . . . , 0) is the first vector of the canonical basis. As a corollary, we get the
existence of some constantC (takeC = −

∫

G
ln(|em1 |)H(dm)) such thatln(1/|x|) + C is

positive definite (as a tempered distribution) in a neighborhood of0. This easily implies that
ln(1/|x|) is positive definite in a neighborhood of0: to our knowledge, this result is new.
This contrasts with the fact thatln+(1/|x|) is positive definite in dimensiond ≤ 3 but is not
positive definite ford ≥ 4 (see [14]).

Remark 3.1. It is plain to see that1 − |x|α is positive definite in a neighborhhod of0 as a
function defined inR if α ≤ 1. Therefore, one can consider the isotropic and positive definite
function in a neighborhhood of0 in R

d defined by:

F (|x|) =

∫

G

(1 − |xm1 |
α)H(dm).

By scaling, one can see thatF (|x|) = 1 − C|x|α for someC > 0. It is easy to see that this
entails that1 − |x|α is positive definite in a neighborhoodV of 0. Using the main theorem
in [12], one can extend1 − |x|α (defined inV ) in an isotropic and positive definite function
defined inR

d. This is in contrast with the so called Kuttner-Golubov problem which is to
determine theα, κ > 0 such that(1−|x|α)κ+ is positive definite inRd. It is known (see [8] for
instance) that forα > 0 the function(1 − |x|α)+ is not positive definite inRd if d ≥ 3.

4 Proofs

4.1 Proof of Theorem 2.7

The relationE[eωl(x)] = eψ(1)H⊗θ(Cl(x)) = 1 ensures that for each Borelian subsetA ⊂ R
d, the

processMl(A) is a martingale with respect toFl. Existence of the MMRM then results from
[9]. Properties i) and ii) result from Fatou’s lemma.
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4.2 Characteristic function ofωl(x)

The crucial point is to compute the characteristic functionof ωl(x). We consider(x1, . . . , xq) ∈
(Rd)q and(λ1, . . . , λq) ∈ R

q and we have to compute

φ(λ) = E
[

eiλ1ωl(x
1)+···+iλqωl(x

q)
]

.

Let us denote bySq the permutation group of the set{1, . . . , q}. For a generic elementσ ∈ Sq,
we define

Bσ = {m ∈ G; x
σ(1),m
1 < · · · < x

σ(q),m
1 }.

Finally, givenx, z ∈ R
d, we define the cone like subset product:

Cσ
l (x) = Cl(x) ∩ B

σ = {(m, t, y) ∈ Bσ × S; (t, y) ∈ Al(x
m
1 )}

and
Cσ
l (x, z) = {(m, t, y) ∈ Bσ × S; (t, y) ∈ Al(x

m
1 ) ∩Al(z

m
1 )}.

Lemma 4.3. The characteristic function of the vector(ωl(x
i))1≤i≤q exactly matches:

E

[

exp
(

iλ1ωl(x
1) + · · ·+ iλqωl(x

q)
)]

= exp
(

∑

σ∈Sq

q
∑

j=1

j
∑

k=1

ασ(j, k)ρσl (x
σ(k) − xσ(j))

)

whereρσl (x) = H ⊗ θ(Cσ
l (0, x)), and:

ασ(j, k) = ϕ(rσk,j) + ϕ(rσk+1,j−1) − ϕ(rσk,j−1) − ϕ(rσk+1,j)

rσk,j =

j
∑

i=k

λσ(i) (or 0 if k > j).

Moreover,
q

∑

j=1

j
∑

k=1

ασ(j, k) = ϕ
(

q
∑

k=1

λk
)

.

Proof. Without loss of generality, we assumexi 6= xj for i 6= j. We point out that the family
(Bσ)σ∈Sd

is a partition ofG up to a set of null H-measure. The functionφ breaks down as:

φ(λ) =E
[

eiλ1µ(Cl(x
1))+···+iλqµ(Cl(x

q))
]

=E
[

e
P

σ∈Sd
iλ1µ(Cσ

l
(x1))+···+iλqµ(Cσ

l
(xq))]

=
∏

σ∈Sd

E
[

eiλ1µ(Cσ
l

(x1))+···+iλqµ(Cσ
l
(xq))

]
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Let us fixσ ∈ Sq. We focus on the term:

φσ(λ) = E
[

eiλ1µ(Cσ
l
(x1))+···+iλqµ(Cσ

l
(xq)))

]

= E
[

eiλσ(1)µ(Cσ
l
(xσ(1)))+···+iλσ(q)µ(Cσ

l
(xσ(q))))

]

.

Givenσ ∈ Sd andp ≤ q, we further define:

φσ(λ, p) = E
[

eiλσ(1)µ(Cσ
l

(xσ(1)))+···+iλσ(p)µ(Cσ
l

(xσ(p))))
]

.

From now on, we adapt the proof of [1, Lemma 1] and proceed recursively. We define:

Y σ
q =

q
∑

k=1

λσ(k)µ(Cσ
l (xσ(k)) \ Cl(x

σ(q))),

which stands for the contribution of the points of the above sum that do not belong toCl(xσ(q)).
Moreover, the points in the setCl(xσ(q)) can be grouped into the disjoint sets:

Cl(x
σ(k), xσ(q)) \ Cl(x

σ(k−1), xσ(q)).

We stress that the latter assertion is valid since, form ∈ Bσ, the coordinates are suitably
sorted, that is:xσ(1),m

1 < x
σ(2),m
2 < · · · < x

σ(q),m
1 . We define:

Xσ
k,q = µ

(

Cl(x
σ(k), xσ(q)) \ Cl(x

σ(k−1), xσ(q))
)

with the conventionCl(xσ(k), xσ(0)) = Cl(x
σ(0), xσ(k)) = ∅, in such a way that one has:

λσ(1)µ(Cσ
l (xσ(1))) + · · · + λσ(q)µ(Cσ

l (xσ(q))) = Y σ
q +

q
∑

k=1

rσk,qX
σ
k,q.

Furthermore, since the variableYq and(Xσ
k,q)k are mutually independent, we get the following

decomposition:

(3) φσ(λ) = E
[

eiY
σ
q

]

q
∏

k=1

E
[

eir
σ
k,q
Xσ

k,q

]

.

Similarly, one can prove:

(4) φσ(λ, q − 1) = E
[

eiY
σ
q
]

q
∏

k=1

E
[

eir
σ
k,q−1X

σ
k,q

]

.
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Gathering (3) and (4) yields:

φσ(λ, q) = φσ(λ, q − 1)

q
∏

k=1

E
[

eir
σ
k,q
Xσ

k,q

]

E
[

eir
σ
k,q−1X

σ
k,q

] .

For anym ∈ Bσ, one hasxσ(k−1),m
1 < x

σ(k),m
1 < x

σ(q),m
1 and therefore;

E
[

eiαX
σ
k,q

]

=eϕ(α)H⊗θ
(

Cl(x
σ(k),xσ(q))\Cl(x

σ(k−1),xσ(q))
)

=eϕ(α)
(

H⊗θ(Cl(x
σ(k),xσ(q)))−H⊗θ(Cl(x

σ(k−1),xσ(q)))
)

Note that:

H ⊗ θ(Cl(x
σ(i), xσ(j))) =

∫

Bσ

θ
(

Al(x
σ(i),m
1 ) ∩ Al(x

σ(j),m
1 )

)

H(dm)

=

∫

Bσ

θ
(

Al(0) ∩Al(x
σ(i),m
1 − x

σ(j),m
1 )

)

H(dm)

=ρσl (x
σ(i) − xσ(j))

The proof can now be completed recursively.

4.4 Regularity ofωl

In the previous subsection, we have computed the finite dimensional distributions of the pro-
cessωl. To prove that the limiting measureM inherit the properties of the finite dimensional
distributions ofωl, we need to establish some regularity properties ofωl, namely thatωl admits
a version with at most a countable set of discontinuities.

Remind that the functionϕ can be written as

imq −
1

2
σ2q2 +

∫

R∗

(eiqx − 1 − iq sin(x)) ν(dx).

Even if it means considering another measureµ, we may (and will) assume thatµ is the sum
of three independent independently scattered infinitely divisible random measuresµ1, µ2, µ3

respectively associated with:

ϕ1(q) = imq, ϕ2(q) = −
1

2
σ2q2, ϕ3(q) =

∫

R∗

(eiqx − 1 − iq sin(x)) ν(dx).
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Thenωl(x) is the sum of three independent random variableµ1(Cl(x))+µ2(Cl(x))+µ3(Cl(x)).
It is plain to see that forp > 1:

E
[

|µ1(Cl(x))−µ1(Cl(y))|
p
]

≤ C(l, T )|x−y|p, E
[

|µ2(Cl(x))−µ2(Cl(y))|
p
]

≤ C(l, T )|x−y|p/2

in such a way that the Kolmogorov criterion (see [19]) ensures thatµ1(Cl(x)) andµ2(Cl(x))
admit a continuous version. Furthermore, the restriction of µ3 to Fl is a Poisson random
measure. Hence, for each realization,µ3 is of the form

∑Z(ω)
k=0 δXk

, whereZ is a random
variable taking values inN and(Xk)k is a countable collection of iid random variables taking
values in{(m, t, y) ∈ G×S; y ≥ l}. It is therefore plain to see thatµ3(Cl(x)) admits at most
a countable set of discontinuities.

4.5 Homogeneity and isotropy

Lemma 4.3 is useful to prove the main properties of the MMRM. For instance, to prove
the invariance of the law of the MMRM under translations, it suffices to prove that the law
of ωl is itself invariant. This results from Lemma 4.3 since each term ρσl (x

σ(k) − xσ(i)) is
invariant under translations, that isρσl remains unchanged when you replacex1, . . . , xq by
x1 + z, . . . , xq + z for a givenz ∈ R

d.
Lemma 4.3 is nevertheless not very convenient to prove the isotropy of the MMRM so that

we give a proof by a direct approach. Once again, it is sufficient to prove that the characteristic
function ofωl is invariant underG. This time, we compute that characteristic function in a
more direct way. We considerx1, . . . , xq ∈ R

d, λ1, . . . , λq ∈ R andm0 ∈ G, and define the
function

f(m, t, y) =

q
∑

k=1

λk1ICl(xk)(m, t, y).

We have, using the right translation invariance of the Haar measure:

E

[

exp
(

iλ1ωl(m0x
1) + · · · + iλqωl(m0x

q)
)]

=E

[

exp
(

i

∫

f(mm0, t, y)µ(dm, dt, dy)
)]

=exp
(

∫

ϕ ◦ f(mm0, t, y)H(dm)θ(dt, dy)
)

=exp
(

∫

ϕ ◦ f(m, t, y)H(dm)θ(dt, dy)
)

=E

[

exp
(

iλ1ωl(x
1) + · · · + iλqωl(x

q)
)]

.

The isotropy follows.
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4.6 Exact scaling and stochastic scale invariance

Lemma 4.7. Exact scaling ofMl(dx). For all λ ∈ (0, 1] andx1, . . . , xq ∈ B(0, T/2), the
functionsρσl satisfy the exact scaling relation
(5)
∑

σ∈Sq

q
∑

j=1

j
∑

k=1

ασ(j, k)ρσλl(λx
σ(k) − λxσ(j)) = − ln(λ) +

∑

σ∈Sq

q
∑

j=1

j
∑

k=1

ασ(j, k)ρσl (x
σ(k) − xσ(j)).

Proof. We remind that forx real we have
∫

Al(0)∩Al(x)
θ(dt, dy) = gl(|x|). GivenB ⊂ G and

x ∈ R
d, we define:

ρBl (x) =

∫

1IB(m)1I{(t,y)∈Al(0)∩Al(x
m
1 )}θ(dt, dy)H(dm).

Then we can compute the functionρBl :

ρBl (x) =

∫

1IB(m)1I{(t,y)∈Al(0)∩Al(x
m
1 )}H(dm)θ(dt, dy) =

∫

B

(

∫

Al(0)∩Al(x
m
1 )

θ(dt, dy)
)

H(dm)

=

∫

B

(

(

ln(T/l) + 1 − |xm1 |/l
)

1I|xm
1 |≤l + ln(T/|xm1 |)1Il≤|xm

1 |≤T

)

H(dm)

Givenλ ∈]0, 1] andx ∈ B(0, T ):

ρBλl(λx) =

∫

B

(

(

ln(
T

λl
) + 1 −

|λxm1 |

λl

)

1I|λxm
1 |≤λl + ln(

T

λ|xm1 |
)1Iλl≤|λxm

1 |≤T

)

H(dm)

=

∫

B

(

(

ln(
T

l
) + 1 −

|xm1 |

l

)

1I|xm
1 |≤l + ln(

T

|xm1 |
)1Iλl≤|λxm

1 |≤T

)

H(dm)

− ln(λ)

∫

B

1I|xm
1 |≤l + 1Il≤|xm

1 |≤TH(dm)

=ρBl (x) − ln(λ)H(B)

13



We therefore obtain:

∑

σ∈Sq

q
∑

j=1

j
∑

k=1

ασ(j, k)ρσλl(λx
σ(k) − λxσ(j))

=
∑

σ∈Sq

q
∑

j=1

j
∑

k=1

ασ(j, k)ρσl (x
σ(k) − xσ(j)) − ln(λ)

∑

σ∈Sq

q
∑

j=1

j
∑

k=1

ασ(j, k)H(Bσ)

=
∑

σ∈Sq

q
∑

j=1

j
∑

k=1

ασ(j, k)ρσl (x
σ(k) − xσ(j)) − ln(λ)

∑

σ∈Sq

ϕ(

q
∑

k=1

λk)H(Bσ)

=
∑

σ∈Sq

q
∑

j=1

j
∑

k=1

ασ(j, k)ρσl (x
σ(k) − xσ(j)) − ln(λ)ϕ(

q
∑

k=1

λk)

From Lemma 4.3, we deduce that, for anyλ ∈ (0, 1], there exists a random variableCλ
such that(ωλl(λx))x∈B(0,T/2)

law
= (Cλ + ωλl(λx))x∈B(0,T/2) and such thatCλ is independent of

(ωλl(λx))x∈B(0,T/2) and its characteristic function is given byE[eiqCλ ] = λ−ϕ(q). By integrat-
ing the previous relation, we obtain the relation:

(Mλl(λA))A⊂B(0,T/2)
law
= Wλ(Ml(A))A⊂B(0,T/2)

whereWλ = λdeCλ is a random variable independent of(Ml(A))A⊂B(0,T/2).

4.8 Non-triviality of the MMRM

Suppose we can find a "cube"CR = [0, R]d andq > 1 such that:

E
[

M(CR)q
]

< +∞.

Then we can findn ∈ N such that[0, 2−nR]d ⊂ B(0, T/2). We split the cubeCR into 2nd

smaller cubes

Ck,n =

d
∏

i=1

[ki2
−nR, (ki + 1)2−nR),

wherek = (k1, . . . , kd) ∈ Nn
d

def
= N

d ∩ [0, 2n − 1]d. For each fixed value ofn, the cubes
(Ck,n)k, where the indexk varies inNn

d form a partition ofCT . Thus, by using the super-
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additivity of the functionx 7→ xq, we have:

E
[

M(CT )q
]

= E

[(

∑

k∈Nn
d

M(Ck,n)
)q]

≥
∑

k∈Nn
d

E
[(

M(Ck,n)
)q]

By using the translation invariance and the scale invariance property of the MMRM, we de-
duce:

E
[(

M(Ck,n)
)q]

= E
[(

M(C0,n)
)q]

= E
[(

M(2−nCR)
)q]

= 2−nζ(q)E
[(

CR)
)q]
.

Finally, gathering the previous inequalities yields:

E
[(

CR)
)q]

≥ 2nd−nζ(q)E
[(

CR)
)q]

in such a way that, necessarily,ζ(q) ≥ d.
The proof of 1. and 2. is then a consequence of the following lemma:

Lemma 4.9. Let q > 1 and consider the uniquen ∈ N such thatn < q ≤ n + 1. If ζ(q) > d
andψ(n+ 1) <∞, then we can find a constantC such that:

sup
l

E
[

Ml([0, T )d)q
]

≤ C.

Proof. The proof is an adaptation of the one in [1] (which is itself anadaptation of the corre-
sponding result in [2]). Unfortunately, the multi-dimensional setting is a bit more complicated
because there is no strict decorrelation property similar to the one dimensional setting. With
no restriction, we can suppose thatT = 1 andd = 2. We consider the following dyadic
partition of the cube[0, 1)2:

[0, 1)2 = ∪
0≤i,j≤2m−1

I
(m)
i,j ,

whereI(m)
i,j = [ i

2m ,
i+1
2m ) × [ j

2m ,
j+1
2m ). Let us write the above decompostion in the following

form:
[0, 1)2 = C1 ∪ C2 ∪ C3 ∪ C4.

where
C1 = ∪

i and j even
I

(m)
i,j , C2 = ∪

i and j odd
I

(m)
i,j

and
C3 = ∪

i odd and j even
I

(m)
i,j , C2 = ∪

i even and j odd
I

(m)
i,j .
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Since the measureMl is homogeneous, we get:

E
[

Ml([0, 1)2)q
]

≤ 4q−1
4

∑

i=1

E
[

Ml(Ci)
q
]

≤ 4qE
[

Ml(C1)
q
]

.

Now we get the following by subadditivity ofx→ xq/(n+1):

E
[

Ml(C1)
q
]

= E
[

(
∑

0≤i,j≤2m−1−1

Ml(I
(m)
2i,2j))

q
]

= E
[

((
∑

i,j

Ml(I
(m)
2i,2j))

n+1)q/(n+1)
]

= E
[

(
∑

i1,j1,...,in+1,jn+1

n
∏

k=1

Ml(I
(m)
2ik,2jk

))q/(n+1)
]

≤ E
[

∑

i1,j1,...,in+1,jn+1

(

n
∏

k=1

Ml(I
(m)
2ik,2jk

))q/(n+1)
]

= 22(m−1)
E
[

Ml(I
(m)
0,0 )q

]

+

∗
∑

i1,j1,...,in+1,jn+1

E
[

n
∏

k=1

Ml(I
(m)
2ik,2jk

)q/(n+1)
]

≤ 22(m−1)
E
[

Ml(I
(m)
0,0 )q

]

+

∗
∑

i1,j1,...,in+1,jn+1

E
[

n
∏

k=1

Ml(I
(m)
2ik,2jk

)
]q/(n+1)

where
∗

∑

i1,j1,...in+1,jn+1
is a sum over indicesi1, j1, . . . in+1, jn+1 which are not all equal and

the last inequality is a consequence of Jensen’s inequality. Therefore each term in the above
sum is of the form:

(6) E
[

k
∏

r=1

Ml(I
(m)
2ir ,2jr)

nr
]q/(n+1)

where the sequence of positive integers(nr)1≤r≤k satisfies
∑k

r=1 nr + 1 and theI2ir ,2jr are
disjoint intervals wich lie at a distance of at least1

2m . We want to show that each term of the
form (6) is bounded by some quantityCm independent ofl. We get the following computation
using Fubini:

E
[

k
∏

r=1

Ml(I
(m)
2ir ,2jr

)nr
]

=

∫

I
n1
2i1,2j1

×···×I
nk
2ik,2jk

E
[

eωl(x
1)+···+ωl(x

n+1)
]

dx1 . . . dxn+1.
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We defineNr = n1 + · · · + nr for r in [1, k] and we introduce the following setAl =
Al(x

1, . . . , xn+1):

Al = ∪r<r′(∪Nr≤i≤Nr+1−1Cl(x
i)) ∩ (∪Nr′≤j≤Nr′+1−1Cl(x

j)).

By construction ofAl, if xi and xj are in two differentI2ir ,2jr then µ(Cl(x
i) \ Al) and

µ(Cl(x
j) \ Al) are independent. Therefore we get the following factorization:

E
[

eωl(x
1)+···+ωl(x

n+1)
]

= E
[

eψ(n+1)H⊗θ(Al)
]

E
[

eµ(Cl(x
1)\Al)+···+µ(Cl(x

n+1)\Al)
]

= E
[

eψ(n+1)H⊗θ(Al)
]

k
∏

r=1

E
[

e
P

Nr≤i≤Nr+1−1 µ(Cl(x
i)\Al)

]

=
E
[

eψ(n+1)H⊗θ(Al)
]

∏k
r=1 E

[

eψ(nr)H⊗θ(Al)
]

k
∏

r=1

E
[

e
P

Nr≤i≤Nr+1−1 ωl(x
i)]
.

We have the following inequality:

H ⊗ θ(Al) ≤
∑

r<r′

∑

Nr≤i≤Nr+1−1
N

r′
≤j≤N

r′+1
−1

H ⊗ θ(Cl(x
i) ∩ Cl(x

j)).

Note that for eachxi, xj in the above sum we have|xi−xj | ≥ 1
2m and thereforeH⊗θ(Cl(x

i)∩
Cl(x

j)) is bounded by some constant depending onm but independent ofl. Indeed, using the
notation of section 3 forF , we get:

H ⊗ θ(Cl(x
i) ∩ Cl(x

j)) =

∫

G

gl(|(x
i)m1 − (xj)m1 |)H(dm)

≤ F (|xi − xj |)

≤ F (
1

2m
).

In conclusion, we get the existence of some constantCm such that:

E
[

eωl(x
1)+···+ωl(x

n+1)
]

≤ Cm

k
∏

r=1

E
[

e
P

Nr≤i≤Nr+1−1 ωl(x
i)]
.
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Thus, we get by integrating the above relation:

E
[

k
∏

r=1

Ml(I
(m)
2ir ,2jr)

nr
]

≤ Cm

k
∏

r=1

E
[

Ml(I
(m)
2ir ,2jr)

nr
]

.

Since eachnr is less or equal ton, we get by induction thatE
[

Ml(I
(m)
2ir ,2jr)

nr
]

is bounded
independently ofl and so is the above product. In conclusion, we get the existence ofCm
such that we have:

E
[

Ml([0, 1]2)q
]

≤ 4q−122m
E
[

Ml(I
(m)
0,0 )q

]

+ Cm.

Using stochastic scale invariance, we get that:

E
[

Ml([0, 1]2)q
]

≤ 4q−1 22m

2mζ(q)
E
[

Ml2m([0, 1]2)q
]

+ Cm

≤ 4q−1 22m

2mζ(q)
E
[

Ml([0, 1]2)q
]

+ Cm.

Sinceζ(q) > 2, we can choosem such that4q−1 22m

2mζ(q) < 1 and therefore we get:

E
[

Ml([0, 1]2)q
]

≤
Cm

1 − 4q−1 22m

2mζ(q)

,

which entails the result.
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