Algebraic Expression of the Structure Function of a subclass of Dynamic Fault Trees

Abstract : This paper focuses on a subclass of Dynamic Fault Trees (DFTs), called Priority Dynamic Fault Trees (PDFTs), containing only static gates and Priority Dynamic Gates (PAND and FDEP) for which a priority relation among the input nodes completely determines the output behavior. We define events as temporal variables and we show that, by adding to the usual Boolean operators new temporal operators denoted BEFORE and SIMULTANEOUS, it is possible to derive the structure function of the Top Event with any cascade of Priority Dynamic Gates and repetition of basic events. A set of theorems are provided to express the structure function in a sum-of-product canonical form. We finally show through an example that the canonical form can be exploited in order to determine directly and algebraically the failure probability of the Top Event of the PDFT without resorting to the corresponding Markov model. The advantage of this approach is that it provides a complete qualitative description of the system and that any failure distribution can be accommodated.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger
Contributeur : Jean-Marc Roussel <>
Soumis le : jeudi 11 juin 2009 - 17:12:02
Dernière modification le : jeudi 2 mai 2019 - 14:30:10
Document(s) archivé(s) le : vendredi 11 juin 2010 - 00:37:52


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00394459, version 1



Guillaume Merle, Jean-Marc Roussel, Jean-Jacques Lesage, Andrea Bobbio. Algebraic Expression of the Structure Function of a subclass of Dynamic Fault Trees. 2nd IFAC Workshop on Dependable Control of Discrete Systems (DCDS'09), Jun 2009, Bari, Italy. pp.129-134. ⟨hal-00394459⟩



Consultations de la notice


Téléchargements de fichiers