Detection and use of small J couplings in solid state NMR experiments - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Comptes Rendus. Chimie Année : 2010

Detection and use of small J couplings in solid state NMR experiments

Résumé

Over the years, solid-state nuclear magnetic resonance (NMR) spectroscopy has become an important tool for materials science, with its local point of view that is highly complementary to the structural information provided by diffraction techniques, electron microscopy, and molecular modeling for example. As compared to other interactions that determine the spectral expression of the local structure of the observed nuclei in solid-state NMR experiments, the J coupling, characteristic of the chemical bonds, has received far less attention because of its being generally so small that it is masked in the line-widths. Nevertheless, the scalar or isotropic part of J couplings, which is not averaged by magic angle spinning (MAS), can be evidenced in many systems, and exploited to unequivocally characterize the extended coordination sphere. In a first step we describe the different experiments that permit the observation and the measurement of J couplings, even when dealing with quadrupolar nuclei. We then present new and recently-published results that illustrate the state of the art of NMR methodologies based on or intended for measuring Jcouplings in solids and the novel perspectives that they open towards better understanding of ordered and disordered materials at the sub-nanometric scale, a length scale that is otherwise difficult to access.

Domaines

Matériaux
Fichier principal
Vignette du fichier
Comptes_Rendus_Massiot_revised.pdf (1.88 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00394285 , version 1 (11-06-2009)

Identifiants

Citer

D. Massiot, F. Fayon, M. Deschamps, S. Cadars, P. Florian, et al.. Detection and use of small J couplings in solid state NMR experiments. Comptes Rendus. Chimie, 2010, 13, pp.117-129. ⟨10.1016/j.crci.2009.05.001⟩. ⟨hal-00394285⟩
123 Consultations
946 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More