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ABSTRACT

In this paper, a general framework for the inversion of a linear operator in the case where one seeks several components

from several observations is presented. The estimation is done by minimizing a functional balancing discrepancy terms by

regularization terms. The regularization terms are adapted norms that enforce the desired properties of each component.

The main focus of this paper is the definition of the discrepancy terms. Classically, these are quadratic. We present

novel discrepancy terms adapt to the observations. They rely on adaptive projections that emphasize important information

in the observations. Iterative algorithms to minimize the functionals with adaptive discrepancy terms are derived and their

convergence and stability is studied.

The methods obtained are compared for the problem of reconstruction of astrophysical maps from multifrequency

observations of the Cosmic Microwave Background. We show the added flexibility provided by the adaptive discrepancy

terms.

Keywords: inverse problems, iterative algorithm, adaptive discrepancy terms, wavelets, multispectral astrophysical data.

1. INTRODUCTION

In a general inverse problem, the goal is to estimate an object F from an observation G where G=T (F ) (for example

looking for the original from a blurred picture). Here we assume that T , the linear operator modeling the observation

process, is known. Even so, the problem is often ill-posed and therefore needs to be “regularized”. This amounts to finding

an estimate F̃ which has the two following properties:

1. F̃ should generate observations close to the data (T (F̃ )≈G).

2. F̃ should have properties we expect from a priori knowledge. (In the example of the blurred picture, we expect F̃ to

have sharp features.)

A number of classical methods for solving inverse problems try to balance the fitness to the data (T (F̃ )≈G), measured by

a discrepancy term Jdisc, with the regularity of the solution (i.e. the properties of F̃ ), measured a regularization term Jreg ,

by minimizing a cost functional of the type:

J(F ) = Jdisc

(
T (F ), G

)
+ αJreg(F ) (1)

The main focus of this paper is the definition of the discrepancy term. Generally, this term is chosen to be the L2

norm of the residual G − T (F ) i.e. Jdisc(T (F ), G) = ||G − T (F )||2L2 =
∫
|G(x) − T (F (x))|2dx or a similar quadratic

norm. Such a term treats uniformly all the elements in G (for example all the pixels in an image). However, it is clear that

some part of G carry more information than others and should therefore be treated differently. For example, in a blurred

picture, one is usually more interested in recovering well the face of a person than the uniform part of the sky. A simple

quadratic norm is not able to identify such important features and thus may be improved. J.-L. Starck and co-authors

in1 present an iterative algorithm that focuses on these important features in blurred astrophysical images by introducing

projections on the “multiresolution support”. These are projections on a subspace defined by the wavelet transform of the

observations. They are adaptive and allow to consider only important features of the data and discard the noise in the case

of deconvolution of astrophysical data presented in1 . Following this idea, we propose the use of general projections to
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define adaptive discrepancy measures. The idea is that the image space of the projection defines important features in the

observation - these should be well predicted by the estimate of F - while the kernel of the projection defines information that

is less important or even not relevant (for example noise in the observation). Using the mathematical framework introduced

in2 , we study the mathematical properties of the resulting algorithms. We show that convergence is guaranteed and that

stability holds in a certain sense. However we point out that the use of projections may result in a loss of information

that prevents to recover some parts of the data. We show that this can be remedied by introducing the notion of “relaxed

projection”, which consists in only down-weighting the importance of the non-feature space instead of cancelling it.

After the present introduction, this paper is organized as follows. In the second section we introduce the notations as

well as the variational framework we use, i.e. the class of functionals we seek to minimize as well as an iterative algorithm

to solve the minimization. The third section concerns the generalization of discrepancy terms via the use of projections

and its mathematical study. The potential loss of information induced by the projections is remedied in section four by

the introduction of relaxed projections. Finally, section five is devoted to the application of the resulting algorithms to the

estimation of astrophysical maps from multifrequency observations.

2. A CLASS OF VARIATIONAL FUNCTIONAL TO REGULARIZE INVERSE PROBLEMS

2.1 Notations

2.1.1 Inverse problem with several objects and observations

The most general problem we will consider is the case where we seek M objects or components f1, .., fM from L observa-

tions g1, ..., gL. In the case of the estimation of astrophysical maps from multifrequency observations, each object fi is the

map of an astrophysical phenomena (ex: the map of galaxy clusters) and each gl is an observation of the sky at wavelength

νl.

We make the following assumptions:

• Each object belongs to a Hilbert space Hi
m: ∀m = 1..M, fm ∈ Hi

m.

• Each observation belongs to a Hilbert space Ho
l : ∀l = 1..L, gl ∈ Ho

l .

• We know the linear bounded operators Tm,l : Hi
m → Ho

l

such that the model for the observations is linear with additive noise:

∀l = 1..L, gl =

M∑

m=1

Tm,lfm + nl (2)

where nl are noise terms.

To estimate the objects f1, .., fM from g1, ..., gL, we will minimize functionals composed of a sum of discrepancy

terms (one per observation) and regularization terms (one per component) such as:

J(f1, f2, . . . , fM ) =

L∑

l=1

ρl

∥∥∥(

M∑

m=1

Tm,lfm − gl)
∥∥∥

2

Ho

l

+

M∑

m=1

γm|||fm|||Xm
; (3)

where the γm and ρl are strictly positive scalars and the “norms” |||.|||Xm
are of the form:

|||f |||Xm
=

∑

λ∈Λ

wm
λ | 〈f, ϕm

λ 〉 |pm (4)

where for all m, ϕm ={ϕm
λ }λ∈Λ is a generating family of Hi

m, wm
λ > 0 and 1 ≤ pm ≤ 2.

The discrepancy terms (first sum in Eq.(3)) are classical quadratic terms. The particular form of the |||.|||Xm
is chosen

so that one can adapt the regularization terms (second sum in Eq.(3)) to the properties of each object. Indeed, for each m,

one chooses the decomposition system ϕm ={ϕm
λ }λ∈Λ on which to measure the smoothness of the mth object, as well as

the type of lp measure and weights needed. This gives a large panel of available smoothness measures that can fit various

kind of data. For example, the Cosmic Microwave Background signal, which is the relic radiation of our Universe, is well

modeled by a Gaussian process with known spectral power P . The Gaussianity leads to a quadratic measure, while the

power spectrum can be enforced in Fourier space. Therefore, an adapted measure is
∑

k P (k)−1| 〈f, exp(−2πjk)〉 |2. As

for galaxy clusters, these being rare, small and intense objects, the wavelet transform of such a map is sparse (only a few

coefficients of large amplitude). Therefore, an adapted term is the l1 norm of its wavelet coefficients:
∑

j,k | 〈f, ψj,k〉 |.
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2.1.2 Simplifying notations: case of one object and observation

One can simplify greatly the notations by ”vectorizing” the previous problem as follows:

find one object F = (f1, f2, . . . , fM )T from one observation G = (g1, g2, . . . , gL)T , knowing T = {Tm,l}m,l, the linear

operator such that:

G = TF + N (5)

The functional in Eq.(3) is then:

J(F ) =
∥∥TF − G

∥∥2

Ho
+ γ|||F ||| ; (6)

where the norm in Hilbert space Ho is the weighted Euclidean norm:
∥∥G

∥∥2

Ho
=

∑L
l=1 ρl

∥∥Gl

∥∥2

Ho

l

and |||F ||| is the mixed

norm |||F ||| =
∑M

m=1 γm|||fm|||Xm
=

∑M
m=1 γm

∑
λ∈Λ wm

λ | 〈f, ϕm
λ 〉 |pm .

Written this way, Eq.(6) is very close to Eq.(3) with M=L=1, which reads:.

J(f) =
∥∥Tf − g

∥∥2

Ho
+ γ|||f ||| =

∥∥Tf − g
∥∥2

Ho
+ γ

∑

λ∈Λ

wλ| 〈f, ϕλ〉 |
p (7)

It is true that the weighted norm induced on Ho makes it a standard Hilbert space, hence the discrepancy terms do match

perfectly. But the regularization terms do not match: for M=1, we get in Eq. (7) a simple lp sum (with a single exponent

p), which is not true for M>1.

However, the minimization of Eq.(6) can be done by slightly modifying the iterative algorithm that we use for Eq.(7)

and moreover, the proofs of convergence and stability carry to this more complicated case (see3 for details). Since in this

paper we are concerned with modifying the discrepancy term, we will only present the theory with a simple regularization

term as in Eq.(7) to alleviate the notations, keeping in mind the mixed regularization terms for the application.

Note that we will use the following notations:

• the sequence of weight is: w ={wλ}λ∈Λ.

• the functional in Eq.(7) is Jγ,w,p(f) =
∥∥Tf − g

∥∥2

Ho
+ γ

∑
λ∈Λ wλ| 〈f, ϕλ〉 |

p.

• the scalar product is: fλ = 〈f, ϕλ〉.

• we call ||| · |||w,p–norm the quantity:
∑

λ∈Λ wλ| 〈· , ϕλ〉 |
p.

2.2 A class of functionals and the study of their minimization

In this section, we summarize the findings in2 , which concern the minimization of Eq.(7), i.e. of the functional Jγ,w,p.

2.2.1 Iterative algorithm

The authors propose the following iterative algorithm to obtain a minimizer:

ALGORITHM 2.1. {
f0 arbitrary
fn = Sγw,p

(
fn−1 + T ∗(g − Tfn−1)

)
, n ≥ 1

At each iteration, one computes the Landweber iterate fn−1 + T ∗(g − Tfn−1) and modifies it with the Sγw,p function.

The Sγw,p treats independently each coefficient of the argument h on the decomposition system ϕ={ϕλ}λ∈Λ:

Sw,p(h) =
∑

λ

Swλ,p(hλ)ϕλ , (8)

with the functions Sw,p from R to itself given by

Sw,p(x)
def
=

(
x +

wp

2
sign(x) |x|p−1

)−1

, for 1 ≤ p ≤ 2, (9)

where (.)−1 denotes the inverse so that ∀x, Sw,p(x + wp
2 sign(x) |x|p−1) = x.

In particular, for p = 1, Sw,1 is the soft-thresholding operator: Sw,1(x) = sign(x)(|x| − w/2)+

whereas for p = 2, one simply gets: Sw,2(x) = x
1+w .
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2.2.2 Convergence and stability

The two following theorems summarize the findings presented in2 . The first theorem states that the iterative algorithm 2.1

converges strongly in the norm associated in the Hilbert space Hi for any initial guess f0.

THEOREM 2.2 (CONVERGENCE). Let T be a bounded linear operator from Hi to Ho, with |||T ||| < 1. Take p ∈ [1, 2], and

let Sw,p be the shrinkage operator defined by (8), where the sequence w = {wλ}λ∈Λ is such that there exists a constant

c > 0 such that ∀λ ∈ Λ : wλ ≥ c. Then the sequence of iterates

fn = Sγw,p

(
fn−1 + T ∗(g − Tfn−1)

)
, n = 1, 2, . . . ,

with f0 arbitrarily chosen in Hi, converges strongly to a minimizer of the functional Jγ,w,p.

If the minimizer f⋆ of Jγ,w,p is unique, (which is guaranteed e.g. by p > 1 or ker(T ) = {0}), then every sequence of

iterates fn converges strongly to f⋆, regardless of the choice of f0.

The second theorem is concerned with the stability of the method. It gives sufficient conditions to ensure that the

estimate recovered from a perturbed observation, g = Tf0 + e, will approximate the object f0 as the amplitude of the

perturbation ‖e‖Ho goes to 0.

THEOREM 2.3 (STABILITY). Assume that T is a bounded operator from Hi to Ho with |||T ||| < 1, that γ > 0, 1 ≤ p ≤ 2
and that the entries in the sequence w ={wλ}λ∈Λ are bounded below by c > 0.

Assume that either p > 1 or ker(T ) = {0}. For any g ∈ Ho and any γ > 0, define f⋆
γ,w,p;g to be the minimizer of

Jγ,w,p with observation g. If γ = γ(ε) satisfies

lim
ε→0

γ(ε) = 0 and lim
ε→0

ε2

γ(ε)
= 0 , (10)

then we have, for any fo ∈ Hi,

lim
ε→0

[
sup

‖g−Tfo‖Ho≤ε

‖f⋆
γ(ε),w,p;g − f†‖Hi

]
= 0 , (11)

where f† is the unique element of minimum ||| · |||w,p–norm in the set Sfo
= {f ; Tf = Tfo}.

Note that in particular when T is invertible, f† = f which means that Algorithm 2.1 provides a stable inversion.

So far, we have a convergent and regularizing iterative algorithm that converges to a minimizer of the functional Jγ,w,p.

Such a minimizer is an estimate of the object f that compromises between generating an observation close to the data g
in a quadratic sense and having the smallest ||| · |||w,p–norm. Note the the design of the ||| · |||w,p–norm is such that it will

preserve or enhance desirable properties of f . The quadratic discrepancy term in Jγ,w,p is devoid of such considerations

and therefore does not enhance more important features that should be matched in the observations. In the rest of this

paper, we will present adaptive discrepancy terms that aim at fixing this point.

3. ADAPTIVE DISCREPANCY TERMS (I): USING PROJECTIONS

3.1 An Algorithm using Adaptive Projections

3.1.1 Original idea

In1 , the authors are concerned with the deconvolution of an astrophysical image. The observations of interest were blurred

and noisy pictures of galaxies. For these, denoising by wavelet-shrinkage was already known to improve the quality of

noisy observations. The wavelet shrinkage procedure on g is nothing more than applying to g an adaptive projection:

the projection on the “multiresolution support” of g, i.e. on the subspace defined by the largest wavelet coefficients of g.

The fact that wavelet shrinkage improves the observation shows that the “multiresolution support” of g naturally defines a

subspace that describes the important features of g.

The authors of1 proposed to use this multiresolution support not only on g itself but also in the context of deblurring

by using it to evaluate how well an estimate f fits the data g. They proposed an iterative algorithm very close to Algorithm

2.1, for p = wλ = 1 except that the residual (g − Tfn−1) is projected on the multiresolution support of g: (g − Tfn−1)
becomes Mg(g − Tfn−1) where Mg is the projection.

We propose to extend this idea to any kind of adaptive projections and study the mathematical properties of the resulting

algorithm.

4



3.1.2 Iterative algorithm with adaptive projection

We first define the notion of adaptive projection: an adaptive projection defined by the data g is the orthogonal projection

on a subspace defined by the fact that the coefficients of g on an orthonormal basis are greater than predefined thresholds.

Mathematically:

DEFINITION 3.1. Given an orthonormal basis {βλ}λ∈Λof Ho, an element g in Ho and a sequence of nonnegative thresh-

olds τ={τλ}λ∈Λ, the adaptive projection Mg,τ is the map from Ho into itself defined by:

∀h ∈ Ho, Mg,τ (h) =
∑

λ s.t. |gλ|>τλ

hλβλ

(where, as usual, hλ denotes the scalar product 〈h, βλ〉)

We propose the following algorithm:

ALGORITHM 3.2. {
f0 arbitrary
fn = Sγw,p

(
fn−1 + T ∗ Mg,τ (g − Tfn−1)

)
, n ≥ 1

Note that if T is a convolution, {βλ}λ∈Λis a wavelet basis, p = 1 and ∀λ ∈ Λ, wλ = 1, this is what was proposed in1 .

From what we saw before, it is straightforward to infer that Algorithm 3.2 should converge to a minimizer of

Jγ,w,p,τ (f) =
∥∥Mg,τ (Tf − g)

∥∥2

Ho
+ γ|||f |||w,p (12)

which is a functional with an adaptive discrepancy term.

3.2 Mathematical Properties

3.2.1 A convergent iterative algorithm

The strong convergence of Algorithm 3.2 to a minimizer of Eq. (12) is guaranteed by Theorem 2.2 (under the same

conditions as in Theorem 2.2): apply this theroem to g′ = Mg,τ g and T ′ = Mg,τ T to get the solution (this works because

Mg,τ is a self-adjoint projection).

3.2.2 Diagonal case: a new kind of thresholding

To gain insight on this algorithm, we first study the case of a diagonal operator T . We assume that

T (h) =
∑

λ∈Λ

tλhλϕλ

where the tλ are scalars. As a reminder, for Algorithm 2.1, the minimizer is

argmin (Jγ,w,p) = Sγw/t2,p(T−1g) =
∑

λ∈Λ/tλ 6=0

Sγwλ/t2
λ

,p(gλ/tλ)ϕλ.

When p = 1, this reduces to the soft-thresholded version of T−1g on the basis ϕ={ϕλ}λ∈Λ with the thresholds γwλ/t2λ.

When the adaptive discrepancy term is introduced, we get:

Jγ,w,p,τ (f) =
∥∥Mg,τ (Tf − g)

∥∥2

Ho
+ γ|||f |||w,p

=
∑

λ s.t. |gλ|>τλ

|(Tf − g)λ|
2 + γ

∑

λ∈Λ

wλ|fλ|
p

=
∑

λ s.t. |gλ|>τλ

(
|tλfλ − gλ|

2 + γwλ|fλ|
p
)

+ γ
∑

λ s.t. |gλ|≤τλ

wλ|fλ|
p (13)

The equations for each fλ are now decoupled so that the minimizer f⋆ is defined by:

{
f⋆

λ = Sγwλ/t2
λ

,p(gλ/tλ) if |gλ| > τλ and tλ 6= 0

f⋆
λ = 0 if |gλ| ≤ τλ or tλ = 0

(14)
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Introducing the hard-thresholding operator with threshold m:

Hτ (x) =

{
x if |x| > m
0 otherwise,

(15)

one can rewrite the preceding equation:

{
f⋆

λ = Sγwλ/t2
λ

,p(Hτλ/tλ
(gλ)) if tλ 6= 0

f⋆
λ = 0 if tλ = 0.

(16)

Thus we obtain the previous shrinkage operator Sγwλ/t2
λ

,p composed with a hard-thresholding operator Hτ/t that we call

“adaptive thresholding operator”. The hard-thresholding operation is known to be a way to enhance the solution after

application of the pseudo inverse. On the other hand the shrinkage operator Sγwλ/t2
λ

,p regularizes the same solution with

respect to a smoothness defined by the ||| · |||w,p–norm. We find here that the introduction of the discrepancy term with

adaptive projections is simply an intermediate solution between both of these regularizations.

When p = 1 and tλ = 1, we obtain a compromise between hard and soft-thresholding if τλ > γwλ. To illustrate this,

we graph in Fig.1 the hard-thresholding function with threshold τ (left), the soft-thresholding function with threshold γ
(right) and the function obtained in Eq.(16) (middle) in the case τ > γ (here w = 1). We give a further illstration of the

diagonal case in Fig. 3, section 5.

−τ τ 
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o 

Figure 1. Left: hard-thresholding operator Hτ ; middle: adaptive thresholding operator; right: soft-thresholding operator Sγ,1.

3.2.3 Stability is an issue

The study on diagonal operators suggests that introducing adaptive projections gives flexibility by defining a new shrinkage

operator. In this section, we see that this flexibility comes to a price: the resulting algorithm is not stable in the sense of

Theorem 2.3. There is stability in the sense that if the parameter (τ , w,..) are chosen properly as the noise level decreases

- i.e. when the observation g gets closer to the true observation Tfo - then the solutions converge to a well-defined limit.

However this limit is not necessarily fo, even if T is invertible.

In a nutshell, what happens is that stability requires that the thresholds τ= {τλ}λ∈Λ are large enough compared to

||g − Tfo||. This implies that the subspace defined by the indexes λ such that {Tfo}λ = 0 will necessarily be in the kernel

of the adaptive projections Mg,τ as soon as g is close enough to Tfo. Therefore the information in this subspace will lost.

The result is then that as the observation becomes ideal (i.e. close to Tfo) the solution of Algorithm 3.2 will approach the

element of minimal ||| · |||w,p–norm in the set MT,fo
of elements of Hi that have the same image under T as fo except

maybe on the coordinates λ such that (Tfo)λ = 0.

Note that even is T is one-to-one, this set is not necessarily reduced to fo:

EXAMPLE 1. If T is the identity, f1 = (1, 0) ∈ R
2, then Mf1

= {(1, x), x ∈ R} on the canonical basis.

In this case however the minimizer of the ||| · |||w,p–norm is f1 itself whatever the choices of the parameters γ, τ , w =
{wλ}λ∈Λ,... are. Algorithm 3.2 will therefore provide the desired result. This is not the case in the following example,

where T is also an invertible operator in R
2:

EXAMPLE 2. Consider T : R
2 → R

2, the bounded and linear operator defined by:

T :

(
f1

f2

)
7→ 1

4

(
2 f1 + f2

f1 − f2

)
and fa =

(
a
a

)
for some a 6= 0.
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• T has a bounded inverse: T−1 :

(
f1

f2

)
7→ 4

3

(
f1 + f2

f1 − 2f2

)
and |||T |||= 1

2 <1.

• Tfa =

(
3a
4
0

)
and Mfa

= {f : (Tf)1 = (Tfa)1} = {f : 2f1 + f2 = 3a}.

The element in Mfa
with minimal l1 norm is: f†

a =

(
3a
2
0

)
, and not fa itself. Thus the minimizers of Eq. (12) do not

converge to fa as the observations converge to Tfa. In other words, information on the second coordinate in image plane

has been lost that prevents the algorithm to invert T even with arbitrary accurate data.

We now formalize this result. We first define MT,fo
and the set Hi

T,w,p of elements for which MT,fo
has a unique

minimizer of the ||| · |||w,p–norm.

DEFINITION 3.3 (MT,fo
). Given two Hilbert spaces Hi and Ho, an operator T : Hi → Ho, an orthonormal basis

{βλ}λ∈Λof Ho and an element fo of Hi. The set MT,fo
is the subset of elements of Hi that verify:

f ∈ MT,fo
⇐⇒ MTfo,0(Tf) = Tfo ⇐⇒

[
{Tfo}λ 6= 0 ⇒ {Tf}λ = {Tfo}λ

]

DEFINITION 3.4 (Hi
T,w,p). Given a Hilbert space Hi, Hi

T,w,p is the subset of elements of Hi that verify: fo is in Hi
T,w,p

if and only if the set MT,fo
= {f : MTfo,0Tf = Tfo} has a unique element of minimum |||.|||w,p-norm.

When p > 1, then Hi
T,w,p = Hi, regardless of T . This is not true if p = 1, even if kerT = {0}. It turns out that

Algorithm 3.2 is regularizing for elements f in Hi
T,w,p, and that the minimizer obtained in the limit ‖Tfo − g‖Ho goes to

zero is exactly the minimizer of the |||.|||w,p-norm in MT,fo
. This is the object of the following theorem:

THEOREM 3.5. Assume that T is a bounded operator from Hi to Ho with |||T ||| < 1, that γ > 0, p ∈ [1, 2] and that the

entries in the sequence w ={wλ}λ∈Λ are bounded below uniformly by a strictly positive number c.

For any g ∈ Ho and any γ > 0 and any nonnegative sequence τ= {τλ}λ∈Λ, define f⋆
γ,w,p,τ ;g to be a minimizer of

Jγ,w,p,τ (f) with observation g. If γ = γ(ε) and τ = τ(ε) satisfy:

1. lim
ε→0

γ(ε) = 0 and lim
ε→0

ε2

γ(ε)
= 0

2. ∀λ ∈ Λ, lim
ε→0

τλ(ε) = 0 and ∃ δ > 0, s.t: [ ε < δ ⇒ ∀λ ∈ Λ, τλ(ε) > ε ]

then we have, for any fo ∈ Hi
T,w,p:

lim
ε→0

[
sup

‖g−Tfo‖Ho≤ε

‖f⋆
γ(ε),w,p,τ(ε); g − f†

o‖Hi

]
= 0 ,

where f†
o is the unique element of minimum ||| |||w,p–norm in the set MT,fo

.

The detailed proof of this theorem is given in3 , p.18-24 and is not reproduced here. It is based on two ingredients:

• The two lemmas provided in Appendix. A. show that condition 2 in Theorem 3.5 is needed to obtain the weak

convergence of the adaptive projection operators Mg,τ when ||g − Tfo|| → 0.

• Using this weak convergence, one can then adapt the proof of Theorem 2.3 provided in2 .

4. ADAPTIVE DISCREPANCY TERMS (II): RELAXED PROJECTIONS

In the previous section, we showed that introducing adaptive projections in the discrepancy term allows to take into account

features that are more important in the data but results in a loss of information that may be harmful to the estimation of

the object sought. The reason is that the projections used cancel some information. To fix this instability problem still

keeping the spirit of the previous method, one can imagine to only dampen the non-feature space defined by the adaptive

projections instead of cancelling it. As we see in the next section, the resulting “relaxed projections” still emphasize the

same features but without losing any information; therefore the stability as defined in Theorem 2.3 is restored.
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4.1 Relaxed Adaptive Projections

The “relaxed projection” Mg,τ,µ with dampening parameter µ and corresponding to the orthogonal adaptive projection

Mg,τ is

Mg,τ,µ = Mg,τ +µ(Id−Mg,τ ) (17)

or more formally:

DEFINITION 4.1. Given an orthonormal basis if Ho, β= {βλ}λ∈Λ, an element g in Ho, a sequence of nonnegative

thresholds τ={τλ}λ∈Λ and a scalar µ > 0, Mg,τ,µ is the map from Ho into itself defined by:

∀h ∈ Ho, Mg,τ,µ(h) =
∑

λ s.t. |gλ|>τλ

hλβλ + µ
∑

λ s.t. |gλ|≤τλ

hλβλ

This operator is introduced in the discrepancy term so that we now seek to minimize the functional

Jγ,w,p,τ,µ(f) =
∥∥Mg,τ,µ(Tf − g)

∥∥2

Ho
+ γ|||f |||w,p, (18)

via the following iterative algorithm:

ALGORITHM 4.2. {
f0 arbitrary
fn = Sγw,p

(
fn−1 + T ∗ Mg,τ,µ

2(g − Tfn−1)
)
, n ≥ 1

Note that in this case, one needs to square the relaxed projection operator in the iterative algorithm. This is because

unlike Mg,τ , Mg,τ,µ is not a self-adjoint projection. This equation can be easily checked by replacing T by Mg,τ,µ T
and g by Mg,τ,µ g in the original functional Jγ,w,p of Eq.(7) and in Algorithm 2.1. In practice, we use the fact that

Mg,τ,µ
2 = Mg,τ,µ2 ; so the operator is still easy to compute.

The previous change of variable used in Theorem 2.2 also proves the strong convergence of Algorithm 4.2 to a

minimizer of Eq. (18) (under the same conditions as in Theorem 2.2).

4.2 Stability is recovered

The introduction of the dampening factor ensures that all the information in the data will be taken into account and we

recover the stability in the usual sense: if the data become ideal (g → Tfo) and the parameters γ, τ= {τλ}λ∈Λ and µ are

chosen accordingly, then the solution converges to fo when fo is the unique antecedent of Tfo.

The conditions on the parameters are given in the following theorem:

THEOREM 4.3. Assume that T is a bounded operator from Hi to Ho with |||T ||| < 1 and that the entries in the sequence

w ={wλ}λ∈Λ are bounded below uniformly by a strictly positive number c.

For any g ∈ Ho and any γ > 0, 0 < µ ≤ 1 and nonnegative sequence τ= {τλ}λ∈Λ, define f⋆
γ,w,p,τ,µ; g to be a

minimizer of Jγ,w,p,τ,µ(f) with observation g. If γ = γ(ε), τ = τ(ε) and µ = µ(ε) satisfy:

1. lim
ε→0

γ(ε) = 0 and lim
ε→0

ε2

γ(ε)
= 0

2. ∀λ ∈ Λ, lim
ε→0

τλ(ε) = 0 and ∀λ ∈ Λ, ∃ δ(λ) > 0, s.t: [ ε < δ(λ) ⇒ τλ(ε) > ε ]

3. lim
ε→0

µ(ε) = µo, with 0 < µo ≤ 1

then for any fo such that there is a unique minimizer of the ||| |||w,p–norm in the set Sfo = {f : Tf = Tfo}:

lim
ε→0

[
sup

‖g−Tfo‖Ho≤ε

‖f⋆
γ(ε),w,p,τ(ε),µ(ε); g − f†

o‖Hi

]
= 0 ,

where f†
o is the unique element of minimum ||| |||w,p–norm in the set Sfo

.

8



The proof of this theorem is detailed in3 , p.28-31 and is similar to that of Theorem 3.5. The weak convergence of the

adaptive operators is ensured by conditions 2 and 3 of Theorem 4.3 and the corresponding lemma is provided in Appendix

B.

It is clear that in practice, by choosing µ small, the properties of g enhanced by both Algorithm 3.2 and 4.2 are similar.

The second algorithm is however more stable as it is guaranteed to make a correct guess when the data is sufficiently close

to the image of an object f .

5. APPLICATION

5.1 Multispectral Data

In this section we apply the algorithms described previously to the problem of reconstructing maps of astrophysical phe-

nomena from multispectral observations. We consider simulated multispectral observations of the Cosmic Microwave

Background (CMB) radiation with the observation conditions relative to the Atacama Cosmology Telescope (ACT). In this

case, we observe the same portion of sky at different wavelengths νl. The observations are blurred mixtures of the physical

phenomena we seek f1,..,fM that can be modeled by:

∀l = 1..L, g(νl) = gl = bl ∗

M∑

m=1

am,lfm + nl. (19)

The blurring bl changes with the wavelength νl and is Gaussian. The mixture coefficients am,l are called frequency

dependencies and give the contribution of phenomena m to observation l. The noise terms nl have a known variance σl

that also depend on the wavelength νl. Note that here, the operator Tm,l from Eq.(2) is a mixture followed by a convolution

Tm,l(·) = bl ∗
∑M

m=1 am,l(·)m. For ACT, the observation wavelength are low: ν =145, 217 or 265GHz. (Details about

the noise and blur level can be found in3 , p.88.)

Here, we seek to reconstruct two components:

• the CMB (= f1): this is an electromagnetic radiation that fills the whole of the Universe (see Figure 2, left panel).

Its existence and properties are considered one of the major confirmations of the Big Bang theory.

• the galaxy clusters, noted SZ (= f2): the clusters can be seen through their Sunyaev-Zeldovich effect (SZ effect in

short) which is due to high energy electrons in the galaxy clusters that interact with Cosmic Microwave Background

photons.

In fact, we focus on the detection and estimation of the galaxy clusters in observations such as can be done with ACT.

A complete model of the observations would have to include other astrophysical phenomena such as infrared point

sources or our Galaxy dust. We will not consider them here, since their contribution at low wavelengths, such as the ones

considered here, are negligible.

Figure 2 illustrates the simulated data we use. The two left panels show the astrophysical map we seek to reconstruct

from the observations shown on the two right panels. (The units of the maps is the micro-Kelvin).

General parameters of the functional algorithms

In this multispectral case, the reconstruction methods proposed earlier have one regularization term for each component

and one regularization term per observation (see Eq.(3)).

As can be seen from the observations, the contribution of the galaxy clusters (SZ) is negligible compared to this of

the CMB. We rely on the fact that these maps have very different spatial properties to disentangle them. These properties

are reflected by the regularization terms. The CMB component is regularized by a weighted l2-norm in Fourier space,

the weights being proportional to its spectral power. The SZ component is regularized by an l1-norm on its wavelets

coefficients. The wavelet transform used for regularization is the dual tree complex wavelet transform.4, 5

We compare the results obtained with the classical discrepancy terms of Eq.(3) to these obtained with various adaptive

projections, relaxed (Eq.(18)) and not (Eq.(12)). In any case, the adaptive/relaxed projection is done on an orthonormal

wavelet transform (Symmlet, 2 vanishing moments) and the threshold parameter τ are set to the noise standard deviation.

The general balancing parameters ρl are set to 1. The γm are learned from a database of simulations.
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Figure 2. Multispectral data (units:µK); left to right: CMB map, galaxy clusters map, observation at 145GHz, observation at 217GHz

5.2 Denoising galaxy cluster maps

To illustrate the effect of introducing adaptive projections, we took a one-dimensional slice of the galaxy cluster map in

Fig. 2 and added noise to it (top panels of Fig. 3) with a standard deviation of σ.

We show in the four bottom panels of this figure the results of the denoising using

• hard-thresholding (Fig. 3, middle left panel) with threshold τ = σ;

• soft-thresholding (Fig. 3, bottom right panel) with threshold γ = σ; This is obtained with the initial iterative algo-

rithm (Algo. 2.1).

• the adaptive thresholding (Fig. 3, middle right and bottom left panels) seen in subsection 3.2.2. This is obtained with

the adaptive algorithm (Algo. 3.2) Note that there is no stability issue in this example.

One can see that increasing the introduction of the soft-thresholding on top of the hard-thresholding smoothes the solution.

The pure soft-thresholding however suffers from that fact that it dampens peaks compared to the pure hard-thresholding.

In the case of galaxy clusters, these peak of intensity correspond to the central part of the cluster and indicate its age.

Therefore, the dampening obtained by soft-thresholding is detrimental. On the other hand, the lack of smoothness of the

hard-thresholded solution will induces false positive in the detection of clusters. The introduction of the adaptive thresh-

olding via the use of projections in the discrepancy term allows to tune both effects. It gives an interesting compromise

keeping a bit of the advantages of the pure hard or soft-thresholded solutions (see Fig. 3, middle right and bottom left

panels).

5.3 Reconstruction of CMB and galaxy clusters maps from multispectral observations

The simultaneous reconstuction of both the CMB and galaxy cluster maps from the multispectral observations as seen in

subsection 5.1 has been performed with the different iterative algorithms proposed in section 2, 3 and 4. All parameters

were described in 5.1 except for the relaxed projection dampening parameter µ (see Eq.(17)) which is fixed here to µ = 0.1
when using Algorithm 4.2.

Fig. 4 displays the results obtained for

• the initial algorithm (Algo. 2.1) with classical l2 discrepancy terms. The results are labelled “µ = 1”.

• the relaxed projection algorithm (Algo. 4.2) with stable adaptive discrepancy terms. The results are labelled “µ =
0.1”.

10



          
 

0

 

200

 

400

µ 
K

Original

          
 

0

 

200

 

400

µ 
K

Noisy

          
 

0

 

200

 

400

µ 
K

Hard thresh=2 σ

          
 

0

 

200

 

400

µ 
K

Hard thresh=2 σ + Soft thresh= σ

          
 

0

 

200

 

400

µ 
K

Hard thresh=2 σ + Soft thresh=2 1/2σ

          
 

0

 

200

 

400

µ 
K

Soft thresh  = 2 σ

Figure 3. Denoising galaxy clusters map. Top left: 1D profile of a cluster map. Top right: noisy 1D profile of a cluster map (noise

variance σ2). Middle left: noisy data hard-thresholded (τ = 2σ). Middle right: noisy data soft/hard-thresholded (τ = 2σ, γ = σ).

Bottom left: noisy data soft/hard-thresholded (τ = 2σ, γ =
√

2σ). Bottom right: noisy data soft-thresholded (γ = 2σ).

The observed maps and the CMB and galaxy clusters maps that we seek to recover are in shwon on the left panels of Fig.

2. The reconstructed CMB maps are in the two left panels of Fig. 4. The reconstructed galaxy maps are in the two right

panels of Fig. 4.

The following analysis is illustrated by the results shown in 4 but is valid in a more general study with 24 similar

simulations.

5.3.1 Analysis of CMB reconstruction

All the reconstructed CMB maps are accurate to the microKelvin precision. The Root Mean Square Error of the different

reconstructions to the original (true) CMB map is not affected by the introduction of the adaptive discrepancy term.

The precision obtained for this component is highly satisfactory and allows to proceed to further treatment for astro-

physical purposes.

5.3.2 Analysis of the galaxy clusters reconstruction

All the reconstructed galaxy cluster maps have a low accuracy (worst case 100 microKelvin). The Root Mean Square

Error of the different reconstructions to the original (true) clusters map is not affected by the introduction of the adaptive

discrepancy term. Hence as far as global measures are concerned, all the presented algorithms perform in the same manner
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Figure 4. Reconstructed maps; without projections: first and third images (µ = 1); with adaptive projections: second and fourth images

(µ = 0.1); far/middle left: CMB; far/middle right: galaxy clusters

for galaxy clusters. These poor results are expected by the fact that the contribution of the galaxy clusters to the observation

is well below the CMB contribution and the noise level.

However, as explained in,3 global measures are not satisfactory to evaluate the quality of a reconstructed cluster map.

Indeed, the goal is to locate the presence of clusters and quantify some of their statisical characteristics like size, intensity

or age... Detailed study of the reliability of these quantities has be done for Algorithm 2.13 and show that it actually gives

good results in this prospective. Here, we do not reproduce the all study for Algorithm 3.2 and 4.2 but simply compare

them to Algorithm 2.1.

As can be inferred from Fig. 4, the results are very similar. The ontroduction of adaptive discrepancy terms yield a

slight improvement in the estimation of the central intensity of a cluster (see the three clusters in the upper part of the circle

in Fig. 4). This improvement is not statistically significant however it illustrates how adaptive discrepancy terms provide a

novel way of tuning the algorithm to the data.

APPENDIX A. ELEMENTS OF THE PROOF OF THE STABILITY OF (I)

To prove Theorem 3.5, we need to examine the behavior of the projections Mg(ε),τ(ε) as ε goes to zero. This is done in the

next two lemmas. The first lemma (Lemma A.1) gives necessary and sufficient conditions on the sequence τ={τλ}λ∈Λ to

that these projections converge in a weak sense as ε goes to zero. We will be interested in the case where the weak limit

operator is MTfo,0. The second lemma (Lemma A.1) refines these conditions, so that in addition, the sequence Mg(ε),τ(ε)

converges strongly to MTfo,0 on the set: T (Mf0
).

LEMMA A.1. For f ∈ Hi, let {g(ε, f)}ε>0 be an arbitrary family of elements in Ho that satisfy ‖g(ε, f) − Tf‖Ho < ε,

∀ε > 0.

1. ∀h ∈ Ho, Mg(ε,f),τ(ε)h converges weakly as ε goes to 0 if and only if ∀λ : ∃ δ(λ) such that either (a) or (b)

holds, with

(a) ∀ε ∈ (0, δ(λ)),
∣∣[g(ε, f)]λ

∣∣ > τλ,

(b) ∀ε ∈ (0, δ(λ)),
∣∣[g(ε, f)]λ

∣∣ ≤ τλ.

2. Mg(ε,f),τ(ε) converges weakly, independently of the choice of f and of the family g(ε, f), as ε goes to 0 if and only

if ∀λ : both (a) and (b) hold, with

(a) ∃ δ(λ) such that ∀ε ∈ (0, δ(λ)), τλ(ε) > ε

(b) lim
ε→0

τλ(ε) = 0
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In that case, the weak-limit operator is necessarily MTf,0.

3. When conditions 2.(a) and 2.(b) above hold, if h(ε) converges weakly to h, then Mg(ε,f),τ(ε)h(ε) converges weakly

to MTf,0 h as ε goes to 0.

Proof. [Proof of Lemma A.1] Let us examine the behavior of Mg(ε,f),τ(ε) coordinate by coordinate. Since[
Mg(ε,f),τ(ε)h

]
λ

equals either hλ or 0, depending on whether or not
∣∣[g(ε, f)]λ

∣∣ > τλ(ε), it follows that Mg(ε,f),τ(ε)(h)
will converge weakly as ε goes to 0 if and only if for all coordinates λ, one of the following holds:

Either there exists some δ(λ) > 0 such that
∣∣[g(ε, f)]λ

∣∣ > τλ(ε) for ε < δ(λ). In this case,
[
Mg(ε,f),τ(ε)h

]
λ

= hλ for

ε < δ(λ).

Or there exists some δ(λ) > 0 such that
∣∣[g(ε, f)]λ

∣∣ ≤ τλ(ε) for ε < δ(λ). In this case,
[
Mg(ε,f),τ(ε)h

]
λ

= 0 for ε < δ(λ).

This proves the first assertion.

Let us now consider how uniform this behavior is in the choice of the family g(ε, f). Since
∣∣[g(ε, f) − Tf ]λ

∣∣ ≤

‖g(ε, f) − Tf‖Ho ≤ ε, the set of values that can be assumed by |g(ε, f)λ| is exactly
[

Tf − ε, Tf + ε
]

(take g =
Tf + rβλ, r ∈ [−ε, ε] to reach all the values in this set). Therefore, for a fixed f , the weak convergence of the op-

erators Mg(ε,f),τ(ε), regardless of which sequence g(ε, f) is chosen, is equivalent to putting constraints on the sequence

{τ(ε)λ}λ∈Λ that depend of the coordinates (Tf)λ. These constraints depends on whether (Tf)λ 6= 0 or (Tf)λ = 0:

• If Tfλ 6= 0 then
{
|g(ε, f)λ|

}
=

[
|Tfλ|−ε, |Tfλ|+ε

]
. Therefore, one needs either:

[
ε < δ(λ) ⇒ τλ(ε) > |Tfλ|+ε

]

or
[
ε < δ(λ) ⇒ τλ(ε) ≤ |Tfλ| − ε

]
. In the first case, βλ will always be in the kernel of Mg(ε,f),τ(ε) once ε < δ(λ).

In the second case βλ will always in the range of Mg(ε,f),τ(ε) once ε < δ(λ).

• If Tfλ = 0 then {|g(ε, f)λ|} = [0, ε]. Therefore one needs [ε < δ(λ) ⇒ τλ(ε) > ε]. In this case, βλ will always be

in the kernel of Mg(ε,f),τ(ε) once ε < δ(λ).

Note that we do not know beforehand the value of Tf . To be useful, we must derive requirements on the parameters τλ(ε)
that do not depend on f . The minimum requirements on τ(ε) ensuring the operators Mg(ε,f),τ(ε) converge weakly as ε
goes to 0 are:

• ∀λ, limε→0 τλ(ε) = 0: this ensures that if Tfλ 6= 0, we will have τλ(ε) < |Tfλ| − ε for sufficiently small ε.

• ∀λ, ∃δ(λ) such that ε < δ(λ) ⇒ τλ(ε) < ε: this ensures that if Tfλ = 0, we will have τλ(ε) < |Tfλ| + ε = ε for

sufficiently small ε.

If these conditions are satisfied, the Mg(ε,f),τ(ε) converge weakly as ε goes to 0 and one can determine the weak limit:

• for λ s.t. Tfλ 6= 0: limε→0 τλ(ε) = 0 hence there exists δ(λ, f) such that ε < δ(λ, f) implies τλ(ε) < |Tfλ| − ε. It

follows that: |g(ε, f)λ| > τλ(ε) so that Mg(ε,f),τ(ε)(βλ) = βλ for any g(ε, f) and any ε < δ(λ, f)

• for λ s.t. Tfλ = 0: ε < δ(λ) implies τλ(ε) > ε. It follows that if ε < δ(λ), then |g(ε, f)λ| > τλ(ε) so that

Mg(ε,f),τ(ε)(βλ) = 0 for any g(ε, f) and any ε < δ(λ) .

This proves that the weak limit of Mg(ε,f),τ(ε) for any fixed f is MTf,0 and finishes the proof of the second part of Lemma

A.1.

Finally, assuming h(ε) converges weakly to h, we have ∀λ:
∣∣∣
[
Mg(ε,f),τ(ε)h(ε) − MTf,0 h

]
λ

∣∣∣ (20)

=
∣∣∣
[
Mg(ε,f),τ(ε)(h(ε) − h) + (Mg(ε,f),τ(ε) − MTf,0)h

]
λ

∣∣∣ (21)

=
∣∣∣
[
Mg(ε,f),τ(ε)(h(ε) − h)

]
λ

∣∣∣ +
∣∣∣
[
Mg(ε,f),τ(ε)h − MTf,0 h

]
λ

∣∣∣ (22)

The second term vanishes as ε goes to 0 because Mg(ε,f),τ(ε) converges weakly to MTf,0 when the conditions 2.(a) and

2.(b) hold. Moreover, we have seen in the proof of the second part of the lemma that for any λ:
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• either there exists a δ(λ) such that Mg(ε,f),τ(ε)(βλ) = 0 for any ε < δ(λ) .

In that case,

∣∣∣
[
Mg(ε,f),τ(ε)(h(ε) − h)

]
λ

∣∣∣ = 0, for ε < δ(λ).

• or there exists a δ(λ) such that Mg(ε,f),τ(ε)(βλ) = βλ for any ε < δ(λ) .

In that case,

∣∣∣
[
Mg(ε,f),τ(ε)(h(ε) − h)

]
λ

∣∣∣ =
∣∣∣
[
h(ε) − h

]
λ

∣∣∣, for ε < δ(λ); and the weak convergence of h(ε) to h

allows to conclude that

∣∣∣
[
Mg(ε,f),τ(ε)(h(ε) − h)

]
λ

∣∣∣ → 0

This proves that Mg(ε,f),τ(ε)h(ε) converges weakly to MTf,0 h and finishes the proof of Lemma A.1.

We shall now see how to ensure strong convergence of the Mg(ε,f),τ(ε)(h) when h is in Mf .

LEMMA A.2. If there exists a value of δ independent of λ such that ∀ε < δ and ∀λ, τλ(ε) > ε, then the two following

properties hold:

1. For any choice of f and of the family g(ε, f):

∀ε < δ, Mg(ε,f),τ(ε) = MTf,0Mg(ε,f),τ(ε) = Mg(ε,f),τ(ε)MTf,0 =
∑

λ s.t. Tfλ 6=0
and |gλ|≥τλ

〈 ., βλ〉βλ.

2. In particular, for any choice of f ∈ Hi
T,w,p and of the family g(ε, f), (i.e. whenever Mf has a unique minimizer f†

of the |||.|||w,p-norm):

∀ε < δ, Mg(ε,f),τ(ε)(Tf†) = Mg(ε,f),τ(ε)(Tf).

Proof. [Proof of Lemma A.2:] The first part of Lemma A.2 results from properties of orthogonal projections. If P1 and

P2 are two orthogonal projections, then:

P1 P2 = P2 P1

ker(P2) ⊂ ker(P1) ⇔ P1P2 = P1.

Hence, we already proved Mg(ε,f),τ(ε) MTf,0 = MTf,0 Mg(ε,f),τ(ε) and

Mg(ε,f),τ(ε)MTf,0 = Mg(ε,f),τ(ε) ⇔
[
(Tf)λ = 0 ⇒ |g(ε,f)λ

| ≤ τλ(ε)
]
.

When f and ε are fixed, the right hand side holds for any g(ε, f) if and only if
[
(Tf)λ = 0 ⇒ ε < τλ(ε)

]
which proves the

first part of Lemma A.2.

For f in Hi
T,w,p, f† is well defined and verifies MTf,0Tf† = Tf . Applying Mg(ε,τ(ε)) to this equality and using the

previous result finishes the proof of Lemma A.2.

APPENDIX B. ELEMENTS OF THE PROOF OF THE STABILITY OF (II)

LEMMA B.1. Suppose that τ = τ(ε) and µ = µ(ε) verify conditions 2 and 3 of Theorem 4.3. Then the two following

properties hold:

1. For any h in Ho, M2
g(ε,f),τ(ε),µ(ε)h converges weakly to M2

Tf,0,µo
h as ε goes to 0.

2. If h(ε) converges weakly to h as ε goes to 0, then M2
g(ε,f),τ(ε),µ(ε)h(ε) converges weakly to M2

Tf,0,µo
h as ε goes to

0.

Proof. [ Proof of Lemma B.1:] In the proof of Lemma A.1, we have seen that under conditions imposed on τ(ε)
(conditions 3 and 4 of Theorem 4.3), the following happens:

• for λ s.t. Tfλ 6= 0: limε→0 τλ(ε) = 0 hence there exists δ(λ, f) such that ε < δ(λ, f) implies τλ(ε) < |Tfλ| − ε. It

follows that: |g(ε, f)λ| > τλ(ε).
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• for λ s.t. Tfλ = 0: ε < δ(λ) implies τλ(ε) > ε. It follows that if ε < δ(λ), then |g(ε, f)λ| > τλ(ε).

So that in the first case: M2
g(ε,f),τ(ε),µ(ε)(βλ) = βλ for any g(ε, f) and any ε < δ(λ, f); and in the second case:

M2
g(ε,f),τ(ε),µ(ε)(βλ) = µ(ε)2βλ for any g(ε, f) and any ε < δ(λ). Since µ(ε) converges to some µo by assumption

(condition 5 of Theorem 4.3), it follows that M2
g(ε,f),τ(ε),µ(ε)h converges to M2

Tfo,0,µo
h as (ε) goes to 0. This proves the

first part of Lemma B.1.

To prove the second part of Lemma B.1, we use again the splitting trick we used in A.1.(3):

∣∣∣
[
M2

g(ε,f),τ(ε),µ(ε)h(ε) − M2
Tf,0,µo

h
]
λ

∣∣∣ (23)

=
∣∣∣
[
M2

g(ε,f),τ(ε),µ(ε)(h(ε) − h) + (M2
g(ε,f),τ(ε),µ(ε) − M2

Tf,0,µo
)h

]
λ

∣∣∣ (24)

=
∣∣∣
[
M2

g(ε,f),τ(ε),µ(ε)(h(ε) − h)
]
λ

∣∣∣ +
∣∣∣
[
(M2

g(ε,f),τ(ε),µ(ε) − M2
Tf,0,µo

)h
]
λ

∣∣∣ (25)

And the same argument as we used in Lemma A.1.(3) allows to conclude.
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