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Abstract

We have used continuous and discrete-time versions of a neural oscillator model to
analyze how various types of synaptic connections between oscillators affect synchroniza-
tion and desynchronization phenomena. First, we present a synthesis of the mathematical
properties of both neural oscillator versions. Then, we show that the choice of parameters
leads to a relationship between the two versions. Finally, we achieve the coupling of two
oscillators in order to study how synaptic connections affect the phase lag. With this in
mind, we state some of the results for the continuous-time model. The second part of this
paper deals with the behavior of neural networks comprising connected oscillators, wich
involves looking at the conditions for desynchronization of a totally synchronized oscilla-
tor net. Such a study has been carried out both for a fully and for a sparsely connected
network. This leads to the observation that some architectures enable proper desynchro-
nization when the size of the network is large. While searching for the conditions for
desynchronization, we have discovered that a macroscopic description of the network is
sometimes possible. To conclude , we discuss the advantages and the limitations of this

macroscopic approach.
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1 Introduction

Oscillatory electrical activities have been uncovered in several brain regions, such as the visual
cortex, the olfactory bulb, studied by Li and Hopfield (1989), and the hippocampus (Gluck,
1996). Recordings carried out by Gray et al.(1989) on the first visual cortical area of anes-
thesized cats have shown that visual stimuli can generate brief, coherent electrical activity.
These biological results are consistent with the theoretical investigations of Von der Malsburg
(1981), which gave rise to the labelling hypothesis, i.e., cell assemblies are established through
oscillations, and labeled by a phase. In accordance with this hypothesis, the electrical activ-
ity might be explained by the fact that visual stimuli provoke brief phase locking of separate
regions of the cortical area. Our purpose has therefore been to modelize this phenomenon by
synchronization of neural oscillators followed by a fast desynchronization.

In order to do this, we were confronted with a choice between the use of continuous or dis-
crete time for the oscillator network. Many people find discrete-time nets to be conceptually
simpler, and more appropriate for dealing with discrete or symbolic data. On the other hand,
continuous-time nets seem more natural in many models and applications. Since there is no bi-
ological evidence concerning the kind of network to be used, we will try to explore the labelling
hypothesis through both continuous and discrete time approaches. To this end, we will use a

common type of continuous-time dynamic describing additive nets:

dl‘i - .
o = et Wigi(ey), (i =1,...,m)

i=1




Here, g; is the activation function of unit 7; its value is the output of unit j.¢; is a relaxation
coefficient, W, is the weight of the connection line from unit j to unit ¢ and x;(¢) is the
activity of unit 7. Several investigations have been carried out concerning the synchronization
aspect of the labelling hypothesis, using special values of the parameters leading to specific
architecture. For a study of a ring network, we may refer to Atiya and Baldi (1989). A
more systematic mathematical study is available in Hoppensteadt and Izhikevitch(1997). For

discrete-time networks, we will use a general additive net of the form:

yi(t +1) = gz(z Wiy;),(i=1,..,n)
7=1

Here, y; is the output of unit 7. This model was first introduced by Hopfield (1982). Synchro-
nization for such systems poses a difficult problem, from a mathematical point of view, and, as
far as we know, little has been done to pursue this goal. However, synchronization can also be
achieved artificially by the addition of inputs, as we will be explained later.

One major aim of our paper is to study desynchronization of additive nets after their synchro-
nization for specific kinds of synaptic weights. To start with, we describe, in section 2, the basic
unit of the network, the neural oscillator. In the following section, we study the mathematical
properties of the oscillator, in order to illustrate the differences between continuous and discrete
time approaches. In contrast, section 4 focuses on the possible relationship between the two
descriptions. In the final section, we analyze the coupling of two oscillators, in order to obtain

an insight into the desynchronization of more complex neural nets.



2 Models and Equations

This section is devoted to the presentation of a single oscillator. This comprises two neurons,

one excitatory and one inhibitory as depicted in the following interaction diagram:

Figure 1 : Representation of two coupled oscillators, signs indicate whether the action in the

direction of the arrow is inhibitory or excitatory.

X (or Y) can be either the activity of the excitatory (or inhibitory) neuron, or its output.
From now on, U,(t) (or U,(t)) will denote the output of the excitatory (or inhibitory) neuron
and x(t) (or y(t)) will represent its activity. Such a modelization was first carried out by Wil-
son and Cowan (1972), in order to analyze the interaction between a population of inhibitory
neurons and a population of excitatory neurons. Furthermore, this kind of interaction diagram
has been widely used to interpret many regulated biological systems, particularly in genetic
(Thomas and D’Ari 1989). In this paper, we consider two kinds of evolutional behavior. First,

we describe a continuous-time evolution for U, and U, given by:

Wall) — U@ 4 tanh(AU, (1)) — tanh(AU, (1))

dt

(1)

) — B tanh(AU, (1)) + tanh (AU (1))



where 7 is a characteristic time constant and A > 0 is the amplification gain. Such a system is
a simple case of additive nets, as described in the introduction, in which synaptic connections
are equal to 1 or —1. Furthermore, the system allows oscillatory behavior for U,(t) and U, (?).
Secondly, we also emphasize discrete-time systems owing to the fact that such systems take
delays into account naturally (Chapeau-Blondeau and Chauvet, 1992). We therefore study the

following Hopfield model for the evolution of x(¢) and y():

v(t+1) = glax(t) + ay(l))

y(t+1) = glase(t) + aay(l))
where ¢(y) = tanh(y) and ay,a2,as and a4 are the synaptic weights. The above system is
obviously a particular case of the discrete-time evolution system described in the introduction.
In accordance with the symmetrical properties of the continuous-time version, but also for the
sake of simplicity, we consider that a3 = —ay and a4y = a;. Despite the restrictive nature of this
choice, it may prove useful when comparing the two versions of the oscillator. Furthermore, in
the present work, the study of neural networks comprising oscillators will show the relevance

of this simplification. Thus, x(¢) and y(¢) are solutions of:

z(t+1) tanh(ax(t) — By(1))

(2)

y(t+1) = tanh(Bz(t) + ay(t))



3 Oscillator properties

This section is divided into two parts ; the first is devoted to the discrete-time version and
the second involves its continuous counterpart. Let us first look at a behavioral analysis of the
discrete-time system (2), when o and 3 are varied. Secondly, we will discuss classical results
involving the bifurcation study and period calculation for the continuous version, which are
also available in Atiya and Baldi (1989). In addition, we will try to shed light on the existence
of fixed points. Finally, we will undertake an investigation of isochrons, which make it easier

to understand the synchronization process.

3.1 Discrete-time oscillator

We have carried out a study of system (2), looking at the following points:

e In property 1, we seek the conditions that dictate whether the fixed point (0, 0) is repulsive

or attractive.

e In property 2, we set supplementary conditions for the existence of other fixed points,

and we then discuss their stability.

e In property 3, we calculate an approximation of the period.
Property 1 The origin is a local attractive fixed point if and only if:

oz2—|-52<1



Proof: From dynamical systems theory, it follows that near the origin, the behavior of system
(2) is equivalent to:
z(t+1) x(t)
= Jac(0,0)
y(t+1) y(t)

where Jac(0,0) is the Jacobian matrix at the origin.

Therefore, the origin is attractive if and only if the spectral radius of the Jacobian matrix at

the origin is less than 1, which reads:

p(Jac(0,0)) = a2+ 3?2 <1 |

When o? 4+ 3? > 1, the trajectories may tend towards a limit cycle, as shown in Figure 2 (as
the rotation angle of trajectories around the cycle is not a rational number, the cycle comprises
an infinite number of points). When the dynamic is of this sort, we speak of an oscillator with

pacemaker activity, or a pacemaker oscillator.

Figure 2: Trajectories in the (x,y) plane for values of o and (3 so that o* + 3* > 1 (a = 0.6

and 3 =1) in order to obtain a limit cycle.



From now on, we will refer to secondary Hopf bifurcation as the change in stability of the origin.

Beyond the secondary Hopf bifurcation, the dynamic may also have fixed points:
Property 2 The system can have either one, five or nine fived points.

Proof: A fixed point (x,y) satisfies the equilibrium system (ES):

r = tanh(ax — fy)
y = tanh(Bz + ay)

hence, it also gives:
y = %(aw — argtanh(x)) = f(x)

r = %(—Ozy—l- argtanh(y)) = —f(y)

With such a system, three cases may occur: we can have one solution, as depicted in figure
3(A), five solutions, when the two curves are tangential, and, possibly, nine solutions, as shown

in figure 3(B):

0.5

<0.25

-0.5 -0.5

-0.75

Figure 3: Representation of the nullclines of the discrete model in the (x,y) plane. Their

intersections represent the fixed points of the system. In figure (A), the parameters are chosen



so that there is only one fized point, whereas, in figure (B), they are chosen so as to obtain nine

fized points.

Furthermore, we have:

From this we can infer that:

1. if 0 <a <1, f is a decreasing function, and thus fo f is increasing, then 4 fo f(z) =0

has only one solution, x = 0, which implies that the only fixed point is (0,0)
2. fa>1

Since f(x) is increasing for @ in [0, /1 — 1], and decreasing for = in [y/1 — L, 1[ we may deduce

that:

o When the nullclines are tangential for some value of x where > 0, we have a single fixed

point (z,y) where > 0 and y > 0. Furthermore, © < y/1 — . The system has five fixed

S|

points because of the symmetry.

o When the nullclines cross for a value of z > 0, they then cross twice. We thus have two
fixed points in the region * > 0 and y > 0, leading to nine fixed points because of the

symmetry.

Let us assume that there are some fixed points. Of these fixed points, one has coordinates
(x1,y1) that satisfy y; > x1. As 1 must be positive, we may deduce that o > 5 I

10



The above demonstration shows that, if 3 > «a or a < 1, we have no fixed point apart from the
origin. Therefore, if a and (3 also satisfy o + (3% > 1, we are in a cycle configuration. This also
explains the dynamic of the oscillator in terms of bifurcation. Indeed, there is a first bifurca-
tion corresponding to the change in stability of the origin. Another bifurcation occurs when a
fixed point appears in each quadrant. Numerically, we have observed that it corresponds to a
saddle-node on a limit cycle. This point will be developed in a further work.

Let us return to a limit cycle attractor configuration in order to state a simple property con-

cerning the period of the oscillations.

Property 3 Near the secondary Hopf bifurcation the period T is given by the formula:

T=2"
0

where o+ 13 = r e'?

Proof: It should be remembered that the evolution of the discrete-time oscillator at the origin

and near the secondary Hopf bifurcation is governed by:

2t+1) = aa(t)— By(t
y(t+1) = Pa(t)+ay(l)
So, let z be:

2(1) = (1) + iy(1)

The evolution equation for z is therefore:

z(t+ 1) =(a+18)z(t)=r ewz(t)l

11



It is obvious that this formula can only be used if T is really close to an integer.

Remark: The choice of fixed connection strengths is not biologically relevant. A possible
improvement would be to introduce uncertainty in the parameters, i.e., to replace the classical

iteration by an iteration of the following kind (studied by Demongeot et al. (1997)):

z(t+1) = tanh(ax(t) — By(1))
y(t+1) = tanh(Bx(t) + ay(t))
where tanh.(u) is defined by: dn € [—¢,¢] / tanh.(u) = :_Z;%
A possible description of the uncertainty involves making a random choice 1 € [—¢, ¢] at each

iteration. This allows us, at each step, to compute the classical iteration with a = a,, = (14n)a

and # = (3, = (1 + n)B. Figure 4 shows this iteration for two values of e.

Figure 4: Figure (A) shows a sigmoidal transfer function delimited by the two maps tanh((1 —
e)u) and tanh((1 + €)u). Figure (B) shows the trajectories for a compact set valued iteration
defined by a random value n in [—¢, €], ¢ = 0.01, and :

z(t+1) = tanh((1+n)(az(t) — By(t)))

y(t+1) = tanh((1+n)(Bz(l) + ox(t)))

12



Figure (C) concerns the case for e = 0.05.

These phase diagrams show the structural stability of the iterations. The relevance of such

a desynchronization model will be discussed at the end of the paper.

3.2 Continuous-time oscillator

Here is a reminder of the evolution of (U, (1), U,(1)):

Wall)  — U 4 tanh (AU, (1)) — tanh(AU, (1))

dt

0 = O 4 tanh (A, (1)) + tanh(AUL (1))
As with the discrete-time model, we first focus on the Hopf bifurcation characterization and

period calculation. We then discuss the existence of fixed points. The part devoted to isochrons

is of major importance in the understanding of the synchronization of oscillators.

3.2.1 The Hopf bifurcation

The Hopf bifurcation characterizes the change in dynamic for (U,(t),U,(t)). The evolution
system changes from a single global attractor, the origin, to a cycle attractor. A mathematical

criterion has been found out for this transition:

o If \7 < 1, the origin is the only stationary point. The origin is stable and all the

trajectories converge to the origin (no limit cycles).

o If A7 > 1, the origin is unstable and all trajectories converge to a limit cycle attractor.

13



Proof for this theorem may be found in Atiya and Baldi (1989).

3.2.2 Period

In the case of small oscillations (A7 close to 1), the period, T, can be approximated using
the imaginary part of the eigenvalues of Jac(0,0), where Jac(0,0) is the Jacobian matrix of
the system at the origin. This yields T' & 27” ~ 2nr. This approximation is based on a
linearization around the origin. As we move further away from the bifurcation point, A7 = 1,

the first approximation of the period remains fairly good, whereas the second deteriorates more

drastically.

3.2.3 Nullclines

For all values of A and 7, the origin is the only fixed point. Indeed, as the nullclines are

determined by the following equations:
U, = —U,+27rtanh(\U,)
U, = U, —27rtanh(\U,)
we can show that (0,0) is the only solution of this system.

Using the following change in variables:

U, = 7(z+y)

U, = 7(z—y)

14



we seek the solutions of the system:

y = —x+ p argtanh ()
r = y—p argtanh (y)
1

where p =+, -l <ax <land -1 <y < 1.

A0
o if u>1
If x > 0, then y > 0, from the first equation. But if y > 0, then x < 0, from the second

equation which leads to a contradiction. A similar result can be derived for x < 0, and

therefore + = y = 0 is the only fixed point.

o if u<l
We show that every half curve is located in a different region of the plane defined by the

tangents at the origin (y = (1 — 1)z and @ = (1 — p)y), i.e., the half curve defined by:
y = —x + p argtanh ()
z €]0,1]

yE]—l,l[

satisfies y — (0 — 1)z > 0 and @ — (1 — )y > 0. Similar results may be obtained by
rotating the half curve under consideration through £7.

Firstly, y — (¢ — 1)x > 0 since ©+ — —a + p argtanh(z), « € [0, 1] is convex. Secondly, the
study of g(2) = e —(1—p)y = (2—p)x—p(l1—pu) argtanh(z) leads to g(x) > 0, Va € [0, 24].
We can then show that y(zq) = i > 1, since g(1 — ) > 0. Furthermore, studying the
variations of y(x), it is found to be increasing on [, 1[, which gives y(xz) > 1 if @ > 2.

15



The half curve under consideration does not exist on [2y, 1], and therefore g(x) > 0. This

ends the demonstration.

3.2.4 Isochrons

The use of isochrons to interpret biological phenomena was introduced by Winfree (1974). The
first mathematical study of them dates back to Guckenheimer (1975). Isochron properties have
been used to study nervous systems by both Pham Dinh et al. (1983), and by Ermentrout
and Kopell (1994). For our study, we only need a general definition, which may be stated
thus: if two initial conditions are part of the same isochron, then the solutions have identical
asymptotic behavior.

Some isochrons of the continuous-time oscillator are shown in Figure 5.

107

-10 S5 T0eE T g 10

_10!

Figure 5: Representation of some isochrons in the (U,,U,) plane when At > 1.
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Analysis of isochrons Isochrons of the neural oscillator follow a regular pattern resembling
rectangular spirals. The main reasons for this shape are the symmetry of the system and its

linearity for large values of U, and U,:

Property 4 For |U,|,|U,| > %, the system can be approzimated using the following linear

b
systems:
2 2 dUi ~ Ui dU@ ~ U@
Ul’>A ’ Uy>A dt ™ T o dt T‘I'Q
2 __ A dUi ~ Ué dU@ ~ __L@
Ul’>A 7Uy< A dt ™ 7+27 dt ™ T
_2 2 . dUEN_%_ %N_Uy
Ue<—=%, U>5 @ FR-7 2, dt T
_2 _2 . Uz o _Us Uy Uy _
Ur < A0 Uy <% dt T »ode ™ T 2

Proof: For |U,],|U,| > 2 ; |tanh(AU,)| ~ [tanh(AU,)| ~ 1. Hence, we obtain the above
approximations.ll
Since the four systems are identical through rotations of Z, it is sufficient to study the isochrons

in the first quadrant. Figure 6 shows two graphs that will make it easier to understand the

following demonstration:

02Ty S

0.2/%

U
x
x=2/N

Figure 6: Figure(A) shows two portions, AA" and BB’, of isochrons far beyond the point
(%, %), thus the isochrons are drawn as lines. A and A’ represent two points located on the

17



same isochron, as do B and B’. Details of the geometrical shape are given in the demonstra-

tion. Figure(B) shows the drawing of an isochron far beyond (2,%) during a complete period.

Demonstration of the shape of the isochrons

Foer>%ande>%

Trajectories in the phase space follow: U, = kU, + 27(k € R). Let us assume that part of
an isochron is segment AA’. Let us then consider another isochron crossing the trajectories
from A and from A’ at B and B’, respectively. We would like to show that (AA’) is parallel to
(BB’). Let us denote al,al’,bl and b1’ as the respective abscissae of A;A’.B and B’. Using the
evolution equation of U,, and given that the system requires the same time to go from A to A’
as to go from B to B’, it follows that:

In(b1)-In(al)=In(b1’)-In(al’) which is equivalent to & = % = (BB")//(AA’)

Thus, all isochrons are parallel in the four quadrants. We may now investigate how the different
parts of the same isochron join on the axes. As the function F(U,,U,) = (—% + tanh AU, —
tanh AU, —% + tanh AU, + tanh AU,)) is continuous, the isochrons are also continuous, and
therefore the straight segments in the different quadrants of the same isochron join on the axes.
Since two points on the same trajectory separated by one time period are part of the same

isochron, the resulting pattern forms a rectangular spiral.

For |U,| < 2 and |U,| < 2

Here, the mathematical study is much more complicated, but it has been proved by Gucken-

heimer (1975) that isochrons tend towards the cycle perpendicularly.

18



Slope of the spiral Since the linear parts of the isochrons are parallel in each quadrant, the
slope of the isochrons is well defined. If the oscillator isochrons can be assumed to be a perfect

rectangular spiral, as in Figure 6(B), we obtain:

Property 5 The slope of the isochrons can be approximated by

where T is the period of the oscillator.

Proof: On the one hand, the distance between A; and As, in Figure 6(B), is given by the length
of the trajectory covered during one period. As the system can be assumed to be linear, if || A,||
denotes the distance from the origin to the point A;, we obtain T' = 7(In(||As||) — In(]|A1]])),

hence:

]l
A

€

On the other hand, the above fraction can be expressed as

H‘15H 4
=m
HAIH

Where m is the slope of the isochrons when U, > 0 and U, > 0. The result of the property is

a direct consequence of the above equalities.ll

19



4 Relationship between the discrete-time and the continuous-

time versions

In this part, we discuss the relationships between the parameters of the two versions. We
therefore try to switch from the continuous model to the discrete one by making appropriate
approximations. Using an Fuler method with a time step equal to 4, the continuous model
integrates as follows:

Us(t+6) = (1-— g)Ux(t) + §(tanh(AU,(t)) — tanh(AU,(1)))

U,t+9) = (1-— g)Uy(t) + §(tanh(AU, (1)) + tanh(AU,(t)))
We study this system close to the Hopf bifurcation point. It is well known that the size of
the cycle shrinks as the values of the parameters approach the bifurcation point. Therefore,
with an appropriate value of 7, it is possible to get a cycle, for which the diameter is small
compared with % Thus, we can make the assumption that the respective values of U, and U,

are asymptotically small compared to % This leads to the following simplification:

Un(t+6) = (1+6M1— L)Ua(t) — 6, (1)

Uyt +6) = (1+8M1— S)U, (1) + SAUL(1)

Now, let nd =1 and v =1+ §A(1 — ;—T) +i5XA=1+ %(1 — ;—T) + z% Then:
Ug(t+1) = Re(y")U.(t) — Im(y")U,(2)
Uyt+1) = Im(y")U(t) + Re(y")U,(2)

where Re and Im stand for the real part and the imaginary part.
Let us now return to the discrete-time system discussed in section 2, in which we use tanh as

20



the synaptic transfer function. If we also hypothesize that x and y are sufficiently small, as

Ug(t) = a(t) —y(t) and Uy, (t) = x(t) + y(t), it follows:

Uit +1) = all(t) = BU(1)
Uyt +1) = BULL) + alUy(2)
We may therefore deduce a relationship between paramaters for the discrete-time and continuous-

time versions of the oscillator, which allows them to behave similarly:

« =l Re)

A simple calculation gives us a = o cos(A) and 8 = o sin(A).

We conclude from this that the equivalence of the two bifurcation equations corresponds to
At =1and o + 32 = 1.

Finally, we can investigate the period of the oscillations. It should be remembered that the
period of the continuous-time oscillator equals 27” whereas it is 27” for the discrete one (6 =
arg(a +1/3)). Since § = A, it can be observed that the periods are identical at the bifurcation

point.

5 Coupling two oscillators

In this section, we will first discuss the problem of an eventual phase lag for oscillators linked
by one connection, the dynamic of the oscillators being either continuous or discrete in time.
Then, we will discuss the case of two oscillators linked by more than one connection arriving at

21



the conclusion that the phase lag is difficult to assess with a discrete-time evolution whereas,

it can be derived from a continuous one.

5.1 Omne connection

5.1.1 Discrete model

We are going to discuss one excitatory connection between the two excitatory neurons, as shown

in the following diagram:

Figure 7: Representation of two modules with a connection between their excitatory neurons.

The signs indicate whether the action in the direction of the arrow is inhibitory or excitatory.

Thus, the evolution of (x1,y;) is unchanged, whereas that of (xq,y2) is given by:

zo(t+1) = tanh(axa(t) — Bya(t) + ¢ 21(1))

y2(t +1) = tanh(Brs(t) + ays(?))

where ¢ > 0.
At this stage, we have only carried out numerical simulations in which we have chosen 3 > «,

22



which means that the effect of one neuron on the other is greater than that exerted by the
latter neuron on itself. Furthermore, when such a choice is made, the dynamic of an isolated
oscillator presents no fixed points (see section 3.1). We expect that the dynamic described by
(22,y2) behaves similarly when c is small (this can be checked numerically). Let us denote p(t)
the phase lag between the oscillators at time ¢t. We investigate the evolution of (p(t), p(t + 1))
versus the synaptic weight, c¢. For a wide range of values of c, the phase lag between each
oscillator is quasi-periodic (it might be periodic for special values of ¢); a limit cycle appears.
If we proceed further, and study the evolution of this phase lag as a function of connection ¢, it
appears that the stronger the connection, the bigger the cycle. This fact may be explained by
a change in the frequency of one of the two connected oscillators: this change is all the greater
since c is large. Figure 8 displays phase diagrams (p(t), p(t 4+ 1)) for several values of ¢ (it is

important to note that we are careful to maintain a pacemaker activity for both oscillators,

23



whatever the value of parameter c).

c = 0.001

Figure 8: Figure (A) shows the phase diagram (p(t),p(t+1)) for a connection strength equal to
0.001 , &« = 0.6 and B = 1. Figure (B) is similar to figure (A) for a connection strength equal
to 0.01, o = 0.6 and B = 1. In figure (C), the connection strength is equal to 0.1, § with o
remaining unchanged. In figure (D), the connection strength is equal to 1, 5 and o remaining

unchanged.

Throughout the simulations, it appears that such a behavior may easily be reproduced for

any other kind of connection.

24



5.1.2 Continuous-time version

Here, as with the discrete-time system, the excitatory neurons are coupled by a uni-directional
excitatory connection. The evolution of the first oscillator remains unchanged, and that of the

second gives:

Werl) = T 4 fanh(AU,, (1)) — tanh(AU,, (1)) + tanh(clUy, (1))
(3)
L@ = Lal 4 tanh(AU,, (1)) + tanh(AU, (1))

where ¢ > 0.

Simulations show that the phase lag between the oscillators converges to a constant, d. Further-
more, d depends neither on the initial conditions of the system, nor on A and 7. The coupling
strength, ¢, only affects the time needed to establish the asymptotic phase lag. The value of d
approaches T'/8 if the system parameters approach the bifurcation point A7 = 1, where T' is the
period of the system. The analysis of system (3) makes it possible to determine analytically the
effect of any possible connection between two units of two different oscillators on their phase

lag. Details are given in the following property:

Property 6 If we assume that the phase lag induced by the first oscillator on the second con-
verges to a constant value, d, the phase lag induced by any other type of connection equals one
of the values, £d + kT /8 where k € {1,3,5,7}, provided that the strength of this connection is

low.
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Proof: Let us first consider an oscillator (U, U,), evolving as follows

Wall)  — U 4 tanh (AU, (1)) — tanh(AU, (1))

dt

Wl = By banh(AU, (1)) + tanh(AU,(t))

dt

The invariance shown when the vector field is rotated through 7 gives:

DU(t) = Uyt + 7)
2) — U, (1) =U(t+ 1)
3) = Uy(t) = Uy(t + §)
If we consider that the excitatory connection, ¢, in (3), is small, those relationships are still

valid for the excited oscillator. It is, therefore, possible to imply the following:

e If a connection is replaced by an identical connection, but in the opposite direction, the

phase difference is replaced by its opposite value, i.e., dx = —d mod T'

e if a connection changes its sign, i.e., an excitatory connection becomes inhibitory or vice

versa, the phase difference is increased by %, le., dx =d+ % mod T'

o If a connection originated from the excitatory neuron is replaced by an identical connec-
tion originating from the inhibitory neuron, the phase lag is increased by %, ile., dx = d—l—%

mod T’

o If a connection targeting the excitatory neuron is replaced by an identical connection
targeting the inhibitory neuron, the phase difference is decreased by L, i.e., dx = d — %

PR

mod T’
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The phase difference induced by any connection is obtained by applying one or more of the

above rules.ll

5.2 Several connections

5.2.1 Discrete model

The connections between the oscillators are as follows:

Figure 9: Representation of two completely connectd modules; an arrow represents a

connection between two neurons. The action of one neuron to another is not specified.

Simulations are made for the connection strength evolving in [¢pin, Cmar]- When ¢,;, equals
Cmaz, the oscillators tend to synchronize. In contrast, if ¢,,;, 1s different from ¢,,,,., the phase lag
between oscillators, p(t), is such that map p(t + 1) versus p(?) is a cycle. Numerically, we may
observe that the bigger the difference between ¢, and ¢,,;,,, the bigger this cycle. The dynamic
properties of the system are similar to these obtained with one connection; (p(t), p(t +1)) tends
towards the cycle exponentially faster when the connection strength increases.
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5.2.2 Continuous model

The evolution system has the following form:

dU:ljf(t) _ _Um;(t) + tanh(AU,, (1)) — tanh(AU,, (1)) + ; tanh(cxmj U, (1) + Caiy; Uy, (1))
i#j

dUi,é(t) _ _Uy;‘—(t) + tanh(AU,, (1)) + tanh(AU,, (1)) + ; tanh(cym] ij(t) + gy, Uy, (1))
i#j

where ¢ and j are equal to 1 or 2. If the coupling between two oscillators comprises several
connections, simulations show that the phase lag is still asymptotically stable. If the oscillators
are near the bifurcation point, the connections can be classified into four classes, according to
the phase lag they induce. Connections inducing opposite phase lags (7/8 is opposite to 57'/8,
and 37'/8 is opposite to 7T/8) anneal each other and the total effect of these connections is
negligible. The weighted mean value of the remaining connections equals the phase lag induced
by the set of connections. In particular, if all connections anneal each other, the oscillators act
almost independently, and the phase lag depends on the initial conditions of the system.

Hoppensteadt and Izhikevich (1997) have also studied this kind of problem using their ”canoni-
cal” model, which has given similar results. They have found that with the appropriate connec-
tions, the phase lag can be monitored, and, in addition, they have shown that some connection

diagrams enable the oscillators to behave independently.

6 Network of connected oscillators

We have just shown that the phase lag between two oscillators may be monitored using a

continuous-time evolution, but no such conclusion is valid for the discrete-time model, even
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close to the bifurcation point. Nevertheless, as the number of oscillators increases, the phase
lag between oscillators can no longer be assessed using continuous-time evolution. For this
reason, synchronization is achieved by means of external stimuli. Using discrete-time evolution
systems, we have investigated the desynchronization aspect of the labelling hypothesis. Such a

study could also have been carried out with the continuous-time version.

6.1 Dynamic of the network

We now consider a network comprising N oscillators, whose dynamic gives:

N
vi(t+1) = aitanh{oszi(t) — Buwi(t) + 4_12#,(%%%@) + €y, y5(1))}

(4)

yi(t+1) = a;tanh{B;z;(t) + cyi(t) + g: (Cyoz, Tj (1) + cyo,yi (1)) }

=Ly

where ¢ € {1..N} and (z;,y;) describes the electrical response of the excitatory and inhibitory
neurons for the ' oscillator. The synaptic weights follow Dale’s principle, i.e., ¢, and ¢,
are both positive, and, ¢;, and ¢,, are both negative. Moreover, a simple change in variable
makes it possible to consider a; as being equal to 1. At a given time, t, we apply an input

characterized by (r,6), to each oscillator, giving the following dynamic:

1) = tanhfan(®) = Bu(t) 4+ 5 (en,as(1) + ey uy(1)} + 1 cos(t)

=157

Gt +1) = tanh{Bai(t) + om() 4 % (Cpmas(t) + ¢y ;1)) + rsin(6)

=157
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the next stages are calculated as follows:

s(t+1) = tanh{ag(t) — By + 3 (Coiz; @5 (1) + Caiy; (1)) }

=Ly

yi(t+1) = tanh{Bz:(1) + ciyi(t) + g: (Cyoz, @i (1) + cye,y; (1)) }

=Ly

The aim of such an input is to synchronize the network, in order to study its resulting behavior,
especially its desynchronization. Furthermore, we require two other major properties. Firstly,
in the absence of stimulation, the activity of the network must remain low, which means that
the network is naturally well desynchronized. Secondly, the network must have at least one
pacemaker oscillator, which means that the vector (0,...,0) is not an attractor for the network
characterized by (x1,y1,...,2n,yn). We will see that when the above conditions are fulfilled,
the resulting behavior is that of a desynchronized network comprising pacemaker oscillators,

regardless of the values of r and 6.

6.2 Different kinds of architectures

Many articles discuss neural networks with simple architectures such as the "ring network”
(Pasemann, 1995) or the chain of oscillators (Wang, 1996), giving rise to simple mathematical
studies. In contrast, we have chosen to impose the weakest possible conditions on connections.
This approach does not allow us to carry out exact calculations and we must therefore often

make mathematically relevant approximations.
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6.2.1 Definitions

For the purposes of our study, we introduce two other entities in order to characterize the state
of the network. We refer to the following entities as the mean activity of the excitatory and

the mean activity of the inhibitory neurons, respectively:
| X

E(t) = + > w1
=1

1) =+ Y (0

A good test for network desynchronization is lim (E(¢),I(¢)) = (0,0).

t—c0

6.2.2 Fully connected neural network

Using a fully connected network, we have investigated the conditions needed to fulfill the

requirements laid out in section 6.1. For that purpose, we may make the following assumptions
(H):

1. ¢py = ¢y = ¢ and ¢,y = ¢y = —¢; where ¢, and ¢; are both positive.

2. all oscillators are identical.

3. the network remains near the secondary Hopf bifurcation.

Assuming that (H) holds true, the requirement of a well desynchronized network implies the

following:
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Property 7 Let f. = c.(N—1)and f; = ¢;(N —1) be the excitatory and the inhibitory strengths
of the network, respectively.

Using A(q) = (fe — fi)* —4B(B + f. + fi), we need:

if Alg) >0 : max(la+ L5854 3 /A(g)], Ja+ L35 — 1/Ag)) > 1
ifA(g) <0 : &+ 32+ fula+B)+ fi(B—a) <1

The proof of this property is given in Appendix A.

The requirement for the existence of at least one pacemaker oscillator reads as follows:

Property 8 If the network satisfies property 7, using A(p) = 408(¢; + ce — B) + (ce — ¢;)?, we

need:

ifAlp) >0 max(la — =5% + 3\ /A(p)],Ja — <5% = 3\ /A(p)]) > 1

fA(p) <0 @ ?+8*—=Blccta)+alc—c)>1

The proof of this property is given in Appendix B.
Interpretation of these properties
First, we may conclude from the demonstration of property 7 that when (H) holds true, the

network is equivalent to the following interaction diagram:

E®. PB+fi 10

+

o+ fe + a- f.

+f !
€

Figure 10 : Figure shows the equivalence between a microscopic description of a network of
N fully connected modules and a macroscopic description with a single module comprising one
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excitatory neuron E(l) = < g: zi(t) and one inhibitory neuron I(t) = < é\f: yi(t), where x;(t)
i=1 i=1

and y;(t) are the respective activities of the excitatory neuron and of the inhibitory neuron of the

ith module. In the microscopic description, the intramodule connections are equal to 3 and «,

the connection between two neurons of different modules is c. when the connection is excitatory

and ¢; when the connection is inhibitory. In the macroscopic description, f; = ¢;(N — 1) and

fe = c.(N —1). The signs indicate whether the connections in the direction of the arrows are

excitatory or inhibitory.

If we wish to take a plausible approach, we have a — f; < 0, leading to a negative auto-
catalytic interaction for I(t). Furthermore, if we assume f. & f;, property 7 implies that the

condition to be fulfilled is:

o + 3 +28f. <1

The size of the network is thus of major importance: drastic conditions must be imposed on the
connections in order to obtain a naturally well desynchronized network. In addition, the criteria

put forward in property 7 may be used to monitor the desynchronization speed. For instance, if

48(8+ fe+fi) > (fe— f:)?, the desynchronization is monitored by o®+ 3%+ f.(a+3)+ fi(a—3) <

33



1. The following graph is an illustration of this:

60 80 100

N
Figure 11 : Figure (A) represents E(t) = x> xi(t) with one hundred modules , c. = 0.002,
=1

N
¢i = 0.084, o = 0.9 and 3 = 0.5. Figure (B) represents of E(t) = > x;(t) with one hundred

=1

modules , ¢. = 0.002, ¢; = 0.01, a = 0.9 and g = 0.5.

If we now look back to property 8, we may see that that when one oscillator is a pacemaker, the
others also have to be pacemakers. Numerically, this is still valid, even far from the secondary
Hopf bifurcation. In addition, the necessary criterion to obtain at least one pacemaker neuron
is independent of the size of the network.

Properties 8 and 9 are difficult to fulfill simultaneously. For instance, when ¢, & ¢;, the network

must verify:

a? 4+ 3% —2e3 > 1

o’ + 32 +28f. < 1
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These inequations obviously cannot be satisfied simultaneously. In order to enable the network

to verify properties 8 and 9, we must reduce the number of connections.

6.2.3 Partially connected neural network

Here, each oscillator, i, has been connected only to its neighbourhood V(i), comprising its
eight nearest neighbours. We should first highlight the changes that are induced by these new
connections, with respect to desynchronization. After this, we will investigate the possible
changes that could be generated by a different discrete-time dynamic. With the connections
diagram described above, and with the same kind of dynamic as that described in section 6.1,

property 7 is changed into:

Property 9 Assume that the hypothesis (H) of section 6.2.2 holds true. The criterion stated

in property 7 is still valid, for large networks, if we replace f. by f., = 8c. and f; by f,, = 8¢;.

Proof: Because (H) holds true, we are near the secondary Hopf bifurcation. The evolution of

(E(t),1(t)) is governed by:

B(t+1) = aB(t) — I + 1 + ZZ Ny 2 2 uild)

=1 jev(i)
S
N
ce (3
T4 1) = BR() 4 oT(1) + 1 + % Z Z () =52 Y will
i=1 jeV(i =1 jeV (i)

A calculation distinguishing the different kinds of oscﬂlators (oscillators of the center of the

network, or those of the edge) yields:

1
stgE(HO(

2l-
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We can now deduce that the system satysfied by (E(¢),1(¢)) is as follows:

E(t+1) = (a+8c)E(t) — (8 +8c)I(t) + O(7%)

I(t+1) = (B+8c)E(t)+ (a—8c)I(t) + O( )
For sufficiently large values of N, the system above is similar to that we obtain in the proof of
property 7 with f. replaced by f., = 8c. and f; by f;, = 8¢;. The conclusions are similar to
those for property 7.1
What is interesting in this property is that the desynchronization depends only on the neigh-
bourhood, V(i), but not on the size, N, of the network, contrary to what is found with fully
connected networks. Though it is easier to desynchronize a partially connected network than a
fully connected one, maintaining a pacemaker activity while desynchronizing remains difficult.
We will now make use of the observation made in section 3.1 in order to derive a new kind of

evolution for network units. Indeed, oscillator evolution after synchronization gives:

zi(t+1) = tanh(az;(t) — Byi(t) + > (cewi(t) — ciy;(1)))

JEV(7)
yi(t+1) = tanh(Bzi(t) + ayi(t) + Z( )(Cexz’(t) — ciy;(1)))
JEV(2
where tanh.(u) is defined by: 3n/tanh.(u) = :_227:3;:

We may assume that hypothesis (H) of section 6.2.2 still holds true. With this new kind of
evolution, we are only able to produce simulations. A first observation is that it is really easy to
obtain a pacemaker oscillator by using o? + * > 1. After synchronization, desynchronization
may be obtained for a range of parameters greater than that of property 9. Figure 12 shows a

configuration in which the network does not desynchronize, using the evolution model described
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in section 6.1, but does with the above one.

eps = 0.1

il H“HM\”\‘;H
500 "“M I H‘\Mtu\“‘

IR
‘\”I‘

(TR

00

Figure 12: In figure (A) we consider the representation of E(t) = < é\f:xz(t) for values of
i=1

paramaters which lead to good desynchronization of the system. We apply an input at t = 1000

to each neuron of every module, the input being identical for each neuron. The modules remain

synchronized even after some time. On the other hand, in figure(B) we consider a compact set

valued iteration defined by a random value n in [—¢, €], ¢ = 0.1, and :

z(t+1) = tanh((1+n)(az(t) — By(t)))
y(t+1) = tanh((1+n)(Bz(l) + ox(t)))
Other parameters are identical to those of figure (A). The input is of the same kind as in figure

(A). We observe a desynchronization.

37



7 Conclusion

We have presented both a discrete-time version and a continuous-time version of the same
neural oscillator. Throughout our study, we have attempted to show that the continuous version
undergoes a bifurcation for some values of the parameters, while, the discrete-time model has
two bifurcation points (it is well known that a discrete-time dynamic is more complex than
its continuous counterpart). When parameters are chosen appropriately, both models exhibit
oscillatory behaviors. With such values of the parameters, we have put forward a relationship
between the models at the birth of oscillations. We have then investigated monitoring of the
phase lag between oscillators, through mutual connections. For the continuous time model, we
obtained some analytical results, which are in accordance with those obtained by Hoppensteadt
and Izhikevitch (1997), when the coupling consists of one connection. These results are extended
to several connections by the use of numerical simulations.

In contrast, the discrete-time model does not allow such an analysis. In any case, it was observed
that it becomes difficult to assess the phase lag for a network of more than two oscillators, with
respect to the continuous model. For this reason, we have decided to achieve synchronization
in larger networks by means of inputs.

Then, we have investigated the desynchronization of synchronized networks, but only for a
discrete-time dynamic. This has seldom been done before. We have therefore carried out a study
near the secondary Hopf bifurcation point for the discrete-time model. We have managed to

obtain analytical results which emphasize that fully connected networks are not relevant to any

38



modelling of desynchronization, since they impose overly drastic conditions on the connections.
Conversely, a sparser connected network allows us to maintain an oscillatory activity after
stimulation, as well as a weak amplitude for the mean activity. Secondly, we also notice that
macroscopic description is possible for such a network. This may be an advantage from a
biological point of view, in that recordings of electrical activity cannot be achieved for a single
neuron. Only the activity of a network is accessible.

From this point of view it may be seen that this model, which allows us to switch from a
microscopic to a macroscopic description, may prove to be of value. Finally, we made an
attempt, with a new kind of evolution model, which has given promising simulation results,
with respect to desynchronization, but so far lacks any analytical results. Further investigations

should be carried out in this direction, in order to work towards biological plausibility.
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APPENDIX A

Property 7 Let us call f. = ¢.(N — l)and f; = ¢;(N — 1) these are the excitatory and

the inhibitory strengths of the network, respectively.

Using A(g) = (fu — fif' —48(3 1 f. + ), we need
if A(g) >0 : max(|a+%—l—%VA(q)|,|a—l—%—%N/A(Q)D>1
if Alg) <0 : o4+ 524 fola+8)+ fi(B—a) <1

Proof : Near the secondary Hopf bifurcation, the dynamic is governed by :

N

vi(t+1) = aizi(t) — Biyi(t) + :IZ#(Ce%(t) — ciyi(t))
W+ = B+ ow()+ 3 (e (t) = (t)

Since the oscillators are assumed to be identical, we write a; = a and 3; = # which implies

that the activities of the excitatory and of the inhibitory neurons evolve as follows :

B(i+1) = (a+c(N-1)E() - (3+a(N - 1))
It+1) = (B+c(N—1)E()+(a—a(N— 1))

Using fo. = c.(N — 1) and f; = ¢;(N — 1) we rewrite the system in the form :

E(t+1) = (a+ f)E{)—(8+ f)I(1)
I(t+1) = (B+ f)EQ®) + (a— f)I(?)

The characteristic polynom of the evolution matrix is :

glz) =2 — 2o = fi+ fo)r+ o + B2+ o fe — fi) + B(fi + [

40



Using its discriminant :
Alg) = (fe = f) = 4B(B + fe + i)

we are led to the following conclusions :

1. if A(q) <0
We have two conjuguate eigenvalues, vpl and vp2. The condition required for (0,0) to be

an attractor is thus :

opl| = [vp2| = o* + 3% + f(a+ B) + fi(B —a) <1

2. if A(q) > 0

the condition required for (0,0) to be an attractor is

maz(|vpi], [vps]) <1

where :

vm—a+ BB+ fo+ 1i)

vpy = a + pB+fo+fi) N
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APPENDIX B

Property 8 If the network satisfies property 7, using A(p) = 48(c; + c. — 3) + (cc. — ¢;)?
we need :

if A(p) >0 : max(|a—%—l—%x/A(p)|,|a—Ce—;C"—%\/A(p)|)>1
ifA(p) <0 : &>+ 5> =fB(ccta)+ale—c)>1

Proof : For the sake of simplicity, we denote (z1(t),y1(t),...,xn(t),yn(t)) by z(t) where N is

the number of oscillator. Since (H) holds true, the dynamic of z(¢) is governed by :
z(t+1)=DF(0)z(t)

where :

Ce —C; —¢;
DF(0) =
Ce —C;
a —f
Ce —Ci oo .. [«

The condition we are looking for is p(DF'(0)) > 1, where p(M) = rgla(ﬁ) |a|. If we call N the
aESp

number of oscillators, let Py be the following polynom :
Py(2) = det(DF(0) — xln)

Our aim is to determine the roots of this polynom which are the eigenvalues of DF(0).

Simple calculations lead to the recurrence formula :

42



TN >=2:

Py(x) = p(a)[Py-1(z) + p" (@) (e = co)a + (e =)o+ (ce + ;) B)]
where
pla) ="+ (cc — ¢ = 20)z + o” + 3% — ale. — ;) + B¢ — c.)
and if N =1 :
Pi(z) = 2% —2ax+a*+ (2

This finally implies that :

where ¢() is the polynom introduced in the demonstration of property 7.

Alp) = 48(¢; + ce — ) + (ce — ¢;)?
Alg) = —48(B+ (N = D(cc+e)) + (N =1)%(cc — ;)

A ) conditions for p

The following study leads to conditions that are independent of the size of the system

1. 48(ci+ce —B)+ (ce —ci)* <0
In this case, we have two conjugate eigenvalues of order N-1. To get at least one eigenvalue

with its module greater than one we need to have :

a® 4+ 3% = Blee +¢)+alei—c) > 1

When ¢; = ¢. we must have a® + 32 —2¢.3 > 1
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2. 48(ci +ce — B) + (ce —¢:)* >0

We have two real eigenvalues, vy, vy which are :

Ce — € Ce — G

ke - )+ (0

a j—
The condition we were looking for is as follows :
maz(|vi, [v2]) > 1

If ¢; = c. the eigenvalues are equal to o + +/3(2¢. — f3)

and the condition becomes :
a>1-— (ﬁ(ch_ﬁ))

B ) conditions for q The same study can be carried changing ¢, into f. = c¢.(N — 1) and

¢; into f; = ¢;(N —1). The calculation leads to the conditions required for the activity of the
excitatory and the inhibitory neurons not to tending towards (0,0). Therefore, the roots of ¢

cannot be bigger than 1, since we have assumed that the network verifies property 7.0
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