Computing branchwidth via efficient triangulations and blocks

Abstract : Minimal triangulations and potential maximal cliques are the main ingredients for a number of polynomial time algorithms on different graph classes computing the treewidth of a graph. Potential maximal cliques are also the main engine of the fastest so far, exact (exponential) treewidth algorithm. Based on the recent results of Mazoit, we define the structures that can be regarded as minimal triangulations and potential maximal cliques for branchwidth: efficient triangulations and blocks. We show how blocks can be used to construct an algorithm computing the branchwidth of a graph on n vertices in time (2√3)^n · n^O(1) .
Type de document :
Article dans une revue
Discrete Applied Mathematics, Elsevier, 2009, 157, pp.2726-2736. <10.1016/j.dam.2008.08.009>


https://hal.archives-ouvertes.fr/hal-00390623
Contributeur : Frédéric Mazoit <>
Soumis le : mardi 2 juin 2009 - 14:57:26
Dernière modification le : jeudi 10 septembre 2015 - 01:06:34
Document(s) archivé(s) le : lundi 15 octobre 2012 - 11:41:36

Fichier

journalExactBw5.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Fedor V. Fomin, Frédéric Mazoit, Ioan Todinca. Computing branchwidth via efficient triangulations and blocks. Discrete Applied Mathematics, Elsevier, 2009, 157, pp.2726-2736. <10.1016/j.dam.2008.08.009>. <hal-00390623>

Exporter

Partager

Métriques

Consultations de
la notice

359

Téléchargements du document

87