L. Bertalanffy, Principles and theory of growth In: Fundamental Aspects of Normal and Malignant Growth, Amsterdam, p.137, 1960.

P. Houghton, C. Morton, C. Tucker, D. Payne, E. Favours et al., The pediatric preclinical testing program: Description of models and early testing results, Pediatric Blood & Cancer, vol.90, issue.7, pp.928-940, 2007.
DOI : 10.1002/pbc.21078

J. Fischer, Mathematical Simulation of Radiation Therapy of Solid Tumors: I. Calculations, Acta Radiologica: Therapy, Physics, Biology, vol.14, issue.1, p.73, 1971.
DOI : 10.1038/197710b0

E. Cox, M. Woodburry, and L. Meyers, A new model for tumor growth analysis based on a postulated inhibitory substance, Computers and Biomedical Research, vol.13, issue.5, p.437, 1980.
DOI : 10.1016/0010-4809(80)90041-5

G. Swan, Tumor Growth Models and Cancer Chemotherapy, Cancer Modeling. Dekker, pp.91-179, 1987.

P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor Development under Angiogenic Signaling: A Dynamical Theory of Tumor Growth, Treatment Response, and Postvascular Dormancy, Cancer Research, vol.59, pp.4770-4775, 1999.

R. Sachs, L. Hlatky, and P. Hahnfeldt, Simple ODE models of tumor growth and anti-angiogenic or radiation treatment, Mathematical and Computer Modelling, vol.33, issue.12-13, pp.1297-1305, 2001.
DOI : 10.1016/S0895-7177(00)00316-2

E. Mandonnet, J. Delattre, M. Tanguy, K. Swanson, A. Carpentier et al., Continuous growth of mean tumor diameter in a subset of grade II gliomas, Annals of Neurology, vol.54, issue.4, pp.524-528, 2003.
DOI : 10.1002/ana.10528

C. Guiot, P. Degiorgis, P. Delsanto, P. Gabriele, and T. Deisboeck, Does tumor growth follow a ???universal law????, Journal of Theoretical Biology, vol.225, issue.2, p.289, 2004.
DOI : 10.1016/S0022-5193(03)00221-2

D. Tee and I. J. Distefano, Simulation of tumor-induced angiogenesis and its response to anti-angiogenic drug treatment: mode of drug delivery and clearance rate dependencies, Journal of Cancer Research and Clinical Oncology, vol.130, issue.1, pp.15-24, 2004.
DOI : 10.1007/s00432-003-0491-1

B. Ribba, O. Saut, C. T. Bresch, D. Grenier, E. Boissel et al., A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents, Journal of Theoretical Biology, vol.243, issue.4, pp.532-541, 2006.
DOI : 10.1016/j.jtbi.2006.07.013

URL : https://hal.archives-ouvertes.fr/hal-00428053

L. De-pillis, W. Gu, K. Fister, T. Head, K. Maples et al., Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Mathematical Biosciences, vol.209, issue.1, pp.292-315, 2007.
DOI : 10.1016/j.mbs.2006.05.003

P. Dua, V. Duab, and E. Pistikopoulos, Optimal delivery of chemotherapeutic agents in cancer, Computers & Chemical Engineering, vol.32, issue.1-2, pp.99-107, 2008.
DOI : 10.1016/j.compchemeng.2007.07.001

W. Newman and J. Lazareff, A mathematical model for self-limiting brain tumors, Journal of Theoretical Biology, vol.222, issue.3, pp.361-371, 2003.
DOI : 10.1016/S0022-5193(03)00043-2

D. Drasdo and S. Hoehme, Individual-based approaches to birth and death in avascu1ar tumors, Mathematical and Computer Modelling, vol.37, issue.11, pp.1163-1175, 2003.
DOI : 10.1016/S0895-7177(03)00128-6

D. Drasdo and S. Höhme, : monolayers and spheroids, Physical Biology, vol.2, issue.3, pp.133-147, 2005.
DOI : 10.1088/1478-3975/2/3/001

J. Galle, G. Aust, G. Schaller, T. Beyer, and D. Drasdo, Individual cell-based models of the spatio-temporal organisation of multicellular systems -achievements and limitations, Cytometry, Cytometry A, vol.69, pp.704-710, 2006.

M. Lindstrom and D. Bates, Nonlinear Mixed Effects Models for Repeated Measures Data, Biometrics, vol.46, issue.3, pp.673-687, 1990.
DOI : 10.2307/2532087

A. Samson, M. Lavielle, and F. Mentré, Extension of the SAEM algorithm to left-censored data in non-linear mixed-effects model: application to HIV dynamics model. Computational Statistics and Data Analysis. targeting neuropilin-1: an in vivo and in vitro study, Drug Metab Dispos, vol.35, pp.806-813, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00263506

L. Tirand, T. Bastogne, D. Bechet, M. Linder, N. Thomas et al., Response Surface Methodology: An Extensive Potential to Optimize in vivo Photodynamic Therapy Conditions, International Journal of Radiation Oncology*Biology*Physics, vol.75, issue.1, 2009.
DOI : 10.1016/j.ijrobp.2009.04.004

S. Retout, E. Comets, A. Samson, and F. Mentré, Design in nonlinear mixed effects models: Optimization using the Fedorov???Wynn algorithm and power of the Wald test for binary covariates, Statistics in Medicine, vol.39, issue.28, pp.5162-79, 2007.
DOI : 10.1002/sim.2910

URL : https://hal.archives-ouvertes.fr/hal-00263513