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Abstract—Positioning requirements for mobile nodes in 

wireless (sensor) networks are largely increasing. However for 
indoors environments most of the existing solutions are expensive 
in terms of technology or infrastructure. We propose an indoors 
positioning scheme in which a static user collects self-estimated 
positions of collaborating peer nodes within radio range as well 
as the error ranges of these estimations and determines its 
position with a linear matrix inequality (LMI) method coupled 
with a barycenter computation. The approach is evaluated with 
simulations where the input parameters are the maximum radio 
range, the number of peer nodes within range, their speed, and 
dynamic error estimation. The simulations show that the scheme 
works fine even when the error estimation linearly increases with 
time. To estimate its position within 1 meter accuracy, the user 
node may wait at the same position for 5 minutes, with 
16 pedestrians moving around him and an error increase rate 
of 10%. 
 

Index Terms—Indoors Positioning, Opportunistic Wireless 
Networks 
 

I. INTRODUCTION 
Nowadays indoors positioning is attracting more and more 

attention from research domain where GPS-like systems do 
not work. This is because people’s positioning needs largely 
vary from comfort or safety for persons to logistics for things 
in warehouses or hospitals for instance. A number of 
approaches have been successfully proposed to provide very 
accurate solutions with positioning errors inferior to the meter. 
Researchers and companies have built on existing 
triangulation methods to exploit various types of beacons, 
ranging from dedicated e.g. UWB infrastructure equipments to 
regular WiFi access points. Most of them are expensive, 
because they require either specific technologies/equipments 
or an over-provisioned infrastructure. Recent approaches have 
investigated cheaper solutions, where the user carries MEMS-
based inertial navigation systems and where the positioning 
scheme also exploits the available WiFi access points as 
beacons. 

The basic idea of this paper is to step away from specific 
positioning equipments (like UWB) and to use as little 
infrastructure as possible (unlike accurate WiFi-based 
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triangulation). We believe that the collective and opportunistic 
exchange of positioning information by peers is a sustainable 
approach. One basic assumption behind that idea is that there 
are enough peers around and that we have plenty of time to do 
the positioning. In a previous paper [1], we have proposed a 
barycentric approach that allows accurate positioning 
estimation, assuming that peers were able to exchange their 
exact current position. In this paper, we assume that peers 
exchange only self-estimations of their own position and we 
re-evaluate the barycentric positioning scheme. 

The paper is organized as follows: Section II describes the 
proposed indoors positioning scheme and basic assumptions. 
Section III details the simulation setup that we used to 
evaluate the self-estimations-based approach. Section IV 
analyzes the simulation results and shows a number of 
situations where the 1-meter accuracy can be achieved. 
Section V surveys related work. Conclusion and future work 
are given in Section VI. 

II. A BARYCENTRIC POSITIONING SCHEME 

A. Purpose 
The investigated scheme is an indoors positioning scheme 

based on opportunistic position exchange between mobile 
peers. It is made for indoors or urban environments where 
GPS or equivalent systems are not available. It was first 
introduced in [1] with different and more constraining 
assumptions. 

B. Basic Scenario 
We consider a user that does not have any special 

localization equipment, only radio equipment such as WiFi or 
ZigBee. The estimation scheme presented in this paper is 
based on several consecutive estimations of the same position, 
so we assume that the user has the ability to stop and wait at 
this same position until the scheme provides an accurate 
estimation. To obtain very good localization accuracy, the user 
has to wait for up to a few minutes.  

Meantime peer users are moving in the neighborhood and 
can provide self-estimations of their own positions at any time 
by means of INS or other MEMS-based equipments. In our 
scenario these peers perform under a cooperative pattern. 
When one moving peer wants to calibrate its own position 
periodically, he can also stop to collect calibrations from other 
position-well-known peers or some landmarks with similar 
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localization scheme.  
Moreover, an RSS threshold discrimination approach is 

adopted to facilitate the user to differentiate if the peer’s 
position information can be used. If the user receives a signal 
from a peer whose RSS is more than ோܶ, then the user-peer 
distance is regarded to be  smaller than , ܴ , the maximum 
radio range of the peer and the position information of this 
peer is accepted. On the contrary, the position information of 
the peer will be ignored. 

The employment of the RSS threshold in localization 
scheme is much more robust and simpler than RSS-based 
triangulation methods which desire very precise RSS-distance 
transition, as will be discussed in Section V.  

Additionally, in this paper, the peers are always supposed to 
be able to communicate with each other: potential interference 
problem or channel capacity will be addressed in future work. 

C. Mathematical Model 
Let ௨ܲ be the exact position of the user. At every second, 

the user may receive ܰ positioning estimations from peers and 
undertakes localization. When the RSS from ௜ܲ is more than 

ோܶ, the following relation exists [2]: 
 

݅׊ א 1. . ܰ ԡ ௨ܲ െ ௜ܲԡ ൑ ܴ (1) 
 
In addition, the collected estimations are ൫ ෠ܲ௜, ݁௜൯  couples. 

Let ܧ௜  be the vector from the self-estimated to the exact 
position of peer #݅. Peer estimations can be used as follows: 

 

݅׊ א 1. . ܰ ൜ܧ௜ ൌ ௜ܲ െ ෠ܲ௜
ԡܧ௜ԡ ൑ ௜݁

 (2)        

 
Considering ௨ܲ , ௜ܲ  and ෠ܲ௜  as the vertices of a triangle, we 

also have the following triangle inequality: 
 

݅׊ א 1. . ܰ ฮ ௨ܲ െ ෠ܲ௜ฮ ൑ ԡ ௨ܲ െ  ௜ܲԡ ൅ ฮ ௜ܲ െ  ෠ܲ௜ฮ (3) 
 
Equations (1) (2) and (3) then imply that: 
 

݅׊ א 1. . ܰ ฮ ௨ܲ െ ෠ܲ௜ฮ ൑ ܴ ൅ ݁௜ (4) 
 
Finally, as shown in [2], Equation (4) can be reformulated 

as a form of Linear Matrix Inequality (LMI) as follows: 
 

݅׊ א 1. . ܰ ቈܫଶሺܴ ൅ ݁௜ሻ ௨ܲ െ ෠ܲ௜

ሺ ௨ܲ െ ෠ܲ௜ሻ் ܴ ൅ ݁௜ܴ
቉ ൒ 0                                    ሺ5ሻ 

Namely, 
 

቎
ܴ ൅ ݁௜ 0 ௨ݔ െ ො௜ݔ

0 ܴ ൅ ݁௜ ௨ݕ െ ො௜ݕ
௨ݔ െ ො௜ݔ ௨ݕ െ ො௜ݕ ܴ ൅ ݁௜

቏ ൒ 0                                              (6) 

 

D. LMI-only and LMI+Barycentric Estimations of ௨ܲ 
Although very sophisticated methods have been defined in 

the literature to solve LMI problems, our evaluation will make 

use of the easily accessible LMI Lab solver developed for 
Matlab [4]. Let ܫܯܮ௨ be the optimum computed by the LMI 
Lab solver for a set of estimations collected by the user at a 
single moment in time. This optimum is a raw estimation of 
the user position ௨ܲ that we define as the LMI-only estimation 
of ௨ܲ. The accuracy of the LMI estimation is not very good, as 
shown in [1], and building a barycentric estimation on top of 
the LMI estimation improves accuracy a lot. 

When the user waits at the same position for some time, he 
can perform a number of successive independent data 
collections and associated LMI estimations. Let ܶ  be the 
amount of successive collections, let ݐ  be the index of a 
collection between 1 and ܶ , and let ܫܯܮ௨ሺݐሻ  be LMI 
estimation of ௨ܲ based on collection #ݐ. The LMI+barycentric 
estimation of ௨ܲ is denoted ܤ௨ and is defined as the barycenter 
of the LMI-only estimation performed so far, that is: 

 
௨ܤ ؝ ଵ

T
∑ ሻTݐ௨ሺܫܯܮ

௧ୀଵ  (7) 
 

The barycentric estimation converges very well over the 
user’s waiting time and enables a very accurate estimation in 
the case of LMI estimation based on exact positions ௜ܲ  [1]. 
The purpose of this paper is to show that the accuracy of the 
LMI+barycentric estimation also performs well when peers 
send ൫ ෠ܲ௜, ݁௜൯ self-estimation couples. 

The performance or accuracy of an estimation is measured 
by the distance between the exact position of the user and the 
estimation. The LMI-only estimation error is the distance 
between the exact position of the user and the LMI-only 
estimation. The LMI+barycentric estimation error is the 
distance between the exact position of the user and the 
LMI+barycentric estimation. 

E. Modeling the Self-Estimation Error Bound  ݁௜ 
The self-estimated error bound e௜ drifts over time as peers 

move around. This can be modeled as follows: 
 

݁௜ሺݐሻ ൌ  ∑ ௡ஶݐ௜,௡ߣ
௡ୀ଴   (8) 

 
In this paper we assume that all peers have the same error 

model and that it is linear, i.e. ݅׊ ݁௜ሺݐሻ ൌ ଴ߣ  ൅  Using a .ݐଵߣ
linear model can be considered as a strong limitation, however 
defining a more realistic error model is outside the scope of 
this paper and involves much additional research. The linear 
model has the advantage of being realistic if we take 
pessimistic values based on pedestrian speed for instance. 

III. SIMULATION SETUP 
The performance of the LMI+barycentric estimation is 

investigated via Matlab simulations. We have used version 
R2007b of Matlab as well as the feasp LMI solver included 
in the LMI Lab [4].  

In all our simulations the user waits at the origin of the 
coordinates system for 5 minutes to accumulate enough raw 
LMI-only estimations for the barycentric computation. Every 
second, self-estimations are collected from peers within range. 



A LMI-only estimation of the user position is then performed 
based on the latest collection, followed by a LMI+barycentric 
estimation on all collections since the first second. 

A simulation is meant to observe the performance of the 
LMI+barycentric estimation according to different parameters 
detailed below. 

A. Generation of Exact and Self-estimated Peer Positions 
Self-estimations ൫ ෠ܲ௜ሺݐሻ, ݁௜ሺݐሻ൯  of peer #݅  are generated as 

follows.  
First, the initial exact position is drawn uniformly in a disc 

of range ܴ  centered on the user position, i.e. the origin: an 
angle ߠ  is drawn uniformly in ሾ0, ሿߨ2  and a distance ߩ   is 
drawn uniformly from ሾ0, ܴሿ; ߩ and ߠ are the polar coordinates 
of the uniformly drawn initial position in a coordinates system 
centered on the disc center. The initial direction ௜ሺ0ሻߠ   is 
drawn uniformly from ሾ0,  .ሿߨ2

Then exact positions ௜ܲሺݐሻ are generated for each second 
using the Random Pedestrian Mobility Model defined in [1]: 
every second, the speed of the peer is drawn from a normal 
distribution ܰሺߤ,  ሻ is drawn fromݐ௜ሺߠ ሻ and the next directionߪ
a normal distribution ܰሺߠ௜ሺݐ െ 1ሻ,  6ሻ. The exact positions/ߨ
are bounded in the disc in order to keep a fixed number of 
peers within range. The bounding consists in redrawing 
positions that fall outside the disc. 

After that, for each second a self-estimation ෠ܲ௜ሺݐሻ is drawn 
uniformly in a disc centered on ௜ܲሺݐሻ  with radius ݁௜ሺݐሻ ൌ
଴ߣ  ൅ ݐଵߣ , where ߣ଴  equals to 1 meter and ߣଵ  equals to 0.1 
m/s, respectively. 

An example of peer movement is illustrated in Fig. 1(a). 
During 10 seconds, the peer moves using the Random 
Pedestrian Mobility Model with a mean speed of 1.2 m/s, a 
standard deviation of the speed of 0.2 m/s and a standard 
deviation of the direction of 6/ߨ (dots). The circles linearly 
growing over time represent the possible areas in which the 
self-estimated positions will be randomly located. The self-
estimated position of the peer is plotted with stars and quickly 
deviates from the exact position. 

B. Comparison of Peer Positions and Self-estimated 
Positions 
For simplicity, in Fig. 1(b), the peer is assumed to travel 

along the positive x direction during 10 seconds. Here we can 
clearly see how random the variation of the self-estimated 
positions will be. Even in this case the self-estimated peer 
trace (star line) generated by the above method still looks 
considerably random. Obviously, this kind of error variation 
assumption is not realistic. However, it can be considered in 
our simulations at least as a possible worst case of how the 
error changes over time.  

C. Simulation Parameters 
A simulation is parameterized with the node density, i.e. the 

number of peer nodes within range ሺܰሻ, the range 
corresponding to the RSS threshold (ܴ), the mean speed of the 
peers (ߤ) and the linear error drift rate (ߣଵ).  

Other less important parameters have been fixed: ߣ଴ is set to 

1 meter, ܶ  set to 300 collections (one per second for five 
minutes). The standard deviation of the peer direction is set 
to 6/ߨ  and the standard deviation of the peer speed is set to 
0.2 m/s. 

Once the parameters have been set, the same simulation is 
run 50 times with different random seeds to ensure statistical 
reliability. 

 
(a) 

 
(b) 
 

Fig. 1. Two examples of 10-second trajectory. The dots curve is the trajectory 
generated with the Random Pedestrian Mobility Model; the stars are positions 
produced with the linearly drifting error model at every second; the circles 
bound the scopes where the self-estimations will occur at every second. 

IV. SIMULATION RESULTS 
In this Section we analyze the results of the simulations 

carried out with different parameters. We study the impact of 
each individual parameter on the accuracy of the 
LMI+barycentric estimation.  

A. Preliminary Illustration 
Before analyzing in detail the impact of the different 

parameters on the accuracy of the LMI+barycentric 
estimation, we illustrate its behavior on a complete example. 

The example simulation parameters are set as follow: node 
density ܰ is set to 50 peers within range; range ܴ is set to 10 
meters; the mean speed of the nodes ߤ is set to 1.2 m/s; and 
the linear error drift rate ߣଵ  is set to 0.1 m/s: the self-
estimation error bound of each peer node drifts linearly from 1 
to 31 meters over the 5 minutes of the simulation. 50 peers in 
10m radius is not as overcrowded as it may seem: it is 
6 ݉ଶ/ݎ݁݁݌. 

We first look at the performance of the LMI-only estimation 
during the simulation. In Fig. 2, the LMI-only estimation 
regular case with peer-self-positioning error (PE) is compared 
to the LMI-only estimation without PE, where exact peer 
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positions are used. The LMI-only estimations without PE all 
have an error smaller than 2 meters while the LMI-only 
estimations with PE are comparatively greater (though smaller 
than 6 meters) because they are based on erroneous self-
estimations. The better performance of the LMI-only 
estimation without PE is further illustrated by Fig. 3, where 
the error curve of the LMI-only estimation with PE (the 
noisiest one) is most of the time greater than that of the LMI-
only estimation without PE. 

  
                               (a)                                                         (b) 
Fig. 2. Spatial distribution of LMI location estimations of the user in polar 
coordinates. (a) plots the LMI-only estimations without PE; (b) plots the LMI-
only estimations with PE. 

 
Fig. 3.  Variation of the LMI estimation error over time. The lower line is the 
LMI-only estimation error without PE fluctuating over time; the dashed lower 
straight line is its mean; the upper line is LMI-only estimation error with PE 
increasing over time and the dashed upper line is its mean. 
 

Let us now compare the performance of the 
LMI+barycentric estimations. Fig. 4 illustrates the distribution 
of LMI+barycentric estimations around the user position: there 
is no visible difference of performance. This is confirmed in 
Fig. 5, which illustrates the estimation error for both 
LMI+barycentric estimations. After barycentric management, 
the performance of the LMI+barycentric estimation with peer-
self-positioning error (PE) is nearly as good as the 
performance of the estimation without PE, although self-
estimations drift all the simulation long. 

The good performance of the LMI+barycentric estimation 
with PE was confirmed by running 50 times the same 
simulation with 50 different random seeds. For each 
simulation run, we compute the mean of the various types of 
estimation error over the 5 minutes. Fig. 6 plots these means 
for each simulation run. In all the experiments the same 
behavior is confirmed: the LMI-only estimation without PE is 
significantly more accurate than the LMI-only estimation with 
PE, while the LMI+barycentric estimation without PE is only 
slightly more accurate than the LMI+barycentric estimation 

with PE. 
 

 
                                    (a)                                                 (b) 
Fig. 4. Spatial distribution of barycentric location estimations. (a) is the case 
without PE; (b) is the case with PE. 

 
Fig. 5. Variation of the LMI+Barycentric estimation error over time. The 
lower line is the LMI+Barycentric estimation error without PE; the dashed 
lower line is its mean; the upper line is the LMI+Barycentric estimation error 
with PE and the dashed upper line is its mean. 

 

Fig. 6. Comparing LMI-only and LMI+Barycentric mean errors across 50 
simulation runs. 
  

B. Impact of the Simulation Parameters 
In this Section we investigate how the variation of 

parameters  ܰ ,  ܴ , ߤ   and ߣଵ  affect the performance of the 
LMI+barycentric estimation. From now on, we only consider 
the LMI+barycentric estimation with peer-self-positioning 
error (PE) and do not use the distinction “with PE” anymore. 
We use the preceding simulation as a basis of comparison. 
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the case with PE
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1) Node Density Impact 
Different values of the node density parameter (ܰ) have 

been investigated. Table I below gives the accuracy of the 
LMI+barycentric estimation for each investigated value.  

Each line of this table and the following tables was 
produced by running 50 times the simulation with the given 
set of parameters (ܰ ,  ܴ , ߤ  , ଵߣ  ) but with different random 
seeds, as for Fig. 8. For each the 50 simulation runs a mean 
error was computed. The table gives the mean and the 
standard deviation of these 50 mean errors.  

 
TABLE I 

IMPACT OF THE PEER NODE DENSITY ON THE  LMI+BARYCENTRIC 
ESTIMATION ERROR 

ܰ Mean (m) Std Dev (m) 

2 1.84 0.61 
4 1.14 0.30 
8 0.85 0.29 
16 0.61 0.21 
50 0.34 0.11 

                ܴ=10m, 1.2=ߤm/s, ߣଵ=0.1m/s 
 

Table I shows that to achieve an accuracy of less than 1 
meter, 16 peer nodes or more are needed within a range of 10 
meters. 4 peer nodes or more within range still allow a good 
accuracy of less than 2 meters.  

The accuracy of the LMI+barycentric estimation increases 
with the node density. This is because peers have independent 
errors, and in that case more nodes mean more LMI 
inequalities and an optimum closer to the real position ௨ܲ . 
However, the impact of this parameter is rather low since good 
results can be obtained even with only a few nodes. 

 
2) Range Impact 

Two values of the range parameter ( ܴ ) have been 
investigated: 10 meters (already in Table I) and 30 meters, 
which is a rather high value in popular indoors WiFi networks. 
So we have considered the case of 16 and 50 peer nodes 
within range, which gave very good accuracy in the previous 
Section. 

Table II below was produced similarly as Table I, i.e. the 
given means and standard deviations of the LMI+barycentric 
estimation error are for 50 simulation runs with the same set of 
parameters but with different random seeds. 
 

TABLE II 
IMPACT OF THE RANGE ON THE LMI+BARYCENTRIC ESTIMATION ERROR  

ܰ ܴ (m) Mean (m) Std Dev (m) 

16 10 0.61 0.21 
16 30 3.26 1.06 
50 10 0.34 0.11 
50 30 1.90 0.71 

 ଵ=0.1m/sߣ ,1.2m/s=ߤ                
 
Table II shows that increasing the range highly degrades the 

accuracy of the estimation. For 16 peer nodes within range, 
the mean error is higher than 3 meters, and sometimes reaches 

5 meters. For 50 peer nodes within range, the accuracy only 
slightly better: the mean error is almost 2 meters, sometimes 
reaching 4 meters. This is because the right side of the 
equation (4) increases and gives a greater intersection for the 
computation of the optimum. From a geometrical point of 
view, the greater the intersection is, the more chance the 
optimum will have to be far away from  ௨ܲ. 

The range parameter has therefore a big impact on the 
performance, and we should try to keep it low: the accuracy is 
better with a small range and only a few nodes than with a 
large range and a lot of nodes. For instance, looking back at 
Table I, 2 nodes within a 10-meter range outperform 50 nodes 
within a 30-meter range. 

 
3) Speed Impact 

We now investigate the mean peer speed parameter (ߤ) by 
considering an alternate speed of 0.6 m/s, i.e. a slow 
pedestrian. Table III below gives the performance of the 
LMI+barycentric estimation for 16 and 50 nodes, and with 
0.6 m/s and 1.2 m/s speeds. Each line gives the mean and 
standard deviation of the mean error over 50 simulation runs, 
as for Tables I and II. 

 
TABLE III 

IMPACT OF THE PEER SPEED ON THE LMI+BARYCENTRIC ESTIMATION ERROR 

 Mean (m) Std Dev (m) (m/s) ߤ ܰ

16 0.6 0.97 0.36 
16 1.2 0.61 0.21 
50 0.6 0.54 0.21 
50 1.2 0.34 0.11 

    ܴ=10m, ߣଵ=0.1m/s 
 
Table III shows that decreasing the peer speeds also 

decreases the accuracy of the estimation. For 16 slow 
pedestrians within range, the error is almost 1 meter on 
average, reaching a maximum of 2 meters. For 50 slow 
pedestrians, the performance is better, the error being 54 cm 
on average, reaching at worse 1 meter. With slower peers, the 
consecutive LMI-only estimations are less distributed 
spatially. This smaller spatial diversity leads to a smaller 
efficiency of the barycenter computation.  

The accuracy therefore increases with the speed. However 
the impact is rather low on the performance, since good results 
can be achieved with slow speed.  
 

4) Error Drift Rate Impact 
Finally, we investigate the impact of parameter ߣଵ ሺi.e. the 

error drift rate) on the accuracy of the estimation by 
considering an alternate ߣଵ value of 0.3 for 16 and 50 peers 
within range. Table IV below summarizes the results and was 
produced similarly as Tables I to III with 50 simulation runs 
per line. 

 
 
 

  



TABLE IV 
IMPACT OF THE LINEAR ERROR DRIFT RATE ON THE LMI+BARYCENTRIC 

ESTIMATION ERROR 

 ଵ (m/s) Mean (m) Std Dev (m)ߣ ܰ

16 0.1 0.61 0.21 
16 0.3 0.71 0.21 
50 0.1 0.34 0.11 
50 0.3 0.43 0.13 

    ܴ=10m, 1.2=ߤm/s 
 
Table IV shows that the increase of the drift rate from 0.1 

to 0.3 only slightly degrades the accuracy of the estimation. 
For 16 peers within range, the mean error changes from 61 cm 
to 71 cm, and for 50 nodes it changes from 34 cm to 43 cm. 
These are still very good results. In this case, the accuracy 
decreases because the increase of ߣଵ  also leads to an 
augmentation of the right side of Equation (4). As in the range 
impact case, this leads to a larger intersection where the LMI 
optimum has more chances to be far away from the user 
position. 

The accuracy therefore decreases while the drift rate 
increases. However the drift rate does not have a strong impact 
on the estimation accuracy since good results can be achieved 
with comparatively high values of the rate (ߣଵ = 0.3 implies an 
error bound of 90 meters after 5 minutes). 

 
5) Summary 

The simulations described above have shown that the 
accuracy of the raw barycentric location estimation degrades 
when the amount of nodes within range N decreases, the range 
threshold increases, the peers mean speed decreases and the 
error drift rate increases. 

The parameter which has the strongest impact on the 
accuracy is the range threshold. The amount of peer nodes 
within range also has a moderately strong impact on the 
accuracy. The peer speed and the error drift rate have a lower 
impact on the accuracy. Simulations also showed that the best 
tradeoff is to reduce the threshold range although this also 
decreases the amount of peer nodes within range. 

V. RELATED WORK 
At the present time, in the indoors positioning domain, a 

large number of systems are based on methods measuring 
distance from several beacon nodes to realize localization, 
such as AOA (Angle Of Arrival) [5], TOA (Time Of Arrival) 
or TDOA (Time Difference Of Arrival) [6]. In some special 
environments, they can reportedly achieve fine-grained 
positioning precision. However, all of them need specialized 
equipments either on the beacon nodes or the user side. For 
example, the AOA systems require a directional antenna 
featuring beam-forming to estimate the angle of arrival of the 
received signal, while in terms of TOA and TDOA they 
generally process some high precise timers to meet the 
synchronization requirement.   

Additionally, because TOA and TDOA supply the distance 
information by measuring the propagation time of the signals 

with high propagation speed, a small measurement error may 
induce a great distance estimation error. Moreover, multiple 
paths may also take great effect on the distance measurements 
from AOA, TOA or TDOA. 

Some other existing indoors positioning systems can 
conquer the multipath effect to some degree, such as the 
Ubisense location system, which is based on the UWB 
technology [7] [8]. Though it can achieve accuracy of the 
order of 15 cm, this system also relies on the use of 
specialized equipment comprising several UWB base stations 
and UWB transmitters carried by users. And if there are not 
enough line-of-sight paths between the transmitters and the 
receivers then the received signal is strongly attenuated and 
the accuracy is degraded. 

RSS is another widely used method especially for 802.11b-
based indoors positioning. This method either measures the 
distance according to the diminishment state of the radio 
signal or collect signal strength at different positions to 
construct a position-relevant RSS radio map [9]. The difficulty 
lies in the precise measurement of radio signal strength and 
the precise modeling of the relation between signal strength 
and propagation distance. A study [10] indicates that all of 
these RSS algorithms have a common limit that results in a 
median positioning error of approximately 3 m without more 
appropriate environment models or additional positioning 
infrastructure.  

In [12][13], a System-on-Chip (SOC) for wireless sensor 
networking, Texas Instruments CC2431, which is based on 
RSS trilateration method, claims that an accuracy of better 
than three meters can be achieved with readout resolution of 
0.25m. But the best possible accuracy has a great reliance on 
the signal environment, the use of special near-isotropic 
radiation antennas and the optimized deployment of some 
fixed reference beacon nodes. In [11], an advanced integration 
of 802.11b equipments and Inertial Navigation System (INS) 
is used to enhance the performance of the indoor positioning 
system. As a result, a system performance close to the meter 
accuracy can be achieved with a low density of access points 
in the environment provided that users carry inexpensive INS 
equipment. 

All the methods described above require a special 
infrastructure covering the whole environment for the purpose 
of precise measurements. Some methods attempt to release 
these constraints.  

In [2] Doherty et al. pioneered the use of semidefinite 
programming (SDP) methods in the localization problem. The 
problem is considered as a bounding problem containing 
several convex geometric constraints mathematically 
represented as linear matrix inequalities (LMI). The 
mechanism proposed in this paper is based on this approach, 
taking into estimation errors and introducing a barycentric 
improvement over time. 

The Centroid localization method [14] is developed to 
estimate the user’s location by computing the barycenter of all 
the positions received from fixed beacon nodes. To find the 
optimum deployment of those beacon nodes for a given 
application may consume a lot of labor.  



In the APIT method [15], a user chooses three beacon nodes 
around him as the triangle vertex point and uses the APIT 
algorithm to test if he is lying in the triangle. If the APIT test 
can be passed, i.e., at least one node’s signal is becoming 
stronger when the user move towards any direction, the 
barycenter of the triangle will be taken as the location 
estimation of the user. Continuously, another different three 
nodes will be chosen to face the APIT test again. If the new 
test can also be passed, the barycenter of the intersection of 
the triangles will be used. By analogy, the user will repeat this 
APIT test until all combinations are exhausted or the 
satisfying accuracy is achieved. It is noticeable that since the 
APIT test is used under the condition of static beacon nodes, 
accomplishing it is still not an easy thing. Additionally, the 
APIT test may fail in less than 14% of the cases. 

Other research works jointly solve the time synchronization 
and localization problems. For instance, Enlightness [16] 
relies on the availability of beacon nodes (at least 5% of the 
nodes) providing absolute time and space information, like the 
GPS in outdoor environments. Enlightness combines recursive 
positioning estimation [17] with a clock offset estimation 
scheme based on the measure of beacon packet delays and 
timestamps.  

VI. CONCLUSION AND FUTURE WORK 
In this paper we have investigated the raw barycentric 

location estimation, an indoors positioning mechanism that 
does not involve special equipment or full coverage of the 
target area and tolerates drifting measurement errors. It is 
based on the opportunistic exchange of peer location self-
estimations. 

Our simulations have shown that we could achieve an 
accuracy of less than one meter under a number of reasonable 
assumptions concerning the radio range, the peer speeds and 
the number of peers within range. We have also shown that a 
linear drift of the self-estimation error could be tolerated. 
Typically, a user waiting for 5 minutes with 16 peers within a 
10 meters range moving a 1.2 m/s and sending self-
estimations of their position linearly growing from 1 meter to 
31 meters can finally obtain an estimation of its position with 
accuracy better than 1 meter. 

In future work, we will consolidate this work by relaxing a 
number of assumptions. For instance, we will use more 
realistic pedestrian mobility models. We will investigate the 
relationship between the monitored RSS and a maximum 
distance for WiFi radios. We will introduce more realistic 
communications such as duty cycles to save energy, and a 
more realistic communication channel taking into account 
noise and interferences. We will investigate the case of a 
moving user. We will define strategies for peers to be able to 
exhibit linearly drifting self-estimations with periodic reset to 
a good estimation, for instance using the available 
infrastructure or manually entering data from a map. Finally, 
we will investigate the use of a warm-up time to enhance the 
accuracy of the estimation and/or reduce the user waiting time. 
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