Topology Preserving Simplification of 2D Non-Manifold Meshes with Embedded Structures

Fabien Vivodtzev 1, 2, 3 Georges-Pierre Bonneau 1, 2, * Paul Le Texier 3
* Auteur correspondant
2 EVASION - Virtual environments for animation and image synthesis of natural objects
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : Mesh simplification has received tremendous attention over the past years. Most of the previous works deal with a proper choice of error measures to guide the simplification. Preserving the topological characteristics of the mesh and possibly of data attached to the mesh is a more recent topic, the present paper is about.We introduce a new topology preserving simplification algorithm for triangular meshes, possibly non-manifold, with embedded polylines. In this context embedded means that the edges of the polylines are also edges of the mesh. The paper introduces a robust test to detect if the collapse of an edge in the mesh modifies either the topology of the mesh or the topology of the embedded polylines. This validity test is derived using combinatorial topology results. More precisely we define a so-called extended complex from the input mesh and the embedded polylines. We show that if an edge collapse of the mesh preserves the topology of this extended complex, then it also preserves both the topology of the mesh and the embedded polylines. Our validity test can be used for any 2-complex mesh, including non-manifold triangular meshes. It can be combined with any previously introduced error measure. Implementation of this validity test is described. We demonstrate the power and versatility of our method with scientific data sets from neuroscience, geology and CAD/CAM models from mechanical engineering.
Type de document :
Article dans une revue
Visual Computer, Springer Verlag, 2005, 21 (8-10), pp.679-688. <10.1007/s00371-005-0334-y>
Liste complète des métadonnées



https://hal.archives-ouvertes.fr/hal-00388681
Contributeur : Georges-Pierre Bonneau <>
Soumis le : lundi 23 mai 2011 - 11:25:33
Dernière modification le : jeudi 12 septembre 2013 - 14:34:31
Document(s) archivé(s) le : mercredi 24 août 2011 - 02:20:26

Fichiers

pg05.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

IMAG | INRIA | CEA | UGA

Citation

Fabien Vivodtzev, Georges-Pierre Bonneau, Paul Le Texier. Topology Preserving Simplification of 2D Non-Manifold Meshes with Embedded Structures. Visual Computer, Springer Verlag, 2005, 21 (8-10), pp.679-688. <10.1007/s00371-005-0334-y>. <hal-00388681>

Partager

Métriques

Consultations de
la notice

525

Téléchargements du document

530