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[1] A fluid model retaining hydrodynamic nonlinearities together with a linear
approximation of the Landau damping and of the finite Larmor radius effects is
constructed to describe the dynamics of quasi-transverse low-frequency waves in a
homogeneous magnetized plasma. It accurately reproduces the kinetic theory predictions
for the mirror instability, including its quenching at small transverse scales. The
dispersion relation of kinetic Alfvén waves is also recovered. This model should provide
an efficient tool for numerical simulations of nonlinear mirror mode dynamics,
at least near threshold.
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1. Introduction

[2] The presence of mirror modes has been reported in
various space plasma environments, such as the solar wind
and the magnetosheath of solar system planets, in regions
with a high b (ratio of thermal to magnetic pressures) and a
strong anisotropy of the proton temperature (dominant in the
transverse direction). We refer to Tsurutani et al. [1982],
Russel et al. [1999], Huddleston et al. [1999], Treumann et
al. [2004] and Pokhotelov et al. [2004] for extended refer-
ences to observational investigations that were initiated by
Kaufman et al. [1970], following the theoretical predictions
of Chandrasekhar et al. [1958]. The multispacescraft obser-
vations of the Cluster mission have provided an unambigu-
ous detection of mirror modes in the magnetosheath by
permitting a distinction between spatial and temporal varia-
tions. These extremely low-frequency waves are usually
associated with strong depressions of the magnetic field
(magnetic holes) that are anti-correlated with the plasma
density and propagate very slowly in directions almost
perpendicular to the ambient field [see, e.g., Lacombe et
al., 1992; Leckband et al., 1995; Schwartz et al., 1996; Lucek
et al., 2001; Stasiewicz, 2004]. More rarely, mirror mode
structures in the form of magnetic peaks were also observed
in regions of very large b [see, e.g., Leckband et al., 1995]). It
is noticeable that records of the magnetic field intensity by
Equator-S satellite revealed peaks, dips and nearly sinusoidal
waveforms for the mirror structures, depending on the
considered time interval [Lucek et al., 1999].
[3] Recent analysis by Sahraoui et al. [2004, 2006] of

turbulent magnetic spectra observed in the magnetosheath
indicate that their low-frequency part is dominated by mirror
modes with wave vectors quasi-perpendicular to the ambient
magnetic field, the magnetic energy appearing to be injected

at a spatial scale associated with the maximum growth rate of
the mirror instability. This instability acts as a pumping
source for a nonlinear energy cascade extending to scales at
least as small as a tenth of the proton gyroradius.
[4] As discussed in detail by Gary [1992] and McKean et

al. [1994], depending on the plasma parameters, the mirror
instability can be competing with the ion cyclotron anisot-
ropy instability, but the former clearly dominates for large b
(typically larger than 5). We concentrate here on the mirror
instability whose relevance can also be enhanced by the
presence of helium He++ [McKean et al., 1994]. The ion
cyclotron anisotropy instability, being purely kinetic, is not
amenable to a fluid description.
[5] As noted by Treumann et al. [2004], there exists so far

no reliable nonlinear theory for the formation and evolution
of the mirror modes in high temperature plasmas. An
interesting phenomenological description of the mirror
instability is given by Southwood and Kivelson [1993]
and comparisons with hybrid simulations are presented by
McKean et al. [1992, 1993]. A fluid closure suggested by
magnetosheath observations and by these simulations was
proposed by Gary et al. [1994]. Simple saturated solutions,
based on the separation of the particle distribution into
trapped and untrapped components that respond differently
to the magnetic field variations, are discussed by Kivelson
and Southwood [1996], Pantellini et al. [1995] and
Pantellini [1998]. It is of interest to note that the model
presented in the last reference reproduces the different
forms of mirror structures, dips or humps, depending on
the moderate or large (typically larger than 10) value of the
plasma b. An analogy between mirror instability and
superconductivity is presented by Treumann et al. [2004],
who predict a scaling law for the variation of the critical
magnetic field with the temperature anisotropy. We also
mention that Stasiewicz [2004, 2005] interprets the magneto-
sheath structures usually considered as mirror modes, as
trains of slow-mode magnetosonic solitons defined as exact
solutions of Hall-MHD equations with anisotropic pressure
and negligible gyroviscosity. The relevance of such a
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description for the terrestrial magnetosheath can however be
questioned, due to the small-scale character of the
structures and the high values of the plasma b that strengthen
the importance of kinetic effects. Velocity fluctuations are
actually to be considered to discriminate between mirror and
slow magnetosonic waves [Lin et al., 1998].
[6] The aim of the present paper is to construct a fluid

model retaining the main kinetic effects, suitable to address
the formation and evolution of magnetic structures resulting
from the nonlinear development of the mirror instability.
Although nonlinear kinetic effects may contribute to the
saturation of the mirror instability, it is of interest to first
focus on the role of hydrodynamic nonlinearities that can be
dominant near the instability threshold and that may be at
the origin of the observed power law spectra. Nevertheless,
a specific property of the mirror modes that makes their
description difficult using fluid models, originates from the
increase of the maximal instability growth rate with the
transverse wave number up to a scale comparable with
the ion Larmor radius. As a consequence, in spite of the
accurate estimates of the large-scale instability growth rate
obtained by Snyder et al. [1997] and Bugnon et al. [2006]
using fluid models with Landau damping (Landau fluids),
numerical integrations in the nonlinear regime are hardly
feasible in the presence of the mirror instability because the
smallest scales retained by the spatial discretization turn out
to be the most unstable. In this context, it is interesting to
mention the approach of Baumgärtel [2001], who used one-
dimensional MHD equations with a gyrotropic pressure
tensor where the parallel and transverse pressures obey a
double polytropic closure in terms of the local density and
magnetic field, with exponents departing by 20% from
those associated with isothermality. The mirror instability
is suppressed at small length scales by applying a filtering
procedure in Fourier space. It is noticeable that this model is
sufficient to reproduce the formation of magnetic dips
anticorrelated with density humps, typical of mirror mode
structures (but also of slow modes).
[7] Improved Landau fluid models including small-scale

finite Larmor radius (FLR) corrections are necessary to
accurately capture the quenching of the instability at these
scales. The main goal of the present paper is to develop such
a model, where nongyrotropic contributions are evaluated
in the framework of the linear kinetic theory and included
in a convenient way within a Landau fluid description.
Approachs involving nonlinear fluid equations, together
with the evaluation of suitable quantities using the linear
kinetic theory, were also used by Smolyakov et al. [1995] and
Cheng and Johnson [1999] in other contexts. The present
model, that allows for an accurate description of quasi-
transverse dynamics, appears to be as simple as possible in
the sense that the fluid hierarchy is closed at the level of the
pressure tensor. Even though it allows for adiabatic behavior,
it is best suited for the simulation of quasi-isothermal
dynamics. We should here mention that for anisotropic
plasmas, the so-called isothermal limit obtained when the
ratio of typical phase velocities to thermal velocities along
the ambient field tends to zero, corresponds in the linear case
to a truly isothermal behavior of the parallel temperature but
prescribes a variation of the perpendicular temperature with
magnetic field fluctuations. A nonlinear dependency of the
perpendicular temperatures in terms of the local magnetic

field can in fact be retained, as discussed in section 4.3, but
the parallel temperatures remain unaffected.
[8] In order to validate the model, comparisons with the

full kinetic theory are performed at the level of the kinetic
Alfvén wave (KAW) dispersion relation and of the linear
mirror instability. This instability was investigated by Gary
[1992] using a direct numerical approach in a broad range of
regimes and in a series of papers by Pokhotelov and cow-
orkers, using asymptotic expansions based on the ultra low
frequency of the mirror modes compared with the ion
gyrofrequency W. We nevertheless revisit it here, with two
main goals: (i) we evaluate the accuracy of various approx-
imations usually made by the analytical approaches,
concerning the plasma response function and the truncation
of the kinetic formulas at dominant order in the direction
parameter kz/k?; (ii) we investigate the effect of warm
electrons, a regime that was analytically considered by
Pokhotelov et al. [2000] in the context of a large-scale
analysis only. Detailed comparisons are in particular
performed with Pokhotelov et al. [2004], who studied the
stability of modes with wavelengths extending to and
beyond the ion Larmor radius in the case of cold electrons.
Performing these comparisons led us to first consider values
of proton b close to unity, although at such values of b, the
anisotropic ion cyclotron (AIC) instability is usually
dominant. Comparisons between the kinetic theory and
the fluid model for b large enough for the mirror instability
to be dominant, are also presented. While the linear stability
analysis is usually performed by introducing the dielectric
tensor, it is more convenient for our purpose to deal directly
with Maxwell equations supplemented by the kinetic
expressions for the densities and velocities of the ions and
electrons. The two approaches are obviously equivalent but
the expressions of these hydrodynamic quantities as given
by the kinetic theory are important ingredients to build the
fluid closure. Because of the very low frequency w of the
mirror modes, the analysis is performed in the framework of
a perturbative expansion of the particle distribution
functions in terms of the small parameter w/W. All the
contributions arising beyond the leading order have in fact
an unequal influence on the instability growth rate, which
leads us to select those terms that are, in practice, to be
retained in a Landau fluid whose formulation is aimed to be
as simple as possible.
[9] In addition to the computation of the mirror instability

growth rate for perturbations with arbitrary transverse scale,
the present model accurately reproduces the KAW disper-
sion relation, but only the phase velocity of oblique mag-
netosonic waves. Capturing the full dispersion relation of
magnetosonic and Alfvén waves whose propagation direc-
tion makes an intermediate angle with the magnetic field
would require a higher order closure and, as a consequence,
a more refined matching of the fluid and kinetic theories.
[10] The outline of the paper is as follow. In section 2, we

use the linearized Vlasov-Maxwell system to obtain, in a
low-frequency asymptotic, the kinetic expressions of the
number density of the particles together with the velocity of
each species. Section 3 presents an analysis of the disper-
sion relation for modes propagating in a direction quasi-
perpendicular to the ambient field and includes comparisons
with previous works. A main goal is to evaluate the
accuracy of the usually performed approximations and to
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select among all the terms arising at the same order in a low-
frequency expansion of the hydrodynamic moments, the
contributions that have a strong effect on the mirror insta-
bility growth rate and on the KAW dispersion relation. The
contributions with a subdominant influence will be
neglected when designing closure formulas. Section 4, that
can be viewed as the main section of this paper, is devoted
to the derivation of the fluid model together with its
validation by comparison with the results of section 3.
Section 5 is a brief conclusion that summarizes the capa-
bility and limits of the present model and suggests further
developments.

2. Low-Frequency Linear Kinetic Theory

[11] Consider a spatially homogeneous uniformly mag-
netized plasma with a bi-Maxwellian distribution function at
equilibrium

f 0ð Þ
r ¼ 1

2pð Þ3=2
m3=2

r

T
0ð Þ
?r T

0ð Þ1=2
kr

exp � mr

2T
0ð Þ
kr

v2k þ
mr

2T
0ð Þ
?r

v2?

0@ 1A8<:
9=;

for the particles of species r with charge qr, mass mr, and
average number density nr, in the absence of net charges or
currents. The temperatures are measured in energy units
(being implicitly multiplied by the Bolzmann constant). In
addition to its convenience for analytical calculations, this
distribution provides a reasonable description of the plasma
as it flows from the Earth’s quasi-perpendicular bow shock
deeper into the magnetosphere [Sckopke et al., 1990;
McKean et al., 1995]. The Vlasov equation for each species

is linearized about fr
(0), writing fr = fr

(0) + fr
(1), with B = B0bz +

B(1) and E = E(1), B0 denoting the amplitude of the ambient
magnetic field taken in the z-direction (no background
electric field). In the following we denote by bx, by and bz
the components of B(1). The Vlasov equation is supple-
mented by Maxwell equations that express the electric and
magnetic fields E and B in terms of the current j =

X
r
qrnrR

vfrd
3v and the total charge n =

X
r
qrnr

R
frd

3v, in the

usual form @tB =�cr	 E, cr	 B = 4pj + @tE andr 
 E =
4pn.
[12] It is usual to introduce the scalar potentials F and Y

together with the vector potential A in the form E? =
�r?F � (1/c)@tA?, Ez = �@zY and B = B0 + r 	 A with
r 
 A = 0. It follows that Az = (ckz/w) (F � Y), where,
since there is no ambiguity, we use the same notation for a
field and its Fourier transform.
[13] Assuming a plasma made of protons (subscript p)

and electrons (subscript e) with charge qp = �qe = e, one
rewrites the Ampère-Maxwell equation in the nondimen-
sional form

c2A
c2

b 1þ k2z
k2?

� �
eF

T
0ð Þ
?p
¼ np

n 0ð Þ �
ne

n 0ð Þ : ð1Þ

Here we introduce the standard notation (to be distinguished
from the magnetic field components that involve subscripts)
b = T?p

(0) k?
2 /(mpW

2) as a measure of the square transverse
wavenumber, where W = eB0/(mpc) denotes the proton

gyrofrequency, and cA = B0/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pmpn 0ð Þ

q
is the Alfvén speed.

Assuming cA � c implies local electric neutrality np = ne.
Under this assumption, one can also neglect the displace-
ment current and get

k2 F� Yð Þ ¼ � 4p
c2

w
kz
jz: ð2Þ

One also has (bz being the unit vector along the ambient field
and arrows being used to discriminate between transverse
vector components from their moduli)

k2bz ¼ i
4p
c

~k? 	~j?
� �


bz; ð3Þ

where the ion and electron densities and velocities needed to
express the current j (of parallel and transverse components
jz and~j?) are to be computed using the kinetic theory.The
transverse magnetic field components are given by

bx ¼ �
kxkz

k2?
bz þ i

c

w
kykz 1þ k2z

k2?
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F� Yð Þ ð4Þ
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k2?
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c

w
kxkz 1þ k2z

k2?
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[14] It is convenient to express the velocity v in a cylin-
drical coordinate system by defining the azimuthal angle f =
tan�1(vy/vx) and writing v = (v? cos f, v? sin f, vk) and rv =
(cos f @v? � (sin f/v?)@f, @v? +(cos f/v?) @f, @vk).
Restricting ourselves to the case of linear perturbations in
the form of plane waves of wavevector k = (kx = k? cos y,
ky = k? sin y, kz), such that E(1) = eE(1) exp (i(k 
 x � wt)) +
c.c., B(1) = eb(1) exp(i(k 
 x� wt)) + c.c. and fr

(1) = ef r(1) exp(i(k 

x� wt)) + c.c., and using Faraday-Maxwell equation to writeeB(1) = (c/w)(k 	 eE(1)), one has (dropping the tildes)

� i w� k 
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For a bi-Maxwellian distribution, following Akhiezer et al.
[1975], we get for protons
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where lp = k?v?/W and Jl is the Bessel function of order l. A
similar equation is obtained for the electrons, by replacing
mp by me and e by �e everywhere, including in the
gyrofrequency.
[15] The fluid moments are computed in Appendix A, as

an expansion to order w2/W2, keeping the ratio w/kz a priori
finite. In the resulting expressions, we separate the main
contributions that are to be retained, from additional terms
Sn (n = 1, 2, 3) expressed in Appendix B, that will be shown
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to have a negligible effect on the mirror instability growth
rate and the KAW dispersion relation.
[16] For the perturbations of the number density of the

protons, we get

n 1ð Þ
p

n
0ð Þ
p

¼ G1 bð Þ � G0 bð Þð Þ
T

0ð Þ
?p

T
0ð Þ
kp

R zp
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� 1
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� e

T
0ð Þ
?p

1� G0 bð Þð Þ Fþ k2z
k2?

F� Yð Þ
� �

þ S1: ð8Þ

[17] The plasma response function entering the above
equation is defined as R(z) = 1 + zZ(z) where Z(z) is the
plasma dispersion function. Furthermore, Gn(b) = e�bIn (b)
where In(b) is the modified Bessel function of order n.
[18] For the electrons, when neglecting contributions of

order me/mp, one simply has
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The ion parallel velocity is given by

uzp ¼
T
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For the electrons, one has
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[19] The transverse hydrodynamic velocity of each parti-
cle species r is conveniently decomposed into compressible
and solenoidal parts by writing

u?r ¼ �r?cc r þr? 	 cs rbzð Þ: ð12Þ

One has for the ions
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where C1
3(b) is defined in Appendix A. Furthermore,
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Similarly, one has for the electrons
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and
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[20] Note that in the second order contributions arising in
the above expressions, we separated the term proportional
to C1

3(b) in equation (13) that keeps a finite limit C13 ! 1/4
as b ! 0, from the terms denoted Sn (n = 1, 2, 3) that
involve coefficients that tend to zero in this limit. The latter
coefficients nevertheless reach significant values when b is
taken finite. Their effect on the mirror instability growth
rate in this range of scales thus requires a more detailed
study, performed in the next section.

3. Linear Dynamics of Quasi-Perpendicular
Modes

[21] Substituting the expressions for the density and for
the parallel and perpendicular velocities provided by the
kinetic theory into equations (1)–(3) leads to a system of
homogeneous linear equations easily solved using a sym-
bolic calculator. Possible simplifications such as neglecting
Sn (n = 1, 2, 3) contributions announced in the previous
section are however to be validated. Furthermore, the
plasma response function is conveniently replaced by a
Padé approximant, an operation whose accuracy is to be
evaluated. For this purpose, the influence of these approx-
imations on the dispersion relations of different waves in
various regimes are considered.

3.1. Dispersion Relation of Kinetic Alfvén Waves

[22] For kinetic Alfvén waves in the regime b � 1 and
q = kz/k? � 1, with isotropic equilibrium temperatures such
that t � Tke

(0)/Tkp
(0) � 1, the dispersion relation was

asymptotically derived by Hasegawa and Chen [1975,

1976] in the form w2 = kz
2 vA

2 (1 +

�
3

4
+

T 0ð Þ
e

T
0ð Þ

p

�
b). The

resolution of our linear system was performed using a fourth
pole approximation of the plasma response function R, the
Sn terms being neglected. Best agreement with this
asymptotic description is found when b?p � 8pp?p

(0) /B0
2 �

1 and t � 1, excluding however extreme values. An
example is shown in Figure 1 that displays <(w)/kzvA as a
function of b for q = 10�3, b?p = 0.001, t = 100 and Ap = Ae =
0 (where the anisotropy factor is definedbyAr=T? r

(0) /Tk r
(0)�1),

for both the numerical resolution of the dispersion relation
(circles) and the above analytic formula (diamonds). The
agreement is excellent at the largest scales where the
formula is asymptotically exact, while the discrepancy
approaches 20% for b = 0.1. The Sn terms are checked
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to have a totally negligible effect for the above value of q.
For q = 10�1 their effect is still negligible at very large
scales but leads to a 3% difference at k‘ rp = 0.2, which is
still satisfactory.

3.2. Mirror Mode Instability

[23] Using the dispersion relation obtained with
equations (1)–(3), we display in Figure 2 the mirror mode
growth rate =(w)/(k? vth,p) as a function of the direction
parameter q = kz/k? for the case where Ap = 1, Ae = 0.2, t =
1 and b?p = 2, using the full plasma response function R
(circles) and its one-pole approximation (crosses), together

with the growth rate given by formula (23) from Pokhotelov
et al. [2000] that is based on the ‘‘quasi-hydrodynamic
approximation’’ for the large-scale dynamics (diamonds). A
significant deviation takes place between the three curves
when the growth rate increases, indicating a strong sensitivity
to the level of approximation of the plasma response function.
In contrast, neglecting the Sn terms but keeping the full
function R, leads to a growth rate whose values all fall within
the circle symbols corresponding to the full calculation.
[24] We now address the behavior of the instability

growth rate as a function of the parameter b that measures
the square ratio of the transverse scale of the perturbation to
the proton Larmor radius rp. The main result of the
numerical calculation of Gary [1992] (see his Figure 2 for
electrons with a nonzero isotropic temperature) and of the
asymptotic analysis by Pokhotelov et al. [2004] in the case
of cold electrons concerns the increase of the instability
threshold at small wavelength and its disappearance for
scales smaller than a fraction of the Larmor radius. It is of
interest to reconsider this latter case and in particular to
investigate here as well the role of the terms proportional to
q2. Figure 3 displays gmax/W, where gmax is the growth rate
maximized over the angle of propagation, as a function of
k?rp =

ffiffiffiffiffi
2b

p
for Ap = b?p = 1.5 and Te = 0, that are the

parameters of Figure 1 of Pokhotelov et al. [2004].
Diamonds and circles correspond to the growth rate
calculated from the kinetic dispersion relation with and
without the Sn terms. It is clear from this picture that these
terms can be omitted whatever the value of q and b. Crosses
correspond to the growth rate calculated using a series
expansion of the dispersion relation truncated at order z3.
These values are closer to those given by Pokhotelov et al.
[2004] using a low-order approximation of the functionR. For
this case again, it appears that the results are most sensitive to
the degree of approximation of the plasma dispersion
function. Another remark concerns the value of q at which
the growth rate is maximum. We find for (kz/k?)max values of
the order of a few tenths that are thus, up to the precision of our

Figure 1. Comparison of the normalized frequencies
<(w)/kz vA of KAWs as a function of b for q = 10�3, b?p =
0.001, t = 100 and isotropic equilibrium temperatures,
obtained from the full dispersion relation (circles) and from

the analytic formula w2 = kz
2 vA

2(1 +

�
3

4
+

T 0ð Þ
e

T
0ð Þ

p

�
b)

(diamonds). The crosses refer to the predictions of the
model described in section 4.

Figure 2. Mirror mode growth rate =(w)/k? vth,p as a
function of q = kz/k? for a case with Ap = 1, Ae = 0.2, t = 1,
b?p = 2 using the full plasma response function R (circles)
and its one-pole approximation (crosses), together with the
growth rate given by formula (23) from Pokhotelov et al.
[2000] (diamonds), based on the ‘‘quasi-hydrodynamic
approximation.’’

Figure 3. Growth rates gmax/W maximized over the angle
of propagation, as a function of k? rp =

ffiffiffiffiffi
2b

p
for Ap = b? p =

1.5 and cold electrons, using the kinetic dispersion relation
calculated with (diamonds) and without (circles) Sn terms.
Crosses correspond to the growth rate calculated using a
series expansion of the dispersion relation truncated at order
z3 (see text).
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graph (not shown), exactly 10 times larger than those
displayed in Figure 3 of Pokhotelov et al. [2004] where a
typo is suspected. The magnitude of the angle associated with
the maximum growth rate is of importance since the
expansion used in the calculation of the perturbed distribution
function is based on the assumption of small q. The above
remark on the irrelevance of the terms proportional to q2

nevertheless ensures the validity of the present calculations.
[25] The case of warm electrons is more delicate. As

mentioned by Gary [1992], Pantellini and Schwartz [1995]
and Pokhotelov et al. [2000], in the limit b = 0 the instability
growth rate is very sensitive to the electron temperature
anisotropy. When the latter is strong, the behavior of this
instability at small wavelength can in fact hardly be esti-
mated using the present formalism, as the growth rate
rapidly reaches values which fall outside the range of the
small frequency approximation. We display in Figure 4 the
growth rate (maximized over the propagation angles) for
two electron temperature anisotropies, namely Ae = 1
(diamonds) and Ae = 1.005 (circles), when Ap = 1.5, t =
1 and b?p = 1.5. As seen on this graph, the value of k? rp at
which the instability disappears is increased by more than
an order of magnitude compared to the case Ae = 0. These
observations on the effect of the electron temperature
anisotropy are consistent with the results of Génot et al.
[2001]. At this distance from threshold, this magnitude of
electron temperature anisotropy appears to be at the limit of
validity of the present ordering.

4. A Fluid Model for Mirror Modes

[26] The idea is to build a Landau fluid model by
supplementing the usual MHD equations not only with a
description of the linear Landau damping but also with
information about the small transverse scales, as provided
by the linear kinetic theory, with the aim to arrest the mirror
instability at small scale. Different models can a priori be
constructed with various levels of complexity. In this paper,
we restrict ourselves to the simple framework where the
fluid hierarchy is closed at the level of the pressure tensor of
each particle species.

4.1. Fluid Hierarchy

[27] Using electric neutrality, one defines as usual the
proton density rp = mpn, and neglects terms proportional to
me/mp. The proton and electron velocities are related by ue =
up � j/(en). The ion pressure tensor is rewritten as the sum
pp = p?p (I � bb � bb) + pkp bb � bb + � (where bb is the unit
vector along the local magnetic field) of the gyrotropic and
gyroviscous contributions, while the electron pressure tensor
is taken gyrotropic and characterized by the parallel and
transverse pressures pke and p?e. One has the usual equations

@trp þr 
 rpup
� �

¼ 0 ð17Þ

@tup þ up 
 rup þ
1

rp
r 
 pp

� e

mp

E þ 1

c
up 	 B

� �
¼ 0

ð18Þ

E ¼ � 1

c
up �

j

ne

� �
	 B� 1

ne
r 
 pe; ð19Þ

together with the Faraday-Maxwell equation for the magnetic
field.
[28] The above hierarchy is to be closed by prescribing

the pressure tensors. At the level of the linear kinetic theory,
all their components, are given in terms of bz, F and Y (see
section 4.2). Nevertheless, since these expressions involve
the plasma response function (and thus nonlocal operators
in the time variable), they cannot be conveniently substi-
tuted into the fluid equations, even in a model where the
pressure fluctuations are retained at a linear level only.
[29] Note that equation (19) neglects electron inertia. This

point was questioned by Pokhotelov et al. [2000], especially
when the electrons are hot. Their statement is based on the
fact that when substituting the kinetic expression for the
pressure within the equation for the electron longitudinal
velocity in order to get the potential Y, a cancellation takes
place, which makes the acceleration term relevant in this
equation in spite of its smallness. The resulting expression
for Y provided by equation (21) of Pokotelov et al. [2000]
can in fact be reproduced by substituting the kinetic expres-
sion of j within equation (2) (where the l.h.s. turns out to be
negligible at large scale). This suggests that equation (19)
can be kept as it is when used in a fluid description. In fact,
comparison with the kinetic theory shows that the resulting
error is subdominant compared to that resulting from a low
order approximation of the plasma response function.

4.2. Kinetic Expressions of the Pressure Tensors

[30] We hereafter show that one can express the linearized
temperature fluctuations (directly related to the gyrotropic
pressure disturbances) together with the gyroviscosity stress
tensor in a form suitable to be implemented in the fluid
formalism. The analysis starts with the kinetic description of
the pressure tensor. In the linear approximation, the elements
of the pressure tensor perturbations reduce to pij

(1) = n(0)m
R

vivjf
(1) d3v. Furthermore, bbx = bx/B0, bby = by/B0 and bbz = 1.

One has p?
(1) = n(0)m

R
(v?

2 /2) f (1) d3v and pk
(1) = n(0)m

R
vk
2 f (1) d3v, from which one easily derives the parallel and
transverse temperature perturbations Tk

(1)/Tk
(0) = pk

(1)/pk
(0) �

r(1)/r(0) and T?
(1)/T?

(0) = p?
(1)/p?

(0) � r(1)/r(0). It follows that

Figure 4. Growth rate (maximized over the propagation
angles) as a function of k? rp =

ffiffiffiffiffi
2b

p
, for electron

temperature anisotropies Ae = 1 (diamonds) and Ae =
1.005 (circles), when Ap = 1.5, t = 1 and b? p = 1.5.
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�xx = ��yy = n(0)m
R

(v?
2 /2)f (1) cos 2f d3v, �zz = 0,

�xy = n(0)m
R

(v?
2 /2) f (1)sin 2f d3v, �xz = n(0)m

R
vkv?

vkv? f (1) cos f d3v + (p?
(0) � pk

(0))bbx and �yz = n(0)m
R

vkv? f (1) sin f d3v + (p?
(0) � pk

(0))bby. Some technical details
concerning the asymptotic calculation of the above
quantities are given in Appendix A. We concentrate here
on the resulting expressions.
4.2.1. Parallel and Transverse Temperatures
[31] Neglecting contributions of the order of q2 = kz

2/k?
2 , as

justified by the discussion in section 3, and thus retaining
the leading order only, one gets for the parallel and
transverse temperatures of the ions

T
1ð Þ
kp

T
0ð Þ
kp

¼ 1� R zp
� �

þ 2z2pR zp
� �� �T 0ð Þ

?p

T
0ð Þ
kp

	 G1 bð Þ � G0 bð Þð Þ bz
B0

� G0 bð Þ eY
T

0ð Þ
?p

" #
ð20Þ

and

T
1ð Þ
?p

T
0ð Þ
?p
¼

T
0ð Þ
?p

T
0ð Þ
kp

R zp
� �

� 1

0@ 1A
	 �2bG1 bð Þ þ 2bG0 bð Þ � G0 bð Þð Þ bz

B0

� bG1 bð Þ � bG0 bð Þð ÞR zp
� � eY

T
0ð Þ
kp

þ bG1 bð Þ � bG0 bð Þð Þ e

T
0ð Þ
?p

Fþ k2z
k2?

F� Yð Þ
� �

: ð21Þ

Analogous expressions are obtained for the electrons, with
the functions G(b) then taken in the b = 0 limit.
4.2.2. Gyroviscous Stress
[32] The kinetic theory gives

�xx

p
0ð Þ
?p
¼ � cos 2y bG0 bð Þ � G1 bð Þ � bG1 bð Þð Þ

	
"
2

T
0ð Þ
?p

T
0ð Þ
kp

R zp
� �

� 1

0@ 1A bz

B0

þ R zp
� � eY

T
0ð Þ
kp

� e

T
0ð Þ
?p

Fþ k2z
k2?

F� Yð Þ
� �#

� cos 2yG1 bð Þ
T

0ð Þ
?p

T
0ð Þ
kp

R zp
� �

� 1

0@ 1A bz

B0

þ i sin 2y
kz

W
kz

w

	 e

T
0ð Þ
?p

G0 bð Þ � G1 bð Þð Þ � 1

b
1� G0 bð Þð Þ

�  

	
"
T

0ð Þ
?p � T

0ð Þ
kp

mp

1þ k2z
k2?

� �
F� Yð Þ

�w2

k2z
Fþ k2z

k2?
F� Yð Þ

� �#

� i sin 2y
w
W

1

b
G0 bð Þ � 1� G1 bð Þð Þ

�
þ 2 G0 bð Þ � G1 bð Þð Þ� bz

B0

; ð22Þ

together with

�xz

p
0ð Þ
kp

¼ i siny
T

0ð Þ
?

T
0ð Þ
k

k?
W

w
kz

G0 bð Þ � G1 bð Þð Þ

	 R zð Þ 2
T

0ð Þ
?

T
0ð Þ
k

bz

B0

þ eY

T
0ð Þ
k

0@ 1Aþ cosy
kz

k?

T
0ð Þ
?

T
0ð Þ
k

� 1

0@ 1A
	 G0 bð Þ � G1 bð Þ � 1ð Þ bz

B0

� 1� G0 bð Þð Þ eY
T

0ð Þ
?

" #

�
"
cosy

T
0ð Þ
?

T
0ð Þ
k

� 2

0@ 1A kz

k?
1� G0 bð Þð Þ

þ i siny
T

0ð Þ
? � T

0ð Þ
k

m

T
0ð Þ
?

T
0ð Þ
k

kzk?
wW

	 G0 bð Þ � G1 bð Þ � 1ð Þ
#

1þ k2z
k2?

� �
e

T
0ð Þ
?

F� Yð Þ

þ 4iC3
1 bð Þ siny T

0ð Þ
?

T
0ð Þ
k

� 2

0@ 1A kzw
k?W

bz

B0

: ð23Þ

The elements �xy and �yz are deduced from �xx and �xx

respectively, by replacing sin 2y by �cos 2y and cos 2y by
sin 2y. Furthermore, the contributions involving F � Y are
conveniently expressed in terms of the transverse magnetic
field components by using equations (4) and (5).

4.3. Modeling of the Temperatures

[33] The MHD description of anisotropic plasmas often
involves the double adiabatic law of Chew et al. [1956], that
relates the fluctuations of the gyrotropic pressure compo-
nents to those of the density and of the magnetic field
intensity through universal power law dependencies. The
relevance of such a functional dependency with adjustable
exponents was recently stressed by Stasiewicz [2005], who
suggested empirical fittings on the basis of the analysis of
observational data provided by the Cluster spacecraft mis-
sion, for a broad range of values of the plasma b. An
approach based on the use of complex polytropic indices
calculated as function of the mode properties is presented by
Belmont et al. [1992]. The analysis is based on the fluid
hierarchy for the lowest order moments, supplemented by the
kinetic expression of the polytropic indices provided by the
kinetic theory as derived by Belmont and Mazelle [1992].
[34] In this section, we determine the temperatures of the

various species in a form that accurately reproduces the
linear kinetic theory.
[35] When remaining at the level of the linear approxi-

mation, one can simply write

Tkr ¼ T
0ð Þ
kr 1þ akr
� �

ð24Þ

T?r ¼ T
0ð Þ
?r 1� Ar

bz

B0

þ a?r

� �
; ð25Þ

where the contributions denoted by akr and a?r are
specified below using linearized kinetic theory. This model
is mostly adapted to the quasi-isothermal dynamics near the
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threshold of the mirror instability. Observations show that the
magnetosheath plasma does not strongly depart from an
isothermal behavior [Phan et al., 1994]. The term �Arbz/B0

has been singled out in equation (25) as it originates from the
linearization of a more general equation of state obtained in a
quasi-static fluid description. This leads to define nonlinear
generalizations of the above formulas by replacing 1 � Arbz/
B0 by an appropriate function whose detailed form does not
affect the expression of the quantities akr and a?r.
[36] A straightforward but somehow arbitrary nonlinear

extension can be obtained in a power law form as in the
double-polytropic model of Hau and Sonnerup [1993], used
by Baumgärtel [2001]. In the framework of our model, the
exponents are given by gkr = 1 and g?r = 1 � Ar when using
the notation of these authors.
[37] More precise formulae consistent with a slow-

dynamics ordering [Ramos, 2005] can also be derived. In
contrast with the adiabatic limit, the behavior of the gyro-
tropic pressures in the quasi-static regime is prescribed by
the equations for the parallel and perpendicular (gyrotropic)
heat fluxes [Chust and Belmont, 2006]. This behavior is not
universal and depends on the distribution function. When
neglecting the deviation from bi-Maxwellian distribution
functions, a quasi-normal closure can be performed. Balanc-
ing, in this quasi-static large-scale limit, the dominant terms
in the equations governing the parallel and perpendicular heat
fluxes (equations (42), (43) and (53) ofGoswami et al. [2005]
or equations (69) and (70) of Ramos [2005]), yields for each
particle species

@kTkr ¼ 0 ð26Þ

@kT?r

T?r
¼ 1� T?r

Tkr

� �
@kjBj
jBj ; ð27Þ

a system also given by Chust and Belmont [2006]. The
parallel temperatures are constant and the perpendicular
ones are given by

T?r ¼ T
0ð Þ
?r

jBj
Aþ 1ð ÞBj � AB0

: ð28Þ

Note that an additional equation, associated with the
longitudinal force balance, leads to [see, e.g., Goldston
and Rutherford, 2000]

qrnrEk þ @kpkr þ p?r � pkr
� � @kjBj

jBj ¼ 0: ð29Þ

For cold electrons, Ek ¼ 0: As a consequence, combining
equations (27) and (29), one gets for the protons

n

n 0ð Þ ¼
T?p

T
0ð Þ
?p

: ð30Þ

It is then interesting to notice that after using equation (30),
equation (28) coincides with the relation for the upper value
B+ of the magnetic field in the kinetic model of Pantellini
[1998].
[38] Equation (28) can also be obtained by a Lagrangian

integration of the Vlasov equation, assuming stationarity
and bi-Maxwellian distributions at a boundary [Chust and
Belmont, 2006]. Note that the above equation implies a
lower bound for the magnetic field minima in a time
independent regime, namely jBj/B0 > A/(A + 1). This

constraint, which is not stringent in the weakly nonlinear
regime, can be modified when retaining deviations from bi-
Maxwellians, whose evaluation is outside the scope of the
present paper. It turns out that such corrections do not
essentially affect the parallel temperatures.
[39] Let us now characterize a?r and akr. Using equation

(20) for the parallel temperatures, one has for the ions

akp ¼
T

0ð Þ
?p

T
0ð Þ
kp

1� R zp
� �

þ 2z2pR zp
� �� �

	 G1 bð Þ � G0 bð Þð Þ bz
B0

� G0 bð Þ eY
T

0ð Þ
?p

" #
ð31Þ

and for the electrons

ake ¼ �
T

0ð Þ
?e

T
0ð Þ
ke

1� R zeð Þ þ 2z2eR zeð Þ
� � bz

B0

þ eY

T
0ð Þ
?e

 !
: ð32Þ

[40] In order to eliminate the plasma response function
from the above formulas, it is convenient to introduce the
hydrodynamic velocities of each species along the ambient
field. This gives

akp ¼
1� R zp

� �
þ 2z2pR zp

� �
sgn kzð ÞzpR zp

� � ffiffiffiffiffiffiffiffiffiffiffi
mp

2T
0ð Þ
kp

s


 uzp þ
T

0ð Þ
?p � T

0ð Þ
kp

mp

1� G0 bð Þ
b

1

v2A

jz

en 0ð Þ

24 35 ð33Þ

ake ¼
1� R zeð Þ þ 2z2eR zeð Þ

sgn kzð ÞzeR zeð Þ

ffiffiffiffiffiffiffiffiffiffiffi
me

2T
0ð Þ
ke

s
uze �

T
0ð Þ
?e � T

0ð Þ
ke

mp

1

v2A

jz

en 0ð Þ

24 35:
ð34Þ

[41] At this step, the plasma response function is to be
replaced by a Padé approximant. If, for the sake of simplic-
ity, one chooses a two-pole approximation of the plasma
response function, one gets (1 � R + 2z2 R)/[sgn(kz)zR] �
�i ffiffiffipp kz/jkzj that keeps a finite value when z becomes
infinite, which is not satisfactory. One easily checks that
reproducing the proper decay of the Landau damping in this
adiabatic limit, actually requires the use of at least the three-

pole approximant R3(z) =
2� i

ffiffiffi
p

p
z

2� 3i
ffiffiffi
p

p
z� 4z2 þ 2i

ffiffiffi
p

p
z3
,

which yields
1� R zð Þ þ 2z2i R zð Þ

zR zð Þ � 2i
ffiffiffi
p

p

�2þ i
ffiffiffi
p

p
z
, whose

imaginary part does tend to zero as z ! 1. Substituting
in [equations (33) and (34)] and returning to physical space
for the time and longitudinal coordinate variables, we are
led to prescribe akp and ake as the solutions of the
dynamical equations

@t �
2ffiffiffi
p

p

ffiffiffiffiffiffiffiffiffiffiffi
2T

0ð Þ
kp

mp

vuut Hz@z

0B@
1CAakp

þ 2@z uzp þ
T

0ð Þ
?p � T

0ð Þ
kp

mp

1� G0 bð Þ
b

1

v2A

jz

en 0ð Þ

24 35 ¼ 0 ð35Þ
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@t �
2ffiffiffi
p

p

ffiffiffiffiffiffiffiffiffiffiffi
2T

0ð Þ
ke

me

s
Hz@z

0@ 1Aake

þ 2@z uze �
T

0ð Þ
?e
mp

1

v2A

jz

en 0ð Þ

" #
¼ 0; ð36Þ

where Hz denotes the Hilbert transform relatively to the z-
variable.
[42] Turning to the transverse quantities, we write

a?p ¼ b G0 bð Þ � G1 bð Þð Þ 2
T

0ð Þ
?p

T
0ð Þ
ki

R zp
� �

� 1

0@ 1A bz

B0

24
þR zp
� � eY

T
0ð Þ
ki

� e

T
0ð Þ
?i

Fþ k2z
k2?

F� Yð Þ
� �35

þ Ap � G0 bð Þ
T

0ð Þ
?p

T
0ð Þ
kp

R zp
� �

� 1

0@ 1A24 35 bz

B0

: ð37Þ

By comparison with the kinetic expression for csp, we get

a?p þ G0 bð Þ
T

0ð Þ
?p

T
0ð Þ
kp

R zp
� � bz

B0

¼ k2?
W

cs p þ Kp

bz

B0

ð38Þ

with

Kp ¼ 4C3
1 bð Þ

T
ð0Þ
?p � T

ð0Þ
kp

mp

k2z

W2
þ Ap þ G0 bð Þ:

[43] In the case of a?p, the isothermal and adiabatic
limits are correctly reproduced by replacing the plasma
response function by its one pole approximation R1(zp) = 1/
(1 � i

ffiffiffi
p

p
zp). This description appears to be sufficient and

leads to the dynamical equation

@t �
1ffiffiffi
p

p

ffiffiffiffiffiffiffiffiffiffiffi
2T

0ð Þ
kp

mp

vuut Hz@z

264
375 a?p �

k2?
W

cs p � Kp

bz

B0

� �

� 1ffiffiffi
p

p

ffiffiffiffiffiffiffiffiffiffiffi
2T

0ð Þ
kp

mp

vuut G0 bð Þ
T

0ð Þ
?p

T
0ð Þ
kp

Hz@z
bz

B0

¼ 0: ð39Þ

Note that k?
2 csp identifies with the longitudinal vorticity

wzp = bz 
 (r 	 up) of the proton flow.
[44] The equivalent equation for the electrons is simply

@t �
1ffiffiffi
p

p

ffiffiffiffiffiffiffiffiffiffiffi
2T

0ð Þ
ke

me

s
Hz@z

24 35 a?e � Ae þ 1ð Þ bz
B0

� �

� 1ffiffiffi
p

p

ffiffiffiffiffiffiffiffiffiffiffi
2T

0ð Þ
ke

me

s
T

0ð Þ
?e

T
0ð Þ
ke

Hz@z
bz

B0

¼ 0: ð40Þ

In the above equation, @t bz is expressed using the Faraday-
Maxwell equation and the generalized Ohm’s law.
[45] The above closure equations were derived by a linear

analysis. In order to restore Galilean invariance, it may

nevertheless be suitable to replace the partial time derivatives
@t acting on the a’s by the convective derivative @t + u 
 r of
the associated particle species.

4.4. Modeling of the Gyroviscous Stress

[46] It is convenient to write

1

p
0ð Þ
?p
r? 
��? ¼ �r?Aþr? 	 Bbzð Þ: ð41Þ

The quantities A and B are expressed by means of equation
(22). At this level, we check that, to leading order in kz

2/k?
2 ,

A and B reduce to the quantities �dpc and �dps of Cheng
and Johnson [1999], when assuming a zero drift frequency.
[47] Using equation (13) with the S3 correction neglected,

together with equation (21) that gives

T
0ð Þ
?p

T
0ð Þ
kp

R zp
� �

� 1

0@ 1A bz

B0

¼ 1

G0 bð Þ

	 k2?
W

csp þ 4
T

0ð Þ
?p � T

0ð Þ
kp

mp

k2z

W2
C3
1 bð Þ bz

B0

�
T

1ð Þ
?p

T
0ð Þ
?p

0@ 1A; ð42Þ

we obtain

A ¼ 1� G1 bð Þ
b G0 bð Þ � G1 bð Þ½ � þ

G1 bð Þ
G0 bð Þ

� �
k2?
W

cs p �
G1 bð Þ
G0 bð Þ

T
1ð Þ
?p

T
0ð Þ
?p

ð43Þ

B ¼ � i
w
W

G0 bð Þ � 1� G1 bð Þ
b

þ 2 G0 bð Þ � G1 bð Þð Þ
�

þG0 bð Þ � G1 bð Þ
1� G0 bð Þ G0 bð Þ � G1 bð Þ � 1� G0 bð Þ

b

� � 
bz

B0

þ 1

1� G0 bð Þ G0 bð Þ � G1 bð Þ � 1� G0 bð Þ
b

�  
k2?
W

cc p: ð44Þ

In A, we have neglected a contribution of the form

4C1
3(b)

�
bG0 bð Þ � G1 bð Þ � bG1 bð Þ

G0 bð Þ � G1 bð Þ +
bG1 bð Þ
G0 bð Þ

�
T

0ð Þ
?p � T

0ð Þ
kp

T
0ð Þ
?p

k2z
k2?

bz

B0

that, without being totally negligible, is nevertheless

relatively small due to the factor kz
2/k?

2 . We check that this
term has essentially no effect at the level of the dispersion
relation and can thus be discarded in the fluid model. The
quantity iwbz/B0 is as previously estimated using the
Faraday-Maxwell equation and the contributions csp and
ccp are given by csp bz = (ik? 	 u?p)/k?

2 and ccp = (ik? 

u?p)/k?

2 .
[48] Let us now turn to �z = (�xz, �yz, �zz) where �zz = 0

in the linear description. This vector was neglected by
Smolyakov et al. [1995] and Cheng and Johnson [1999],
but turns out to be significant. Writing

�z ¼ �r?C þr? 	 Dbzð Þ; ð45Þ

simplified expressions for C and D can be derived from
equation (23) by noticing that the contributions involving�
T

0ð Þ
?p

T
0ð Þ
kp

� 2

�
kz

k?
(1 � G0(b))

�
1 +

k2z
k2?

�
e

T
0ð Þ
?p

(F � Y) in
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equation (23) and in the corresponding equation for �yz are
small and also that neglecting the terms proportional to w
has a minor influence at the level of the dispersion relation.
A more accurate description is possible but would lead to a
much more cumbersome formalism. Making the above
approximations, we are led to write

C
p

0ð Þ
kp

¼ i
kz

k2?

T
0ð Þ
?p

T
0ð Þ
kp

� 1

0@ 1A" G0 bð Þ � G1 bð Þ � 1ð Þ bz
B0

� 1� G0 bð Þð Þ eY
T

0ð Þ
?p

#
ð46Þ

D
p

0ð Þ
kp

¼ ðG0 bð Þ � G1 bð Þ � 1Þ
T

0ð Þ
?p

T
0ð Þ
kp

� 1

0@ 1A 4p
cB0k

2
?
jz: ð47Þ

4.5. Comparison With the Kinetic Theory

[49] In order to test the accuracy of the Landau fluidmodel,
we compare in this section its predictions for the dispersion
relation of variousMHDwaves, and for the growth rate of the
mirror instability, with the results of the full kinetic theory
reported in section 2. Linearizing the fluid model in a
reference frame where @/@y = 0, one easily derives

� @t@xxcc p þ @xx
p?

r 0ð Þ
p

� p
0ð Þ
?

r 0ð Þ
p

Aþ c2A
bz

B0

 !

þ c2A þ
p

0ð Þ
? � p

0ð Þ
k

r 0ð Þ
p

0@ 1A@zz
bz

B0

�
p

0ð Þ
kp

r 0ð Þ
p

@xxzC ¼ 0 ð48Þ

� @t@xxcs p � c2A þ
p

0ð Þ
? � p

0ð Þ
k

r 0ð Þ
p

0@ 1A@xz
by

B0

� p
0ð Þ
?

r 0ð Þ
p

@xxB �
p

0ð Þ
k

r 0ð Þ
p

@xxzD ¼ 0 ð49Þ

@tuzp þ @z
pk

r 0ð Þ
p

þ
p

0ð Þ
? � p

0ð Þ
k

r 0ð Þ
p

bz

B0

0@ 1A� p
0ð Þ
kp

r 0ð Þ
p

@xxC ¼ 0; ð50Þ

where the pressures without subscript denote the sum of the
proton and electron pressures and where we have used the
generalized Ohm’s law that rewrites

c

B0

Ex ¼ @xcs p �
c2A
W
@x

bz

B0

þ c2A
W
þ
p

0ð Þ
? e � p

0ð Þ
k e

r 0ð Þ
p W

0@ 1A@z
bx

B0

� 1

r 0ð Þ
p W

@xp? e ð51Þ

c

B0

Ey ¼ �@xcc p þ
c2A
W
þ
p

0ð Þ
? e � p

0ð Þ
k e

r 0ð Þ
p W

0@ 1A@z
by

B0

ð52Þ

Y ¼ 1

n0e
pk e þ p

0ð Þ
? e � p

0ð Þ
k e

� � bz

B0

� �
: ð53Þ

We also have

@t
np

n0
� @xxcc p þ @zuzp ¼ 0 ð54Þ

@t
by

B0

þ c

B0

@zEx þ @xzYð Þ ¼ 0 ð55Þ

@t
bz

B0

þ c

B0

@xEy ¼ 0; ð56Þ

together with the relations @xbx + @zbz = 0 and jz =
c

4p
@xby.

[50] Equations (48)–(50) and (54)–(56), supplemented
by the expressions for the pressures resulting from
equations (35)–(36) and equations (39)–(40), provide a
closed system from which the dispersion relation is easily
obtained using a symbolic calculator.
[51] In order to test the capability of the model to

describe KAWs, we first address the asymptotic regime of
low b?p with electrons much hotter than ions considered in
section 3.1. For this purpose, we supplement Figure 1 that
displays the frequency of these waves as a function of
perpendicular wavenumber, with the prediction of the fluid
model (cross symbols). We observe that the agreement
between the model and the kinetic theory remains satisfac-
tory in all the displayed range of scales (b < 0.19), thus much
beyond the validity domain of the explicit asymptotic
formula.
[52] With the aim to consider plasmas with higher b

where the Landau damping is more efficient, we compare
the predictions of the fluid model and of the kinetic theory
using b?p = 1 with equal and isotropic equilibrium
temperatures for the ions and the electrons (t = 1), keeping
the direction parameter q = 10�3. As seen on Figure 5, the
dispersion relation is very accurately reproduced by the
model up to about b = 0.15. At larger transverse
wavenumber, the simplification we performed by neglecting
the term involving @tby in �xz is no longer possible and
should be restored to preserve accuracy.
[53] Concerning magneto-sonic waves propagating per-

pendicular to the ambient magnetic field, the phase velocity
is well reproduced by the model, since the adiabatic regime
associated with the condition @t� @z is correctly described
by the dynamical equations (35)–(36) and (39)–(40). The
dispersive corrections in the wavenumber cone kz/k? � 1
which require second order accuracy in a 1/W expansion of
the FLR terms, are however not properly captured. The
kinetic theory developed in the previous section is also
insufficient to describe this finite frequency mode that
requires higher order terms in the development of the
quantities Xg and Yg, defined in Appendix A. In fact, only a
few terms proportional to w4/W4 are to be calculated, that
originate from the next order contribution to X0, the other
extra terms in Y0, X1 and Y1 being all proportional to kz.
These terms give rise to an extra contribution to np

(1)/np
(0) that

reads
2

b
(bG0(b) � bG1(b) � G1(b))

w4

W4

bz

B0

and to an extra

contribution to uyp (taking the angle y = 0) given by

�2i
ffiffiffiffiffiffiffiffiffiffiffi
2T

0ð Þ
?p

mp

s ffiffiffi
2

b

r �
bG1(b) � bG0(b) + G1(b) +

G1 bð Þ
2b

�
w4

W4

bz

B0

.
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The integrals are here calculated keeping only the l = ±1
terms in the summation of equation (A1). Additional terms
are to be added as b is increased, but their contribution does
not exceed a few percents when b = O(1). With these extra
terms, one easily computes the dispersion relation of
transverse magnetosonic waves and verifies its agreement
with equations (2.10)–(2.11) ofMikhailovskii andSmolyakov
[1985]. Figure 6 displays <(w)/k? vA as a function of b for
bkp = 1, t = 1 and Ap = Ae = 0 (taking q = 10�4) as
resulting from the numerical resolution of the dispersion
relation of the full kinetic theory (diamonds), from the
analytic formula of Mikhailovskii and Smolyakov [1985]
(crosses), which is only valid for very small values of b,
and from the fluid model (circles). As announced, for
transverse magnetosonic waves, the fluid model is only
valid at the point b = 0.
[54] We now turn to the main property of this model, i.e.

its capability to model mirror modes at finite values of the
parameter b. We first address the case of cold electrons and
parameters corresponding to a regime close to the mirror
instability threshold (Ap = 0.7, b?p = 1.5, q = 0.1). As seen
on Figure 7, the agreement between the kinetic theory
(diamonds) and the fluid model (circles) is excellent, except
at the largest values of the parameter b for which a deviation
is visible, although small. In order to analyze the origin of
the discrepancy at these small scales, we symbolize by
crosses the results obtained when the dispersion relation is
derived from the fluid model in an improved form that
retains all terms in the nongyrotropic pressures and a fourth
pole approximation used for the plasma response function in
the first term of �yz. Note that these extra terms are not
easily incorporated in a fluid model suitable to address
initial value problems, due to the presence of high powers of
the frequency in their denominator. They are only used here
in the computation of the dispersion relation for compar-
ison. Figure 7 shows that the agreement between kinetic
theory and this ‘‘extended’’ fluid model is then excellent
throughout the entire b-range. This suggests that a proper

modeling of these extra terms in a more sophisticated
model, would ensure a high accuracy up to the smallest
transverse scales.
[55] For parameters corresponding to a finite distance to

threshold and finite electron temperature (t = 1, Ap = 1.5,
Ae = 0.1, b?p = 1.5, q = 0.2), we compare in Figure 8 the
results of the kinetic theory (diamonds) with those of the
fluid model (circles) for the imaginary part of the frequency
as a function of k?rp. Crosses again correspond to the
‘‘extended’’ fluid model. As seen on this graph, the
agreement between kinetic theory and the fluid model is
good (and even better when including the extra terms) when
the growth rate takes small values. It clearly deteriorates
close to the maximum growth rate as the conditions for the
validity of the asymptotics performed on the kinetic theory
are violated. The important point is that the model
reproduces the large-scale behavior with asymptotic accu-
racy and displays the correct qualitative behavior when b is
of order unity.
[56] As already noted, in the above regime where the

proton b is of order unity, the mirror instability may be
subdominant compared with the AIC instability. In order to
validate the model in a regime where the mirror instability is
dominant, we also considered the case where b = 5, t = 1,
Ae = 0 and a pressure anisotropy Ap = 0.5. The value q = 0.1
was retained for the direction parameter. As seen in Figure 9,
a satisfactory accuracy is provided by the fluid model for
the growth rate of the unstable modes, the decay rate of the
damped modes being less precisely reproduced. As also
seen on the figure, retaining the full nongyrotropic pressures
is necessary to insure a uniform accuracy.

5. Concluding Remarks

[57] We have constructed a Landau fluid model that
retains small-scale FLR effects in order to reproduce the
growth rate of the mirror instability for perturbations with
arbitrary transverse wavenumber, and in particular the arrest
of the instability for perturbations at small enough scales.

Figure 5. Comparison of the normalized frequencies
<(w)/kz vA of KAWs as a function of b for q = 10�3,
b?p = 1, t = 1 and isotropic equilibrium temperatures,
obtained by numerical resolution of the full dispersion
relation (diamonds) and from the fluid model described in
section 4 (crosses).

Figure 6. Normalized frequencies <(w)/k? vA of trans-
verse magnetosonic waves as a function of b for b?p = 1,
t = 1 and isotropic equilibrium temperatures, given by
numerical resolution of the fluid model (circles), the full
kinetic theory (diamond) and by the asymptotic formula of
Mikhailovskii and Smolyakov [1985] (crosses).
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This latter property is indeed a prerequisite for a model to be
mathematically well posed in regimes where a mirror
instability develops. The present model should provide an
efficient tool to simulate the quasi-transverse dynamics in
the weakly nonlinear regime, and in particular reproduce the
formation and evolution of coherent structures and power-
law spectra, as observed in the terrestrial magnetosheath
[Sahraoui et al., 2003; Tsurutani et al., 2005]. Such regimes
seem indeed beyond the possibility of the present days fully
kinetic simulations, at least in three space dimensions. Their
study using the present fluid model will be the object of a
forthcoming paper. It is interesting to note at this point that,
although oversimplified, the model used by Baumgärtel
[2001] demonstrates that significant aspects of the mirror
mode dynamics can be captured within a fluid approach.
Our model that correctly arrests the mirror mode instability

at small scales by the effect of Landau damping and finite
Larmor radius corrections, should provide a quantitative
improvement to this description.
[58] The present model is however not asymptotically

exact. It is based on a procedure consisting in describing
nonlinear interactions within a fluid formalism and restrict-
ing kinetic effects to a linear approximation. These kinetic
corrections are expressed in terms of usual hydrodynamic
variables by deriving from the kinetic theory specific
relations between the fluid moments, and replacing in the
resulting relations, the plasma response function by Padé
approximants, suitably chosen to ensure asymptotic accu-
racy in the limits where the parallel phase velocities are
asymptotically small or large compared with the parallel
thermal velocities of the ions. This procedure results in
closure relations in the form of a few dynamical equations
amenable to numerical integration. A similar development
is reported by Goswami et al. [2005] in the context of a high
order Landau fluid closure for the large-scale dynamics.
[59] The observation that the present model quantitatively

reproduces the instability growth rate of the mirror modes at
all scales, suggests that it captures at least part of the
dynamics of the so-called trapped particles that play an
important role in the analysis of Kivelson and Southwood
[1996] and Pantellini [1998]. In this context it is of interest
to note that suppressing the imaginary part of akp and a?p
(associated with Landau damping) significantly affects the
instability growth rate (its value is multiplied by a factor 2
in the conditions of Figure 9) and also suppresses the
damping of the modes that are not unstable. In contrast, the
electron Landau damping has no significant effects and
could be neglected, as usually done in hybrid simulations.
[60] Direct validations of the model in the nonlinear

regime by comparisons with fully kinetic simulations are
in project. Further improvement are possible, but at the
price of a significant increase of its complexity, by retaining
fully nonlinear equations for the gyrotropic pressures and
heat fluxes, and closing the hierarchy at the level of fourth

Figure 7. Mirror mode growth rates g/W as a function of
k? rp =

ffiffiffiffiffi
2b

p
for t = 0, Ap = 0.7, b?p = 1.5, q = 0.1 obtained

from kinetic theory (diamonds) and the fluid model
(circles). Crosses correspond to an extended version of the
model (see text).

Figure 8. Mirror mode growth rates g/W as a function of
k? rp =

ffiffiffiffiffi
2b

p
for t = 1, Ap = 1.5, Ae = 0.1, b?p = 1.5, q = 0.2

obtained from kinetic theory (diamonds) and the fluid
model (circles). Crosses correspond to a linear model where
all terms are kept in the FLR corrections and a fourth pole
approximation is used for the plasma response function in
the first term of �yz.

Figure 9. Mirror mode growth rates g/W as a function of
k? rp =

ffiffiffiffiffi
2b

p
for t = 1, Ap = 1.5, Ae = 0, b?p = 5, q = 0.1

obtained from kinetic theory (diamonds), from the fluid
model (circles) and from an improved model where all
terms are kept in the FLR corrections and a fourth pole
approximation is used for the plasma response function in
the first term of �yz (crosses).
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order cumulants. Such a development is necessary for the
model to accurately describe oblique Alfvén and magneto-
sonic waves, as illustrated by Passot and Sulem [2004a,
2004b] and Goswami et al. [2005]. Matching in this case the
fluid description to the kinetic theory (as needed to capture
the dynamics at small transverse scales) is however a
delicate issue that is presently under investigation.

Appendix A

[61] In order to evaluate the velocities and density fluc-
tuations needed to derive the dispersion relation, we com-
pute the first moments of f (1) as expansions in powers of the

ratio w/W, assuming w/W � 1 with no condition on the

magnitude of (k?/W)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

0ð Þ
? =m

q
nor on that of w/kz. This

expansion is carried out to second order. We concentrate the
analysis on the ions and, in order to simplify the writing,
now suppress the subscript p.
[62] Nondimensional velocities and potentials are intro-

duced by writing v? = ev? ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

0ð Þ
? =m

q
, vk = evk ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2T
0ð Þ
k =m

q
,

F = eFT?(0)/e, Y = eYT?(0)/e, bz = B0
ebz. One also defines

a = (k?/W)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

0ð Þ
? =m

q
, and zl = [(w � lW)/jkzj]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=2T

0ð Þ
k

q
.

The quantity z0 will simply be denoted by z. The computation
of the hydrodynamic moments [number density n = n

R
f d3v,

velocity u =
R
v f d3v/

R
f d3v, pressure tensor p =mn

R
(v� u)

� (v � u) f d3v] then involves the estimate of integrals of the
form (b and g are here nonnegative integers)

Z
eipff 1ð Þvgkv

bþ1
? dv?dvkdf ¼ 2

2T
0ð Þ
k
m

0@ 1Ag

2

2T
0ð Þ
?
m

 !b
2


 eipy
Z Xþ1

l¼�1

( ffiffiffi
2

b

r
J 0l aev?ð ÞJl�p aev?ð Þev?Xg z lð Þebz

� Jl aev?ð ÞJl�p aev?ð Þ lW
w
Xg z lð Þ eFþ k2z

k2?
eF� eY� �� �

�Yg z lð ÞJl aev?ð ÞJl�p aev?ð Þ T
0ð Þ
?

T
0ð Þ
k

� lW
w

T
0ð Þ
?

T
0ð Þ
k

� 1

0@ 1A24 35eY)


 e�ev?2ev?bþ1dev?: ðA1Þ

We use the notation

Xg z lð Þ ¼ zYg�1 z lð Þ þ T
0ð Þ
?

T
0ð Þ
k

� 1

0@ 1AYg z lð Þ;

where Yg(zl) is the analytic continuation on the real axis of the

function defined by
1ffiffiffi
p

p
Z þ1

�1

e�x
2

xgþ1

x� z l

dx for Im z > 0.

Introducing the plasma dispersion function Z(z) =
1ffiffiffi
p

p
P

Z þ1

�1

e�x
2

x� z
dx + i

ffiffiffi
p

p
e�z2 and the plasma response

function R(z) = 1 + zZ(z), one has Y0(zl) = R(zl) and Y1(zl) =

zlR(zl).
[63] It is convenient in the sum involved in the right hand

side of equation (A1) to distinguish the contribution of l = 0
that leads to a singular term, from the contributions of l 6¼ 0.

The computation of the velocities and the density fluctua-
tions of the various species require the asymptotic estimate of
Xj(zl) and Yj(zl) when l 6¼ 1 for j = 0 and 1. In this cases, one

write zl = �z
lW
w

(1 � w
lW

). Using that Z(z) = �1/z � 1/2z3 �
3/4z5 +O (1/z7) for z! +1, one obtains when expanding at
the order (w/W)3 needed to get a uniform description of the
moments at order (w/W)2,

X0 z lð Þ ¼ w
lW
þ 1� 1

2z20

T
0ð Þ
?

T
0ð Þ
k

� 1

0@ 1A24 35 w
lW

� �2

þ 1� 1

z20

T
0ð Þ
?

T
0ð Þ
k

� 3

2

0@ 1A24 35 w
lW

� �3
ðA2Þ

Y0 z lð Þ ¼ � 1

2z20

w
lW

� �2
� 1

z20

w
lW

� �3
ðA3Þ

X1 z lð Þ ¼ 1

2z 0

T
0ð Þ
?

T
0ð Þ
k

� 1

0@ 1A w
lW

� �
þ 1

2z 0

T
0ð Þ
?

T
0ð Þ
k

� 2

0@ 1A w
lW

� �2

þ 1

2z0

T
0ð Þ
?

T
0ð Þ
k

� 3

0@ 1A24 þ 3

4z30

T
0ð Þ
?

T
0ð Þ
k

� 1

0@ 1A35 w
lW

� �3
ðA4Þ

Y1 z lð Þ ¼ 1

2z 0

w
W

� �
þ 1

2z 0

w
lW

� �2
þ 1

2z0
þ 3

4z30

 !
w
lW

� �3
: ðA5Þ

We are thus led to sum series of the form

Skp xð Þ ¼
X
l 6¼0

1

lk
Jl xð ÞJl�p xð Þ

and

Sk
p xð Þ ¼

X
l 6¼0

1

lk
J 0l xð ÞJl�p xð Þ

and to define the integrals

Cl
s bð Þ ¼

Z evl?S2
s aev?ð Þe�ev2?dev?

and

Dl
s bð Þ ¼

Z evl?S2s aev?ð Þe�ev2?dev?:
[64] One has S0

0(x) = 1 � J0
2(x), S0

1(x) = 0, S0
1(x) = 0,

S1
0(x) =�S�10 = J0(x) J1(x),S1

1(x) = S�1
1 =

1

x
(1� J0

2(x)) andS1
1(x)

S1
1(x) = S�1

1 =
1

x
J0(x)J1(x), and one also makes use of

the identities
Z þ1

0

J0
2(ax) e�x2 xdx =

1

2
e�b I0(b),Z þ1

0

J0(ax)J
0
0(ax) e

�x2 x2 dx =

ffiffiffiffiffi
2b

p

4
e�b (I1(b) � I0(b)),Z þ1

0

J1
2(ax) e�x2 x3 dx =

b

2
e�b (I0(b) � I1(b)), where In(b) is
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the modified Bessel function of order n. It is thus convenient
to introduce the standard notation Gn(b) = e�b In(b).
[65] The series Sp

k(x) and Sp
k(x) for k  2 are in contrast

difficult to compute exactly but can be estimated with a
sufficient accuracy by retaining only the contributions
originating from l = ±1 and in some cases from l = ±2 also.
In the expression of uzp, we approximate C0

2(b) by retaining
the contributions of l = ±1 and l = ±2 that are comparable, in
the form C0

2(b) � (1/4
ffiffiffiffiffi
2b

p
) (3bG0(b) � 3G1(b) � 2G1(b) �

2G0(b) + 4G1(b)/b). For D0
1(b), we only retain the contribu-

tion of l = ±1, which gives D0
1(b) � G1(b). Further

contributions are conveniently computed using a symbolic
calculator. The contribution of l = ±2 gives for example
(bG0(b) � 2G1(b))/(4b). One then checks that such correc-
tions do not significantly affect the summation and can be
overlooked for the sake of simplicity. Using a similar
approximation for coefficients entering cps, we approximate
C1
3(b)� (�3bG0(b) + 2G0(b) + 3bG1(b) + 2G1(b)� 2G1(b)/b +

2G0(b)/b � 4G1(b)/b
2)/4 and D1

2(b) � (1/
ffiffiffiffiffi
2b

p
) (bG0(b) �

bG1(b) � G1(b)).
[66] The computation of the pressure tensor components in

the low-frequency limit requires the additional computation
of

X2ð�lÞ ¼
1

2

w
lW

� �
þ 1

2
� 3

4z20

T
0ð Þ
?

T
0ð Þ
k

� 1

0@ 1A24 35 w
lW

� �2

þ 1

2
� 3

z20

T
0ð Þ
?

T
0ð Þ
k

� 3

2

0@ 1A24 35 w
lW

� �3
ðA6Þ

Y2ð�lÞ ¼ �
3

4z20

w
lW

� �2
� 3

2z20

w
lW

� �3
: ðA7Þ

One also needs the identities

S12 xð Þ ¼ S1�2 ¼ �J0 xð ÞJ2 xð Þ ðA8Þ

S22 xð Þ ¼ �S2�2 ¼
2

x
J0 xð ÞJ1 xð Þ � 2

x2
1� J 20 xð Þ
� �

ðA9Þ

S32 xð Þ ¼ �S3�2 ¼ �
2

x2
J0 xð ÞJ1 xð Þ þ 1

x
1� 2J 21 xð Þ
� �

ðA10Þ

and

Z þ1

0

J 20 axð Þe�x2x3dx ¼ � 1

2
e�b bI0 bð Þ � I0 bð Þ � bI1 bð Þð Þ ðA11Þ

Z þ1

0

J2 axð ÞJ0 axð Þe�x2x3dx ¼ 1

2
e�b bI0 bð Þ � I1 bð Þ � bI1 bð Þð Þ:

ðA12Þ

Appendix B

[67] The contributions S1, S2 and S3 arising in
equations (8), (10) and (13) are given by
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