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Abstract

When the Discrete Fourier Transform of an image is computed, the image is implicitly
assumed to be periodic. Since there is no reason for opposite borders to be alike, the
“periodic” image generally presents strong discontinuities across the frame border. These
edge effects cause several artifacts in the Fourier Transform, in particular a well-known
“cross” structure made of high energy coefficients along the axes, which can have strong
consequences on image processing or image analysis techniques based on the image spectrum
(including interpolation, texture analysis, image quality assessment, etc.). In this paper, we
show that an image can be decomposed into a sum of a “periodic component” and a “smooth
component”, which brings a simple and computationally efficient answer to this problem. We
discuss the interest of such a decomposition on several applications.

keywords: Discrete Fourier Transform, periodic image, edge effect, ringing, artifact, sinc
interpolation, image quality assessment, phase coherence.

1 Introduction

The Fourier Transform plays a key role in several major image processing issues. First, Shannon-
Whittaker Sampling Theorem [23] gives a nice equivalence between continuous band-limited
images and discrete images, which has consequences on image sampling and the aliasing phe-
nomenon, image interpolation, geometrical transforms, etc. Second, since any continuous linear
translation-invariant operator on finite-energy (L2) functions boils down to a multiplication in
Fourier domain, many filtering issues are better understood and processed in Fourier domain,
leading to classical applications in image smoothing, image deblurring, and pattern recognition
[25] for example. Third, the Fourier Transform, due to its global nature, can be used in various
issues like image registration [8, 15, 16, 17, 21, 26], image quality assessment [2, 4, 5, 19, 20],
watermarking [12, 18], document analysis [14], non-linear interpolation [10, 29], etc.

In practice, since real data are made of discrete finite images, the Discrete Fourier Transform
(DFT) is used. A good point is that the DFT can be computed efficiently for images whose
dimensions can be written as products of small prime integers, reducing the theoretical O(N3)
cost (using separability) to O(N2 · logN) (using the Fast Fourier Transform) for a N ×N image
when N is a power of two. A bad point is that the DFT is nothing but the continuous Fourier
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Transform of a periodized image obtained by tiling the whole plane with side-to-side copies of
the original discrete image. Since there is no reason in general for the opposite borders of an
image to be alike, such a periodization tends to produce discontinuities in the image domain,
which causes an artificial “cross structure” (as noticed in [12, 14, 17, 18] for example), that is,
high-energy coefficients along the axes in Fourier domain that can be responsible for undesirable
artifacts in applications.

Several solutions have been proposed to overcome these edge effects. The most classical way
consists in forcing smooth transitions at the image borders by multiplying the initial image with
an attenuation function that vanishes at the frame border. Many such windowing functions
have been proposed to do this: Bartlett, Blackman, Hamming, Hanning, Kaiser, etc. [11].
These approaches can be used to estimate global properties of the Fourier spectrum of an
image, provided that the image values near the frame borders can be neglected. However, they
are not relevant for most image operations involving the Fourier spectrum (e.g., interpolation)
not to mention the skills required to choose the most appropriate windowing function (for given
applications or data).

Another popular way to avoid edge effects is to symmetrize the N×N image into a 2N×2N
image, on which the DFT is then applied. Since the opposite borders of the symmetrized image
are the same, no edge effects occur in the periodization process (to be more exact, discontinuities
are relocated to the first derivative, which causes the “cross structure” to disappear thanks to
a much faster decay of Fourier coefficients along the axes). To avoid the multiplication of data
size by 4, it is interesting to notice that this prior symmetrization process amounts to replace
the DFT of the image by its Discrete Cosine Transform, even if the latter is sometimes less
convenient to use. The most important drawback of the prior symmetrization is that it does
much more to the image spectrum than removing the cross structure artifact: it makes the
DFT symmetric and real-valued, which can be dramatic if the phase component of the Fourier
Transform has to be analyzed, or if orientation issues are concerned.

Several years ago, Beaudoin and Beauchemin [3] proposed to replace the DFT of an image by
a better estimate of its continuous Fourier Transform, using regularity assumptions on the image
itself. Unfortunately, their method is not broadly applicable because natural images are not very
smooth in general (they tend to present discontinuities due to scene occlusions). Moreover, their
algorithm requires the estimation of high-order derivatives on the image frame border, which can
be an important issue, especially in the presence of noise. Notice that the point of view we take
here is more to avoid the DFT artifacts than to define a better discrete estimate of the “real”
Fourier Transform. More recently, Saito and Remy [22] and then Zhao, Saito and Wang [28]
proposed to avoid edge effects by subtracting a residue to the original image. The “clean” image
is obtained by solving a generalized Laplace Equation with prescribed boundary values, using
an accurate and fast (O(N2 logN) for a N ×N image)) solver derived from [1]. This operation,
called Polyharmonic Local Sine Transform (PHLST, and PHLST5 in the second paper), was
primarily intended for local Fourier analysis (obtained by cutting the image in small adjacent
patches), but could be applied on the entire image as well. However, the imposed constraints
(the approximate image must vanish at the frame border) make this method not very well suited
for the artifact removal issue we consider here.

In this paper, we propose to decompose an image globally into the sum of a “periodic”
component (that is, an image resembling the original image but whose DFT does not suffer
from edge effects) and a smooth component that has very slow variations inside the image
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domain. The plan of this paper is the following. In Section 2, we set some notations concerning
the DFT and discuss the edge effects it produces, as well as the effect of symmetrization. In
Section 3, we introduce the “periodic plus smooth decomposition” in a variational setting and
derive three direct formulations: in the image domain, in the Fourier domain, and in both
domains. We also give an interpretation in terms of Poisson’s equation, and derive a simple
and exact algorithm involving a single DFT to compute the decomposition in Fourier Domain.
We also establish several properties of the “periodic component” operator. Some applications
of the periodic plus smooth decomposition are then described in Section 4 and illustrated with
numerical experiments, before we conclude in Section 5.

2 Discrete Fourier Transform and edge effects

Let us consider a discrete gray-level image, that is a function u : Ω → R defined on a finite
domain Ω = {0, . . . ,M − 1}× {0, . . . , N − 1}. The DFT of u is the discrete function û : Z2 → C

defined by

∀(q, r) ∈ Z2, û(q, r) =
∑

(k,l)∈Ω

u(k, l) exp

[
−2iπ

(
qk

M
+
rl

N

)]
. (1)

The function û is (M,N)-periodic, that is, M -periodic with respect to its first argument and N -
periodic with respect to its second argument. Since u is real-valued, û is conjugate-symmetric,
that is

∀(q, r) ∈ Z2, û(−q,−r) = u∗(q, r),

where z∗ denotes the conjugate complex of z ∈ C. From these properties, it can be easily
deduced that the complete description of û only involves MN real numbers.

Using Cooley and Tukey’s fast algorithm [7], the famous Fast Fourier Transform (FFT),
the numerical computation of û can be done in 2MN(φ(M) + φ(N)) operations (additions and
multiplications), where the function φ is defined by

φ

(∏

i∈I

pi

)
=
∑

i∈I

(pi − 1)

for any finite sequence of prime numbers (pi)i∈I . This algorithm is particularly efficient when
M and N are powers of two (in this case, the computational cost is 2MN(log2M + log2N)),
but it remains very efficient for more general image dimensions, provided that the prime factor
decomposition of M and N involve many small factors. This hypothesis is not always satisfied
(M and N could be prime numbers for example), but it can be easily forced as soon as a loss of
a few lines and columns (image cropping) is acceptable.

2.1 Implicit periodization

The DFT can be interpreted as the continuous Fourier Transform of a periodic distribution. Let
u : Ω → R be a discrete M ×N image, extended to u̇ : Z2 → R by (M,N) periodicity. Consider
the associated periodic distribution

U =
∑

(k,l)∈Z2

u̇(k, l) δ(k,l),
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where δx is the Dirac distribution at point x ∈ R2. Then, the continuous Fourier Transform of
U (in the distributional sense) is simply

Û =
4π2

MN

∑

(q,r)∈Z2

û(q, r) δ(2πq/M,2πr/N). (2)

Hence, the continuous Fourier Transform of the periodized image U is supported by a discrete
grid (equivalent to Z2, after rescaling), and its coefficients are given by the DFT of u. Another
way to understand the implicit periodization in (1) is to notice that for any discrete rectangle
Ω′ ⊂ Z2 obtained by translating Ω, we have

∀(q, r) ∈ Z2, û(q, r) =
∑

(k,l)∈Ω′

u̇(k, l) exp

[
−2iπ

(
qk

M
+
rl

N

)]
.

Considering discrete images as periodic (which they are not in general) produces gray-level
gaps (roughly speaking, discrete “discontinuities”) at the boundary of the frame border, since
there is no reason in general for opposite pixels of an image to have similar gray values, as
illustrated on Figure 1 (top right image). When computing the Fourier Transform of U , the
horizontal and vertical gaps resulting from the image periodization (u → u̇) are responsible for
phase-coherent high-frequency components along the axes in the frequency domain. Since Û
and û are essentially the same function (as shown in Equation 2), this artifact also happens for
û, and is noticeable as an artificial “cross structure” both on the modulus component (Figure
1, bottom left) and on the phase component (Figure 1, bottom right).

As we shall see later in Section 4, not only the implicit periodization realized by the DFT
introduces visual bias in the Fourier Transform, but it also has undesirable consequences for
several applications, including interpolation (appearance of ringing artifacts), texture analysis
(wrong Fourier coefficients along the axes), estimation of image smoothness (linked to the decay
rate of the DFT modulus), image quality assessment based on DFT spectrum analysis, Fourier-
based restoration (e.g., deblurring), etc.

2.2 Symmetrization

A popular way to avoid side-effects due to the implicit periodization of the DFT is to apply a
prior symmetrization to the image. The original discrete image u : Ω → R is first transformed
into uσ : Ω′ → R, where

∀(k, l) ∈ Ω′ = {0, . . . , 2M − 1} × {0, . . . , 2N − 1}, uσ(k, l) = u
(
σM (k), σN (l)

)
,

and σM (k) =





k if 0 ≤ k ≤M − 1,

2M − 1− k if M ≤ k ≤ 2M − 1
(3)

(the “mirror” function σN is defined similarly). Then, the DFT of uσ is considered. Since pixels
from opposite borders of Ω′ are constrained to share the same gray level, the periodization of
uσ does not create intensity gaps across the border of Ω′, so that the “cross structure” artifact
is not present on ûσ (see Figure 2). In the continuous domain, it can be seen that the prior
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Figure 1: If the original Lena image (top, left) is assumed to be periodic as in the Discrete Fourier
Transform framework, then it is equivalent to its translated version (top, right), which presents strong
“discontinuities” across the original image frame border. These discontinuities create a “cross structure”
artifact on its Discrete Fourier Transform, both for the modulus component (bottom, left, in log scale)
and for the phase component (bottom, right).

symmetrization transforms the discontinuity of u into a discontinuity of the normal derivative
of uσ, with much weaker consequences.

One apparent drawback of this symmetrization is that it multiplies by 4 the image size, so
that a loss of computational efficiency could be expected. In fact, it can be easily shown that

ûσ(q, r) = 4eiπq/2Meiπr/2N · Cu(q, r), (4)

where

Cu(q, r) =
∑

(k,l)∈Ω

cos

(
πq

M
(k +

1

2
)

)
cos

(
πr

N
(l +

1

2
)

)
u(k, l) (5)

is called the Discrete Cosine Transform (DCT) of u. Hence, the two-step process (symmetriza-
tion, then DFT) is simply equivalent to a DCT, followed by a linear phase shift (which cor-
responds in fact to a translation by (1/2, 1/2)). Fast DCT algorithms are also available, and
the amount of data to handle remains the same (MN real coefficients) thanks to the symmetry
properties of Cu.

Contrary to window tapering methods (Hamming, etc.) mentioned in Section 1, prior sym-
metrization is well suited for image interpolation. For example, zero-padding image zooming
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Figure 2: Symmetrization of the Lena image (left) and its corresponding Discrete Fourier Transform
(modulus in log scale, right). Compared to Figure 1, the cross structure has disappeared in the Fourier
domain, but the price to pay is a loss of information (orientation, phase component) due to the fact that
the DFT of a symmetric image is constrained to be a symmetric real-valued function.

is easily performed through a DCT/inverse DCT process. Sub-pixel image translation is more
heavy, since the resulting translated image has no reason to remain symmetric, which means that
a more classical inverse DFT is necessary to reconstruct the translated image, which multiplies
the memory and computation time requirements by a factor 4.

But the most important drawback of prior symmetrization is the structure it induces on the
DFT. Indeed, it is clear from (5) that Cu is symmetric with respect to both axes, that is,

∀q, r, Cu(q, r) = Cu(−q, r) = Cu(q,−r) = Cu(−q,−r).

This can be really annoying, in particular when image orientations issues are involved (for
example, the orientation of a texture image cannot be properly analyzed with the DCT). Another
property is that Cu is a real-valued function, which means that its phase (argument) only takes
the two values 0 and π (modulo 2π). Possibilities of phase spectrum analysis are thus very
limited on a symmetric image. In fact, the effect of prior symmetrization (followed by a DFT)
is to transform MN/2 complex coefficients into MN real coefficients and MN binary phase
coefficients belonging to {0, π}, which may be, in terms of spectrum interpretation, a complete
disaster.

Other symmetrization methods exist, in particular variants of (3) that do not duplicate
boundary coefficients and transform a M × N image into a (2M − 2) × (2N − 2) image (or
into a (2M − 1) × (2N − 1) image if only one side of the boundary is replicated). In all cases,
the extended images are symmetric and the drawbacks mentioned above (orientation loss, phase
binarization) still persist. Moreover, these methods may dramatically reduce the computational
efficiency, since M and 2M − 2 cannot be both powers of two when M > 2 (not to mention
2M − 1 that can never be a power of two of course).
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3 Periodic plus smooth decomposition

3.1 Definition

As we saw, we have to face a dilemma. On the one hand, the Fast Fourier Transform is a very
efficient algorithm that we would like to use for the global spectral analysis of discrete images
and for image processing techniques admitting efficient implementations in Fourier domain. On
the other hand the DFT causes strong artifacts due to the assumed periodicity of images. Here
we propose to face this dilemma by using a decomposition of the discrete image u into a sum
of two images: an image p (called “periodic component”) that is well analyzed by the DFT and
for most images visually very similar to u; and an image s (called “smooth component”) that
has very smooth variations except at the borders of the image domain Ω. There are several
possibilities to define such a decomposition, but as we shall see later, the one we propose below
has interesting theoretical and computational properties.

Theorem 1 (definition of periodic+smooth decomposition) Let u ∈ RΩ be a gray-level
image, defined on a discrete rectangular domain Ω. There exists a unique couple of images
(p, s) ∈ (RΩ)2 that minimizes

E(p, s) =
∑

x∈Ω,y∈Z2\Ω,
|x−y|=1

(
p(x)− p(ẏ)

)2
+

∑

x∈Ω,y∈Ω,
|x−y|=1

(
s(x)− s(y)

)2
(6)

under the constraints
u = p+ s, and mean(s) = 0, (7)

where ẏ is the unique element of Ω equal to y modulo Ω, and

mean(s) =
1

|Ω|
∑

x∈Ω

s(x).

The image p is be called the periodic component of u (also written per(u)) and s the smooth
component of u.

Proof — Let us consider the following three minimization problems with respect to s:

(1) Minimize E(u − s, s) under the constraint mean(s) = 0 (the minimization problem con-
sidered in the theorem);

(2) Minimize F (s) under the constraint mean(s) = 0, where

F (s) = E(u− s, s) + mean(s)2; (8)

(3) Minimize F (s) without constraint.

Since the two functions F (s) and E(u − s, s) are equal under the constraint mean(s) = 0,
Problem (1) and (2) are equivalent. Now, if s is a solution of Problem (3), then for any real
number α

F (s+ α) = E(u− (s+ α), s+ α) + (mean(s) + α)2 = E(u− s, s) + (mean(s) + α)2,
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and since this should be minimum for α = 0, we necessarily have mean(s) = 0. Hence Problem
(2) and (3) are equivalent, and so are the initial Problem (1) and the Problem (3) we now
consider.

First, we have
F (s) = (u− s)TQ1(u− s) + sTQ2s, (9)

where Q1 and Q2 are positive symmetric linear mappings from RΩ into itself. Moreover, Q2 is
positive definite because

sTQ2 s =
∑

x∈Ω,y∈Ω,
|x−y|=1

(
s(x)− s(y)

)2
+mean(s)2

only vanishes when s = 0. Hence, Q1 +Q2 is invertible and from

F (s) = uTQ1u− 2sTQ1u+ sT (Q1 +Q2)s,

we deduce that there exists a unique minimizer of F , given by

s̄ = (Q1 +Q2)
−1Q1u. (10)

2

The “periodic plus smooth” decomposition we just defined is formulated in a variational
setting, that imposes a compromise between the “good continuation” of p across the boundary
of Ω and the smoothness of s inside the domain Ω. The constraint u = p+s ensures that an exact
reconstruction of u is possible from its two components while the other constraint mean(s) = 0
forces u and p to have the same average gray value. In general, the linear decomposition of an
image is questionable (contrary to sound signals for examples, images are not produced by the
addition of waves but result from non-linear processes like occlusions), but since we are here
interested in the Fourier spectrum of this image, the linear decomposition is very natural. Note,
by the way, that the mapping u 7→ per(u) is linear but of course not translation-invariant (since
it has a special effects on the boundary of Ω).

3.2 Explicit computations

A first interesting property of the “periodic plus smooth” decomposition is that it can be com-
puted exactly in Fourier domain using only one additional DFT, as stated below.

Theorem 2 (computation in image-Fourier domain) Let u ∈ RΩ be a discrete M × N
image, defined on Ω = {0, . . . ,M − 1} × {0, . . . , N − 1}. Then we have

∀(q, r) ∈ Ω \ (0, 0), p̂er(u)(q, r) = û(q, r)− v̂(q, r)

2 cos(2πqM ) + 2 cos(2πrN )− 4
, (11)

and p̂er(u)(0, 0) = û(0, 0), where v = v1 + v2 and

∀(x, y) ∈ Ω, v1(x, y) =

{
u(M − 1− x, y)− u(x, y) if x = 0 or x =M − 1,

0 else,

8
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∀(x, y) ∈ Ω, v2(x, y) =

{
u(x,N − 1− y)− u(x, y) if y = 0 or y = N − 1,

0 else.

Proof — Given a pixel x ∈ Ω, we decompose its 4 nearest neighbors modulo Ω into the sets

V (x) = {y ∈ Ω, |x− y| = 1} (12)

and W (x) = {y ∈ Ω, ∃z ∈ Z2 \ Ω, ż = y and |x− z| = 1}. (13)

Thus, V (x) is the set of direct neighbors of x, whereas W (x) is the set of remaining neighbors
arising from Ω-periodization. Now from (6) and (8), we get

F (s) =
∑

x∈Ω


 ∑

y∈W (x)

(
u(x)− s(x)− u(y) + s(y)

)2
+

∑

y∈V (x)

(s(x)− s(y))2


+mean(s)2.

If s is the smooth component of u, then for all x ∈ Ω the derivative of F (s) with respect to s(x)
is zero, that is

4
∑

y∈W (x)

(
− u(x) + s(x) + u(y)− s(y)

)
+ 4

∑

y∈V (x)

(
s(x)− s(y)

)
+

2

|Ω| mean(s) = 0.

Since mean(s) = 0, we obtain

∀x ∈ Ω,
∑

y∈W (x)

(
u(y)− u(x)

)
= −

(
|V (x)|+ |W (x)|

)
s(x) +

∑

y∈V (x)

s(y) +
∑

y∈W (x)

s(y).

Now |V (x)|+ |W (x)| = 4 for all x ∈ Ω, so we have

B(u) = k ⋆ s, (14)

where ⋆ represents the Ω-periodic convolution operator, k a convolution kernel defined by

∀x ∈ Z2, k(x) =





−4 if x = 0,
1 if |x| = 1,
0 else,

(15)

and B a linear operator defined by

∀x ∈ Ω, B(u)(x) =
∑

y∈W (x)

(
u(y)− u(x)

)
. (16)

One easily checks that B(u) = v, and that

∀(q, r) ∈ Z2, k̂(q, r) = 2 cos

(
2πq

M

)
+ 2 cos

(
2πr

N

)
− 4,

so that by taking the Discrete Fourier Transform of (14), we obtain exactly the announced result
(11) for per(u) = u− s. 2

It seems surprising that the computation of the periodic component of u can be done in
Fourier domain, since the transform u 7→ per(u) is precisely meant to be applied before a DFT
to avoid artifacts. As we noticed before, the mapping u 7→ per(u) is linear but not translation-
invariant, so that it cannot be written as a periodic convolution and hence computed by a simple
multiplication in Fourier domain. Nevertheless, the computation of per(u) can be done in four
steps:

9
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1. compute the image v to capture the intensity gaps of u across the border of Ω

2. compute the DFT of v

3. compute ŝ with (11), that is ŝ(0, 0) = 0 and

∀(q, r) ∈ Ω \ (0, 0), ŝ(q, r) =
v̂(q, r)

2 cos(2πqM ) + 2 cos(2πrN )− 4

4. compute u− per(u) as the inverse DFT of ŝ, and finally per(u).

Steps 1 and 3 have a negligible complexity (O(M +N) and O(MN) respectively) compared to
steps 2 and 4, so that the effective cost of computing per(u) is the cost of two DFTs.

We now give another interpretation of per(u), using the discrete Laplace operator.

Definition 1 (discrete Laplacian) Let u : Ω → R be a discrete M ×N image. The discrete
Laplacian of u is the image ∆u : Ω → R defined by

∆u(x) = −4u(x) +
∑

y∈Z2

|x−y|=1

u(ẏ) (17)

or equivalently in Fourier domain by

∆̂u(q, r) =

(
2 cos(

2πq

M
) + 2 cos(

2πr

N
)− 4

)
û(q, r). (18)

We shall say that u is harmonic on S ⊂ Ω if

∀x ∈ S, ∆u(x) = 0.

Using this definition, Equation (14) simply writes ∆s = B(u), so that the periodic component
p = per(u) of an image u is the unique solution of the discrete Poisson equation

∆p = ∆u− v, (19)

submitted to the constraint mean(p) = mean(u), where v is the image defined in Theorem 2.
The classical way to solve Poisson equation is to use the standard DFT/FFT framework (see [6]
for example), as we did above. In the case of (19), an interesting consequence is that one only

needs one DFT to compute p̂er(u), as shown by by the four-steps algorithm below:

1. compute the image v to capture the intensity gaps of u across the border of Ω

2. compute the image ∆u by convolving u with the kernel k (Equation 15)

3. compute the Discrete Fourier Transform of ∆u− v

4. compute p̂er(u) using (19), that is

∀(q, r) ∈ Ω \ (0, 0), p̂er(u)(q, r) =
∆̂u− v (q, r)

2 cos(2πqM ) + 2 cos(2πrN )− 4
.

10
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Even if the simplest way to compute per(u) is to combine computations in the space domain
and computations in the Fourier domain, as we did in the two algorithms above, it is interesting
to understand the action of per in Fourier domain.

Proposition 1 (per in Fourier domain) If u is a M×N discrete image, then for all (q, r) ∈
Ω \ (0, 0) one has

p̂er(u)(q, r) = û(q, r) + ϕ(q, r)−1

(
ψM (q)

M−1∑

a=0

ψM (−a)û(a, r) + ψN (r)
N−1∑

b=0

ψN (−b)û(q, b)
)
,

where ψn(t) =
e2iπt/n − 1√

n
and ϕ(q, r) = 2 cos

(
2πq

M

)
+ 2 cos

(
2πr

N

)
− 4.

Proof — We start from

v̂1(q, r) =
M−1∑

x=0

N−1∑

y=0

v1(x, y) exp
[
−2iπ

(qx
M

+
ry

N

)]
.

=
(
e2iπq/M − 1

)
·
N−1∑

y=0

(
u(0, y)− u(M − 1, y)

)
· e−2iπry/N .

Then, using the Inverse DFT we obtain

N−1∑

y=0

u(0, y) · e−2iπry/N =
N−1∑

y=0

e−2iπry/N 1

MN

M−1∑

s=0

N−1∑

t=0

û(s, t) e2iπty/N

=
1

MN

M−1∑

s=0

N−1∑

t=0

û(s, t)
N−1∑

y=0

e2iπ(t−r)y/N

=
1

M

M−1∑

s=0

û(s, r).

Similarly,
N−1∑

y=0

u(M − 1, y) · e−2iπry/N =
1

M

M−1∑

s=0

û(s, r)e−2iπs/M ,

so that in the end

v̂1(q, r) =
e2iπq/M − 1

M
·
M−1∑

s=0

û(s, r) ·
(
1− e−2iπs/M

)
.

By symmetry,

v̂2(q, r) =
e2iπr/N − 1

N
·
N−1∑

t=0

û(q, t) ·
(
1− e−2iπt/N

)
,

and the announced formula directly results from (11). 2

11
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An interesting property that results from Proposition 1 is that in Fourier domain, the per

operator is a linear filter whose support has a “cross” shape, as the value of p̂er(u)(q, r) only

depends on the values of û(q, ·) and û(·, r). Nonetheless, the direct estimation of p̂er(u) in
Fourier domain using Proposition 1 is not computationally efficient in general since it requires
(in addition to the computation of û) O((M + N)MN) operations, versus O(MN log(MN))
operations for the estimate of v̂ and (11) when M and N are powers of two.

We now give an explicit form for the per operator in the image domain.

Proposition 2 (per in image domain) If u is a M × N discrete image, then for all pixels
(x′, y′) ∈ Ω we have

per(u)(x′, y′) = u(x′, y′) −
M−1∑

x=0

(
u(x, 0)− u(x,N − 1)

)
·
(
γ(x′ − x, y′)− γ(x′ − x, y′ + 1)

)

−
N−1∑

y=0

(
u(0, y)− u(M − 1, y)

)
·
(
γ(x′, y′ − y)− γ(x′ + 1, y′ − y)

)
,

where the DFT of the (M,N)-periodic image γ satisfies γ̂(0, 0) = 0 and

∀(q, r) ∈ Ω \ {0}, γ̂(q, r) =
1

2 cos
(
2πq
M

)
+ 2 cos

(
2πr
N

)
− 4

.

Proof — By taking the Inverse DFT in (11), we obtain

∀(x′, y′) ∈ Ω, per(u)(x′, y′) = u(x′, y′)− (v ⋆ γ)(x′, y′)

as v̂ ⋆ γ = v̂ · γ̂. Hence,

per(u)(x′, y′) = u(x′, y′) −
M−1∑

x=0

N−1∑

y=0

v(x, y)γ(x′ − x, y′ − y)

= u(x′, y′) −
M−1∑

x=0

v2(x, 0)γ(x
′ − x, y′) + v2(x,N − 1)γ(x′ − x, y′ −N + 1)

−
N−1∑

y=0

v1(0, y)γ(x
′, y′ − y) + v1(M − 1, y)γ(x′ −M + 1, y′ − y)

and the announced result follows from the expressions of v1 and v2 (see Theorem 2) and the fact
that γ is (M,N)-periodic. 2

Note that on the space of zero-mean images, the application u 7→ γ ⋆ u is the inverse of the
Laplace operator, that is γ ⋆ u = ∆−1u (to be compared to k ⋆ u = ∆u).

Contrary to Proposition 1 that was not computationally efficient compared to (11), Proposi-
tion 2 can be useful if the periodic component has to be evaluated only in a small sub-domain of
Ω. Indeed, since the γ function (that only depends on M and N) can be computed in advance,
the evaluation of per(u) in a single point (x′, y′) of Ω can be realized with Proposition 2 using
only O(M +N) operations.

12
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3.3 Properties of the periodic component

In this part, we investigate several properties of the periodic+smooth decomposition. For an
image domain Ω = {0, . . . ,M − 1} × {0, . . . , N − 1}, we shall write

Ω̊ = {1, . . . ,M − 2} × {1, . . . , N − 2} and ∂Ω = Ω \ Ω̊.

Definition 2 (p-connected image) We say that an image u : Ω → R is p-connected (the
letter p refers to the periodization process) if

∀x ∈ ∂Ω, ∀y ∈W (x), u(y) = u(x),

where W (x) is defined in (13). We denote by P the vector space of p-connected images.

Hence, a p-connected image is an image for which all intensity gaps arising across the border
of Ω are zero. Notice that for any image u, the symmetrized image uσ (defined in Section 2.2)
is p-connected.

Proposition 3 The dimension of the space P of p-connected M ×N images is

dimP =MN −M −N + 1.

Proof — Let us write (δ(k,l))(k,l)∈Ω the canonical basis (discrete Dirac basis) of RΩ. We define
several sequences of images:

• a sequence bI (inside points) of (M − 2)(N − 2) images, the canonical basis of Ω̊ defined
by the images

δx, x ∈ {1..M − 2} × {1..N − 2}.

• a sequence bE (edge points) of M +N − 4 images of ∂Ω defined by

δx + δw(x), x ∈
(
{1..M − 2} × {0}

)
∪
(
{0} × {1..N − 2}

)
,

where w(x) is the unique element of W (x).

• four images c1, c2, c3, c4 (corners) defined by




c1
c2
c3
c4


 = P




δ(0,0)
δ(M−1,0)

δ(0,N−1)

δ(M−1,N−1)


 , with P =




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 .

• a sequence bG (edge gaps) of M +N − 4 images of ∂Ω defined by

δx − δw(x), x ∈
(
{1..M − 2} × {0}

)
∪
(
{0} × {1..N − 2}

)
.

13
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The sequence obtained by concatenation of the sequences bI , bE , c1, c2, c3, c4 and bG is clearly
orthogonal (in particular because the matrix P is orthogonal), and its length is

(M − 2)(N − 2) +M +N − 4 + 4 +M +N − 4 =MN,

hence it is an orthogonal basis of RΩ. Among these images, the first MN −M −N +1 ones (bI ,
bE , c1) belong to P, while the remaining M +N − 1 ones (c2, c3, c4, bG) belong to P⊥, which
achieves the proof. 2

Theorem 3 (properties of the per operator) Let u : Ω → R be a discrete image. Then we
have the following properties:

( i ) u− per(u) only depends on u|∂Ω
( ii ) u− per(u) is harmonic on Ω̊

( iii ) per is an isomorphism of RΩ

( iv ) all complex eigenvalues of per are real and belong to (0, 1]

( v ) ker(per−id) = P

( vi ) per is diagonalizable.

Proof — Property (i) is a direct consequence of Theorem 2, which shows that u− per(u) only
depends on v, and v itself only depends on the values taken by u on ∂Ω. As for Property (ii),
it follows from (14), (16) and the fact that ∆u = k ⋆ u, since for any x ∈ Ω̊ we have W (x) = ∅
and consequently B(u)(x) = 0. To show that per is an isomorphism of RΩ (that is, an invertible
linear mapping from RΩ onto itself), we first deduce from (10) that

per(u) = u− s = u− (Q1 +Q2)
−1Q1u = (Q1 +Q2)

−1Q2u, (20)

and we conclude by noticing that Q2 is invertible (it is positive definite).

Now let us prove that all complex eigenvalues of per belong to (0, 1] (Property (iv)). Let
λ ∈ C be a complex eigenvalue of per, associated to a complex eigenvector u ∈ CΩ \ {0}. From
(20) and per(u) = λu, we deduce that

(Q1 +Q2)(λu) = Q2u,

so that if we multiply both sides by u∗ (the conjugate transpose of u), we obtain

λu∗(Q1 +Q2)u = u∗Q2 u.

Since u∗Q2u > 0 (Q2 definite positive hermitian) and u∗Q1u ≥ 0 (Q1 non-negative hermitian),
we obtain as desired that

λ =
u∗Q2u

u∗Q1u+ u∗Q2u
∈ (0, 1].

Let us find the eigenspace associated to the eigenvalue 1. Using (20), we get

ker(per−id) = ker
(
(Q1 +Q2)

−1Q2 − id
)
= ker

(
− (Q1 +Q2)

−1Q1

)
= kerQ1.

14
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Now from (6), (8) and (9) we obtain

pTQ1p =
∑

x∈Ω,y∈Z2\Ω,
|x−y|=1

(
p(x)− p(ẏ)

)2
=
∑

x∈Ω

∑

y∈W (x)

(
p(x)− p(y)

)2
,

and this sum vanishes if and only if all terms are zero. Hence,

p ∈ ker(per−id) ⇔ p ∈ kerQ1 ⇔ ∀x ∈ Ω, ∀y ∈W (x), p(x) = p(y) ⇔ p ∈ P,
which proves Property (v).

Last, we show that per is diagonalizable. Since Q1 + Q2 and Q2 are symmetric positive
definite matrices, there exists an invertible matrix P such that

P T (Q1 +Q2)P = I and P TQ2P = D,

where I is the identity matrix and D a diagonal matrix (such a matrix P is obtained by con-
sidering, among all bases that are orthonormal for the inner product defined by Q1 + Q2, one
that is orthogonal for the inner product defined by Q2). Now if A is the matrix of per in the
canonical basis of RΩ, by (20) we have (Q1 +Q2)A = Q2 so that

P−1AP = P T (Q1 +Q2)P P
−1AP = P T (Q1 +Q2)AP = P TQ2P = D,

which proves that P diagonalizes A. 2

Property (ii) is an interesting guarantee that per(u) and u behave the same way locally. In
particular, they have the same discrete Laplacian on Ω̊, so that according to Marr and Hildreth,
who proposed an edge-detection theory based on the zero-crossings of the Laplacian [13], u and
per(u) have the same contours.

Concerning the spectrum of per (written Σ(M,N)), Property (iv) shows that Σ(M,N) ⊂
(0, 1] (which guarantees in particular the stability of per with respect to noise) but it is worth
mentioning that more precise estimates could probably be obtained. Indeed, numerical compu-
tations seem to indicate that

∀M,N, minΣ(M,N) = min

(
1

M
,
1

N

)
, (21)

and that for all square images

∀N, max
(
Σ(N,N) \ {1}

)
<

1√
2

(22)

(the bound seeming a little higher than 1/
√
2 for non-square images).

Property (v) tells us that the images that are invariant under per are exactly the p-connected
images. Thus, it is natural to wonder if the iteration of the per operator permits to define a
projection on P. As we see now, the answer is yes, thanks to Property (iv).

Proposition 4 (the projector p∞) Let us write pern the operator obtained by iterating n
times per, that is,

pern = per ◦ per . . . ◦ per .
Then for any discrete image u, the sequence of images pern(u) converges to an image denoted
by per∞(u), and per∞ is a linear projection from RΩ onto P.

15
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Proof — Since per is diagonalizable, we can build a basis b of RΩ whose first M +N −1 vectors
are eigenvectors of per associated to eigenvalues in (0, 1), while the remaining vectors form a
basis of P = ker(per−id). Then, the matrix of pern in this basis is simply

Matb(per
n) =

(
Dn 0
0 I

)
,

where I is the identity matrix and D is a diagonal matrix whose elements belong to (0, 1). Since
Dn → 0 as n→ ∞, we conclude that pern converges as n→ ∞ to a linear operator per∞ defined
by

Matb(per
∞) =

(
0 0
0 I

)
.

Hence, per∞ is a linear projection whose image is P. 2

A natural question that arises after Proposition 4 is the speed of convergence. Indeed, the
convergence is geometric, and is mainly governed by the maximum non-1 eigenvalue of per. It
appears from the conjectured bound (22) that we can expect a good convergence in a dozen of
iterations or so, since (

1√
2

)12

= 2−6 =
1

64
,

which is an acceptable numerical precision for most image applications.

Now a more subtle question is: Should we iterate per or not? We do not have a definitive
answer to this question, especially because as we just saw the per∞ projection can be quickly
evaluated. However, we can argue that even periodic images (that is, synthetic images build
in a periodic setting) do not belong to P in general. Indeed, for a “periodic” image we should
expect the intensity gaps across the frame borders to have the same order of magnitude than
the gaps between adjacent pixels inside the image domain. As we shall see in Section 3.4, this
is more or less the case for per(u), but clearly not the case for per∞ (for which all outside gaps
are zero). Another way to say this is: after translating (with periodicity) a periodic image, we
should not be able, with local inspection, to determine where the original frame border was. In
per∞(u), this is clearly false, since this image has two identical adjacent lines and two identical
adjacent columns. Hence, it seems more reasonable in general to transform an image u into
per(u), which is close to P, than into per∞(u), which belongs to P.

If, for some reason, a projection onto P is desirable, then per∞ is an interesting solution,
unlike the canonical orthogonal (l2) projection π defined by

‖π(u)− u‖2 = inf
v∈P

‖v − u‖2, (23)

where as usual ‖u‖22 =
∑

x∈Ω u(x)
2. Indeed, it is very easy to see that π(u) and u are equal on

Ω̊, which means that the intensity gaps across the boundary of Ω are simply moved by π into
inside intensity gaps between ∂Ω and Ω̊.

3.4 The one-dimensional case

In this section, we consider the one-dimensional case (M = 1, N > 1), which boils down to
applying the periodic plus smooth decomposition to a signal u : {0, . . . , N − 1} → R. The
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interest of this part is not to bring a new remedy to edge effects for signals (the problem is
much simpler than for images, and does not require all that precedes), but simply to give simple
explicit formulations of the periodic plus smooth decomposition and the per∞ projection in this
case.

Proposition 5 The periodic component of a 1-D signal u : {0, . . . N − 1} → R is given by

∀k ∈ {0, . . . N − 1}, per(u)(k) = u(k)− u(N − 1)− u(0)

N
·
(
k − N − 1

2

)
. (24)

Proof — We derive an elementary proof in order this part to be self-contained. If s is the
smooth component of u, according to (8) it minimizes

F (s) =
(
u(0)− s(0)− u(N − 1) + s(N − 1)

)2
+

N−2∑

k=0

(
s(k + 1)− s(k)

)2
+

(
1

N

N−1∑

k=0

s(k)

)2

,

(the last term being 0), and the Euler equations ∂F (s)
∂s(k) = 0 lead to

∀k ∈ {1, . . . N − 2}, s(k)− s(k − 1)−
(
s(k + 1)− s(k)

)
= 0, (25)

and { −
(
u(0)− s(0)− u(N − 1) + s(N − 1)

)
−
(
s(1)− s(0)

)
= 0,

u(0)− s(0)− u(N − 1) + s(N − 1) + s(N − 1)− s(N − 2) = 0.
(26)

Writing a = s(1)− s(0), we obtain from (25) that

s(k + 1)− s(k) = s(k)− s(k − 1) = . . . = s(1)− s(0) = a,

so that s is an affine function (that is, harmonic). Since it has zero mean, we have

∀k ∈ {0, . . . N − 1}, s(k) = a ·
(
k − N − 1

2

)
,

and the unknown coefficient a satisfies, thanks to the two equivalent equations in (26),

u(0)− u(N − 1) + a(N − 1) + a = 0.

Equation (24) then simply follows from per(u) = u− s. 2

Proposition 6 Let u : {0, . . . N − 1} → R be a 1-D signal. Then

∀k ∈ {0, . . . N − 1}, per∞(u)(k) = u(k)− u(N − 1)− u(0)

N − 1
·
(
k − N − 1

2

)
. (27)

Proof — Thanks to Proposition 5, we have per(u) = u− a · L with

a =
u(N − 1)− u(0)

N
and ∀k ∈ {0, . . . N − 1}, L(k) = k − N − 1

2
.
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Since per(L) = N−1L, we have perm(L) = N−mL for any positive integer m and as a conse-
quence

perm+1(u) = perm(u)− aN−mL. (28)

Summing (28) from m = 0 to m = n− 1 (for some positive integer n) yields

pern(u) = u− a

(
N−1∑

m=0

N−m

)
L = u− a

1−N−m

1−N−1
L −→

n→+∞
u− a

N

N − 1
L,

which corresponds exactly to (27). 2

As we can observe, both per and per∞ consist, for a one-dimensional signal u, in the sub-
traction of a ramp signal depending only on the value of the gap u(N −1)−u(0). The difference
between per and per∞ is that per∞ forces the equality between endpoint values (zero gap), while
per merely divides the original gap by N .

For two-dimensional images, the situation is more complex (and interesting) since the space
of harmonic images is much wider than the space of harmonic signals (which boils down to affine
signals). This offers a greater flexibility for the periodic plus smooth decomposition of images
and explains, as we shall see now, why the periodic component of an image manages to avoid
DFT artifacts while preserving in most cases the visual appearance of the original image.

3.5 Comparison with the Polyharmonic Local Cosine and Sine Transforms

There is some connection between the periodic plus smooth decomposition we propose here and
the Polyharmonic Transforms defined by Saito and his collaborators.

Let us recall that given a discrete image u : Ω → R, its smooth component s = u − per(u)
can be viewed as the unique solution of Poisson’s Equation





∆s = 0 in Ω̊
∆s = B(u) on ∂Ω
mean(s) = 0,

where B(u) is the “gap” of u accross ∂Ω (see Equation 16).

The Polyharmonic Local Sine Transform PHLST) was introduced by Saito and Remy [22],
and then improved by Zhao, Saito and Wang [28]. Keeping the same notations as before, it
consists also in decomposing an image u under the form u = p + s, where, in the simplest
(order 1) version, the residual image s satisfies

{
∆s = 0 in Ω̊
s = u on ∂Ω

(we kept the notation of the present paper to make the comparison easier). As we can see, the
difference with the periodic plus smooth decomposition relies in the boundary condition, that
forces the component p = u− s of the PHLST to vanish on ∂Ω. This decomposition hence leads
to images p that are in general not as close to the initial image u as is per(u) (recall in particular
that one has per(u) = u as soon as u ∈ P).
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Another decomposition, the Polyharmonic Local Cosine Transform (PHLCT), was intro-
duced by Yamatani and Saito in [27]. Again, the residual image satisfies a Poisson-type Equa-
tion, that can be written, in a continuous setting,





∆s = K in Ω̊
∂s
∂ν = ∂u

∂ν on ∂Ω,
mean(s) = 0,

where ∂u
∂ν denotes the normal derivative of u (defined on the boundary of Ω) and K is a constant

equal to the average normal derivative of u along the boundary of Ω. The interest of this
decomposition is that the normal derivative of p = u − s vanishes along the boundary of Ω, so
that after symmetrization (that is implicit with the DCT) and periodization the regularity of p
across the boundary is improved. But the PHLCT is not a good “periodic component” as such,
since it requires a symmetrization process to avoid periodization artifacts (see Section 2.2).

4 Applications

In this part, we discuss the interest of the periodic plus smooth decomposition in several image
processing issues.

4.1 Spectrum analysis

The decomposition of an image u into its periodic component p = per(u) and its smooth com-
ponent s = u− p was proposed in Section 3.1 as an attempt to avoid DFT artifacts (the “cross
structure” shown on Figure 1). The idea is that since real-world images are not periodic, they
should be decomposed into the sum of a periodic component (p), whose spectrum is close to
the spectrum of u but artifact-free, and a smooth component capturing (almost) all edge effects
arising from the periodization of u. On Figure 3, we can see that the p+ s decomposition man-
ages rather well to achieve this task. Not only the periodic component p is visually very close
to u (the difference lying in what appear to be slow contrast changes), but the “cross artifact”
completely disappears in the Fourier transform of p, while the other parts of the spectrum seems
unchanged. The decomposition of the “boundary discontinuities” of the original image is shown
on Figure 4, where the three images u, p and s have been replicated in a periodic manner. Other
examples of periodic components are given on Figure 5.

4.2 Shannon interpolation

According to Shannon Theory, a well-sampled bandlimited image can be exactly reconstructed
with cardinal sine (sinc) interpolation. This applies for images defined on the whole plane R2,
but also for periodic images, the latter case being particularly interesting because periodic sinc
interpolation corresponds to zero-padding in the Fourier domain, which can be realized efficiently
using the FFT. However, periodic sinc interpolation often causes strong ringing artifacts on the
frame borders, so that a symmetrization process (see Section 2.2) is generally used, which
substantially increases time and memory requirements.
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u = p + s

û = p̂ + ŝ

Figure 3: The original Lena image u (top row, left column) is decomposed into its periodic component
p (top row, middle column) and its smooth component s (top row, right column). The Fourier spectrum
of each of these three images is represented underneath: the modulus in log scale appears on the middle
row, and the argument (phase) on the bottom row. As we can see, the periodic component captures
not only most of the visual information (the difference between u and p being noticeable only at large
scales), but also the relevant data for DFT purposes, allowing a pleasant artifact-free restoration of the
spectrum of u. On the contrary, the smooth component mainly gather the frame border discontinuities
in the image domain, and equivalently the consequent “cross structure” in the Fourier domain. Note that
the grey levels of the smooth image have been shifted by 128 for display purposes.
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This problem can be elegantly solved using the periodic plus smooth decomposition we
proposed. Let us consider a discrete M ×N image u to be extended to the continuous domain
D = [0,M−1]× [0, N−1], and write (p, s) its periodic plus smooth decomposition. The periodic
component p can be extended into p̄ : D → R with periodic sinc interpolation, that writes in
Fourier domain

p̄(x, y) =
1

MN

∑

(q,r)∈R

p̂(q, r) exp
[
2iπ

(qx
M

+
ry

N

)]
, (29)

where R = Z2 ∩ ([−M−1
2 , M−1

2 ]× [−N−1
2 , N−1

2 ]). Concerning s, since it is a very smooth image,
even a very local interpolation is convenient, so we can use a bilinear interpolation to obtain an
extended image s̄ : D → R defined by

s̄(x, y) = (x− [x])
(
(y − [y])s([x] + 1, [y] + 1) + ([y] + 1− y)s([x] + 1, [y])

)

+([x] + 1− x)
(
(y − [y])s([x], [y] + 1) + ([y] + 1− y)s([x], [y])

)
,

(30)

= +

Figure 4: The effect of the decomposition u = p + s on the image borders is shown by replicating the
three images u (top), p (bottom, left) and s (bottom, right) in a periodic manner. As we can see, the
frame border discontinuities of u are put into s, while the p component presents smooth transitions,
making the replication frame much less visible than for u.
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Figure 5: Effect of the per operator on three classical images (La Cornouaille, Barbara, and a resampled
version of the Plane [24] image). Each column concerns a different image: the original image is displayed
on the first row, its periodic component on the second row, and the corresponding Fourier spectra
(modulus in log scale) are displayed on row 3 (original image) and 4 (periodic component). On each of
these images, the per operator nicely removes the DFT artifacts of the Fourier spectrum, while keeping
a good visual resemblance with the original image. The two main effects of the per operator in the
image domain are large-scale slow contrast changes (in particular for the Plane image, that has a strong
vertical contrast between its top and bottom lines), and some periodic-diffusion artifacts around the
image borders (La Cornouaille, bottom line, and Plane, left column just above the skyline).
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where [t] denotes the integer part of t. Thus, extending u into

ū = p̄+ s̄, (31)

we benefit from the accuracy and efficiency of periodic sinc interpolation without the ringing
artifacts it generally causes. The interest of this construction for image zooming is illustrated
on Figure 6.

Figure 6: First row: the bottom-left corner of the Plane image (see Figure 5) has been zoomed by a
factor 4 by applying a periodic cardinal sine (sinc) interpolation. The sinc interpolation was applied in
two different ways: on the left column, directly to the Plane image; on the right column, to the periodic
component only, the smooth component being processed with bilinear interpolation. As we can see,
the ringing artifacts caused by periodic sinc interpolation (or equivalently, by the use of the DFT), are
completely avoided when the periodic plus smooth decomposition is used. The effect is particularly strong
on the image gradient (norm), displayed under each image (second row). This illustrates the fact that
periodic plus smooth decomposition offers a way to use Shannon (sinc) interpolation without undergoing
unpleasant edge effects.
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4.3 Dequantization

An unexpected application of Shannon interpolation is the dequantization of images. Suppose
that u is a discrete image that has been sampled in agreement with Shannon Theory (that is,
a bandlimited image that can be well interpolated using the sinc kernel), and that, for some
reason, the gray levels of u have been significantly quantized. Even if the number of gray levels
is not too small, quantization may cause important bias, in particular for the estimation of the
local orientation of the gradient [9], or for the precise estimation of the Total Variation [4]. In [9],
Desolneux et al. proposed to apply a (1/2, 1/2) translation (using sinc interpolation) to remove
the “quantization noise” of such an image. The idea is the following: on the one hand, since the
discrete image u is equivalent to its continuous interpolant, and thus to any sub-pixelic translated
version of u, a (1/2, 1/2) translation is harmless (it is an invertible process); on the other hand,
it can be shown (see [9]) that such a translation transforms the structured quantization noise
into a quasi-Gaussian noise, which is very interesting for quantization-sensitive applications. As
a special case of Shannon interpolation considered above, this dequantization process can be
performed efficiently using the periodic plus smooth decomposition, in such a way that edge
effects are avoided without the need for a heavy symmetrization process.

On Figure 7, the La Cornouaille image (visible on Figure 5, top-left) is quantized into 20
grey levels (b), and then processed with this dequantization process in two ways. In (c), the
(1/2, 1/2) translation is applied to the whole image, whereas in (d) only the periodic component
is translated (the smooth component is kept unchanged and added afterwards). The improve-
ment brought by the periodic plus smooth decomposition is clearly visible.

4.4 Ringing detection

When using Shannon (sinc) interpolation on a discrete image, ringing artifacts may appear
for two reasons. If the image has not been sampled in agreement with Shannon Theory, the
aliasing it suffers from is transformed into ringing artifacts by sinc interpolation, and spurious
oscillations appear near the image contours (that is, highly-contrasted edges). This is a true
artifact, which shows that the considered image is not compliant with Shannon Theory. However,
as we saw before, even the interpolant of a Shannon-compliant image can suffer from ringing
artifacts, just because of the forced periodization induced by periodic sinc interpolation. Once
again, the periodic plus smooth decomposition can be used to avoid these systematic ringing
artifacts and leave only potential true ringing artifacts. This idea was developed in [5] to build
a ringing detector (and, by the way, a Shannon-compliance indicator), using a probabilistic a-
contrario model. We shall not detail this model here, but we illustrate on Figure 8 how the use
of the periodic plus smooth decomposition permits, once again, to avoid artifacts (undesirable
detections) on the frame border.

4.5 Global Phase Coherence

As we saw in Section 4.1, a natural application of the periodic plus smooth decomposition is
the estimation of an artifact-free spectrum. The role of this decomposition can be essential, as
in [4], where a sharpness indicator is built by measuring the Global Phase Coherence (GPC) of
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(a) original (b) quantized

(c) dequantization [9] (d) dequantization [9] with p+ s (e) reference

Figure 7: Effect of the periodic plus smooth decomposition on the dequantization process proposed in
[9]. All images correspond to the 40 × 40 upright corner of La Cornouaille image. (a): the original La
Cornouaille image; (b): same image, but quantized in 20 gray levels; (c): dequantization of (b) obtained
after a (1/2, 1/2) translation realized directly in Fourier domain; (d): dequantization obtained by applying
the (1/2, 1/2) translation to the periodic component only; (e): original image after a (1/2, 1/2) translation
(reference image). As we can see, the additional periodic plus smooth decomposition improves the quality
of the dequantization by removing undesirable ringing effects on the frame border, without requiring a
symmetrization process.

an image. Theoretically, the GPC of an image u is defined by

GPC(u) = − log10 Prob
(
TV (U) ≤ TV (u)

)
, (32)

where TV is the discrete Total Variation operator (see [4] for details) and U is a random
image obtained from u by replacing the phase component of its Fourier Transform with random
values (uniform and independent random variables, up to the conjugate symmetry of the Fourier
Transform). However, the comparison between the regularity of u and U (through the TV
operator) is not completely fair if the the original image u is used, because of periodization
artifacts that introduce a huge bias. The use of the periodic component of u, dequantized with
a (1/2,1/2) translation (as we saw in Section 4.3), permits to avoid this bias and to obtain an
operational measure. In this process, the periodic component plays a crucial role for two reasons:
first, the phase in Fourier domain has to be estimated properly everywhere, which is not the case
with direct DFT in reason of the “cross artifact” mentioned before; second, the quantization
of the original image slightly reduces its Total Variation, which introduces a bias with respect
to images with random phases (that are not quantized). In this application, the periodic plus
smooth decomposition hence appears as a way to explore a property of the image spectrum
that could probably not be observed without handling the periodization artifacts arising from
the DFT. As an illustration, we show on Figure 9 that the GPC of a blurry image is strongly
overestimated when the periodic plus smooth decomposition is not used.
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Figure 8: Effect of the periodic plus smooth decomposition on ringing detection. The classical Lena
image is submitted to the Shannon-compliance test described in [5], which consists in a Shannon (1/2, 0)
translation followed by an a-contrario horizontal ringing detection process (with an expected number of
false alarms equal to 0.01). When the periodic component is analyzed (left), ringing detection (marked
in black) only occurs in a textured zone (the hair) where horizontally oscillating pattern are expected,
which supports the idea that Lena image has been sampled in accordance with Shannon Theorem. When
the original image is used directly (right), a lot of spurious detections arise on the frame border.
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Figure 9: Importance of the periodic plus smooth decomposition in the estimation of the Global Phase
Coherence [4]. The La Cornouaille image is blurred by a Gaussian kernel with increasing width σ =
0, 1, 2, ..., 10, and the GPC is plotted as a function of σ. Left: original GPC, as defined in [4], that uses
the periodic plus smooth decomposition and the dequantization process [9]. Middle: modified GPC, that
does not use the periodic plus smooth decomposition but still uses the dequantization process [9]. Right:
modified GPC, that uses neither the periodic plus smooth decomposition nor the dequantization process
[9]. Since GPC is a sharpness indicator, it is expected to quickly decrease to 0 as σ grows, which is what
we observe on the left graph. But as we can see, this property is lost when the periodic plus smooth
decomposition is not used (middle and right graphs), in reason of the remaining intensity gap arising
across the image frame border.
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5 Conclusion

In this paper, we proposed a simple and efficient way to deal with periodization artifacts arising
from the use of the Discrete Fourier Transform on 2-D images. It consists in the decomposition
of the discrete image into a periodic component, that gathers most of the image information
but avoids periodization artifacts, and a smooth (harmonic) component that presents very slow
variations inside the image domain. In contrast with the PHLST/PHLST5 method [22, 28] (that
could be used for the same purpose, though it was primarily intended for local decomposition),
the “periodic component” we propose matches more closely the original image, since it is not
constrained to be null at the image frame border. We derived explicit formulas in Fourier and
image domains, and showed in particular that the associated linear u 7→ per(u) operator is
robust to noise and that it could be iterated to yield a projector forcing an exact match of
image borders. Applications of the proposed decomposition were discussed, including spectrum
analysis, Shannon interpolation, and recent works related to image quality assessment.

We believe that the periodic plus smooth decomposition opens interesting perspectives con-
cerning the systematic use of Shannon (sinc) interpolation, whose main drawback (edge effects)
can be avoided by considering the periodic component. The present work could be generalized to
color images (either by processing the channels independently or by using a more sophisticated
distance on colors), and the extension to volumic (3-dimensional or more) images is straightfor-
ward. Variants of this work could also be easily investigated by considering other variational
formulations, involving for example non-L2 norms or a more complex neighborhood structure.

Software resources

Codes for periodic plus smooth decomposition as well as decomposition examples are freely
available on the web page http://www.mi.parisdescartes.fr/˜moisan.
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