Forecasting risk analysis for supply chains with intermittent demand

Abstract : This paper focuses on the forecasting risk analysis in supply chains with intermittent demand, which is typical for the inventory management of the 'slow-moving items', such as service parts or high-priced capital goods. The adopted demand model is based on the Generalised Beta-Binomial Distribution (GBBD), which is capable of incorporating the additive distortions in the demand historical records as parameters. For this setting, there are proposed explicit expressions for forecasting risk and the prediction function, which minimises the error impact on the risk. The efficiency of the proposed approach is confirmed by computer simulation and is illustrated by an application example for forecasting of the intermittent demand values for car spare parts.
Type de document :
Article dans une revue
International Journal of Risk Assessment and Measurement, 2008, 9 (3), pp.213-224. 〈10.1504/IJRAM.2008.019741〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00387675
Contributeur : Grégory Six <>
Soumis le : lundi 25 mai 2009 - 17:42:54
Dernière modification le : jeudi 7 février 2019 - 16:47:56

Lien texte intégral

Identifiants

Citation

Alexandre Dolgui, M. Pashkevich, Anatol Pashkevich, Frédéric Grimaud. Forecasting risk analysis for supply chains with intermittent demand. International Journal of Risk Assessment and Measurement, 2008, 9 (3), pp.213-224. 〈10.1504/IJRAM.2008.019741〉. 〈hal-00387675〉

Partager

Métriques

Consultations de la notice

135