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Abstract

The planarity of the direct product of two graphs has been widely studied in
the past. Surprisingly, the missing part is the product with K2, which seems to
be less predictible. In this piece of work, we characterize which subdivisions of
multipartite complete graphs, have their direct product with K2 planar. This
can be seen as a step towards the characterization of all such graphs.
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Introduction

Whether a product of two graphs is planar or non-planar is a naturally-occurring
question, having practical relevance. Accordingly, the topic received attention
for a long time. For example, Behzad and Mahmoodian [1] presented a com-
plete characterization for the planarity of the Cartesian product, while Jha and
Slutzki [5] stated an analogous result with respect to the strong product. The
corresponding problem with respect to the direct product (or ×-product, which
we formally define below) seems to be rather challenging. To that end, Farzan
and Waller [3] reported a partial characterization. One case that has not been
fully examined in their work is that of the ×-product of an arbitrary graph G

and K2. In this paper, we study the case when G is a multipartite complete
graph.

A closely-related topic in this kind of study is that of determining whether
or not a graph G is a minor (defined below) of a product of itself with K2. The
problem is trivial with respect to the Cartesian product and strong product,
since G is necessarily a subgraph of each such product. Along these lines, Jha
and Slutzki [5] conjectured that every graph G is a minor of G×K2. However,
Bottreau and Metivier [2] came up with a counterexample to the conjecture.
In particular, they presented a graph G, obtainable from K3,3 through appro-
priate edge subdivisions, such that G is non-planar, yet G × K2 is planar (see
Figure 1). Interestingly enough, there is another graph H, obtainable from K5,
with a similar property (see Figure 2). Among other things, these counterexam-
ples reinforce the common belief that dealing with the direct product is rather
difficult.

When we speak of a graph, we mean a finite, simple and undirected graph.
Given two graphs G and H, the direct product of these graphs is the graph
G × H on the vertex set V (G) × V (H), where a vertex (u, a) is adjacent to a
vertex (v, b) if and only if u is adjacent to v in G and a to b in H. This product is
variously known as Kronecker product, tensor product, cardinal product, cross
product and categorical product. For details on this product, see [4], and for
any undefined terms, see a standard text on graph theory.

A complete r-partite graph Kp1,p2,...,pr is a graph with a vertex set V =
V1 ∪ V2 ∪ . . . ∪ Vr of p1 + p2 + . . . + pr vertices, where Vi are nonempty disjoint
sets, |Vi| = pi for 1 ≤ i ≤ r, such that two vertices in V are adjacent if and only
if they belong to different Vi.

The central issue in the structural characterization of a planar graph is that
of a graph minor. To that end, an edge-extraction on a graph G = (V,E) consists
of removing an edge e resulting in a graph G − e, where V (G − e) = V and
E(G − e) = E − {e}. Further, an edge-contraction operation produces a graph
from G by removing an edge {u, v} of G and identifying (or “merging”) u and v,
thus creating a new single vertex where the latter inherits all of the adjacencies
of the merged vertices, without introducing loops or multiple edges.

Definition 1. A graph H is a minor of a graph G if and only if H is obtainable
from G by a finite sequence of edge-extraction and edge-contraction operations.

Here is the most useful and most celebrated result on graph planarity.

Theorem 2 (Kuratowski and Wagner [6, 7]). A graph is planar if and only if
it has no minor isomorphic to K3,3 or K5.
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Figure 1: A non-planar graph G and a planar embedding of G × K2
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Figure 2: A non-planar graph H and a planar embedding of H × K2

3



Let G be a graph and let G′ be the graph obtained from G by removing each
vertex of degree one. Then G′ is said to be the 1-contraction of G. We now
state Farzan and Waller’s result on the planarity of the ×-product.

Theorem 3. [3]

1. Let G and H be connected graphs with more than four vertices each. Then
G × H is planar if and only if one of the following holds:

(a) one of G and H is a path and the other is 1-contractable to a path
or a cycle.

(b) one of G and H is a cycle and the other is 1-contractable to a path.

2. Each of G×K4 and G× (K4 − e) is planar if and only if G is isomorphic
to K2.

3. G × (K3 + x) is planar if and only if G is a path.

4. G × K1,3 is planar if and only if G is a path or a cycle.

5. G × C4 is planar if and only if G is a tree.

6. G × C3 is planar if and only if G is a path or 1-contractable to a path.

1 Preliminary results

In the following, we only study the direct product of a graph with K2. We
denote the vertices of K2 by a and b, and if u is a vertex of G, we denote by
ua and ub respectively the vertices (u, a) and (u, b) of V (G×K2). In the graph
G × K2, there is no edge between two vertices ua and va (resp. ub and vb).
Therefore, the graph is bipartite, one partition containing all the vertices ua,
and the other all the vertices ub.

Lemma 4. Let G be a graph, and G′ a graph obtained by subdividing one of its
edges twice. Then G × K2 is planar if and only if G′ × K2 is planar.

Proof. The proof is almost contained in Figure 3. Since G′ × K2 is obtained
from G × K2 by subdividing exactly twice the edges (ua, vb) and (ub, va), if
G × K2 is planar, we obtain a natural planar representation of G′ × K2, and
conversely.

Thanks to this lemma, we only have to consider the parity of the number of
subdividing vertices for each edge. From now on, we consider subdivisions with
0 or 1 subdividing vertex on each edge of the graph, called 0-1 subdivisions.

Let G′ be a 0-1 subdivision of a graph G. We call a subdividing vertex of G′

a vertex added to G during a subdivision, the original vertices of G in G′ being
called principal vertices. Further, we call a subdivided edge the path between
two principal vertices formed by a subdividing vertex and its two incident edges,
by opposition to non-subdivided edges originally in G. Two principal vertices in
G′ are said directly linked if there is a non-subdivided edge joining them, and
undirectly linked if there is a subdivided edge.

We use the same denominations for the corresponding vertices and edges in
G′ × K2. To understand what underlies all this study, it is important to notice
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Figure 3: A planar representation of G × K2 gives a planar representation of
G′ × K2, and conversely.

G′

Figure 4: Using Lemma 4 to simplify K1,1,4 into a C3.

that in G′ × K2, a non-subdivided edge links two principal vertices ua and vb,
while a subdivided edge links two principal vertices ua and va or ub and vb (the
subdividing vertex being some xb or xa, respectively).

Proposition 5. Let n ≥ 0 be an integer and G a 0-1 subdivision of K1,n, K1,1,n

or K2,n. G × K2 is a planar graph.

Proof. K1,n is a tree, thus every subdivision of it is a bipartite planar graph.
When multiplied by K2 we obtain two copies of this planar tree.

Any 0-1 subdivision of K2,n (respectively K1,1,n) can be seen as two vertices
connected by n (resp. n + 1) disjoint paths. Figure 4 shows how by use of
Lemma 4, the planarity of G × K2 is equivalent to the planarity of the graph
C3 ×K2. C3 ×K2 is the cycle C6 on 6 vertices, clearly planar, which proves the
proposition.

We now introduce an operation on 0-1 subdivisions of graphs to simplify the
later studies.

Definition 6. Given a 0-1 subdivision G′ of a graph G and u a principal vertex
of G′, the switch of G′ around u, denoted S(G′, u), is the graph obtained from G′

by switching the status of every edge incident to u (non-subdivided edges become
subdivided and conversely).
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Figure 5: Proof of Proposition 7

Proposition 7. Let G′ be a 0-1 subdivision of some graph G. For any principal
vertex u ∈ G′, S(G′, u) × K2 is planar if and only if G′ × K2 is planar.

Proof. Let us denote v1, . . . , vk principal vertices of G′ directly linked to u (i.e.
by non-subdivided edges), and w1, . . . , wl principal vertices of G′ undirectly
linked to u (i.e. by subdivided edges). Then in S(G′, u), u is directly linked
to w1, . . . , wl and undirectly linked to v1, . . . , vk. A planar representation of
S(G′, u)×K2 can be obtained from G′×K2 by interchanging ua and ub as shown
in Figure 5 (the subdividing vertices may easily be modified correspondingly).
Planarity is clearly conserved.

Two such switches resulting in the identity, the equivalence is proved.

When a 0-1 subdivision G′ of a graph G may be obtained by a sequence
of switches from another 0-1 subdivision G†, we say that the two subdivisions
are switch-equivalent. It is straightforward to verify that switch-equivalence is
an equivalence relation. Moreover, as a consequence of Proposition 7, we know
that if G′ and G† are switch-equivalent 0-1 subdivisions of a graph G, then G′

is planar if and only if G† is planar.
In the following, we often need to draw some very dense graphs. To avoid

very heavy drawings, we use an unusual convention for these drawings: we do
not draw the edges, but we draw the subdivided edges with plain lines and
the non edges by dashed lines. To sum up, dashed lines represent non existing
edges, plain lines represent subdivided edges and invisible lines represent non-
subdivided edges.

The only exception to this rule is Figure 6, where the factor on the left hand
side of the drawings use this convention while the product on the right hand
side is a usual drawing of a graph.

2 Dense planar patterns

In this section, we propose a list of dense graphs that are planar when multiplied
by K2 (see Figure 6). In the proof of the main theorem, we often refer to these
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graphs to prove that some graph is planar.

Lemma 8. All the graphs A1 to A7 have a planar representation of their direct
product with K2.

To prove planarity, we propose in Figure 6 a planar representation of each
product. The vertex 7b is not drawn for A1, A2 and A3, and some edges are also
missing in all the products except for A4. These products are symmetric, that is
everything inside the external face of our drawings should be copied outside the
face, interchanging the a and bs. Obviously, doing so does not change planarity.
The whole graph is drawn for A4 since there is no such symmetry.
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Figure 6: Planar patterns.
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3 Non planar patterns

We propose here a list of some 0-1 subdivisions of graphs that have their product
with K2 non planar. If one is induced in any 0-1 subdivision of a graph G, we
can state that G is non planar. To prove non planarity, we just precise the
vertices that are contracted in order to get a K5 minor or a K3,3 minor.

Recall that dashed lines represent non edges, plain lines represent subdivided
edges and invisible lines represent non-subdivided edges.
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Figure 7: Non planar patterns

Proofs

• B1 : (1b)(5b)(4b)[2a][3a][1a, 2b, 3b, 4a, 5a] induce a K3,3 minor.

• B2 : (1a)(2a)(3a)(4b)(5a, 3b, 4a, 5b) induce a K5 minor.

• B3 : it is a bipartite graph so its product with K2 is two isomorphic copies
of itself. Since B3 is not planar, B3 × K2 is not planar.

• B4 : it is a bipartite graph so its product with K2 is two isomorphic copies
of itself. Since B4 is not planar, B4 × K2 is not planar.

• B5 : (2a)(4a)(6a)[3b][5b][1a, 1b, 2b, 3a, 4b, 5a, 6b] induce a K3,3 minor.
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• B6 : (1a)(3a)(6a)[2b][5b][2a, 3b, 5a, 4b, 6b] induce a K3,3 minor.

• B7 : (1b)(2b)(3a, 4a)(6a, 5b)(1a, 2a, 3b, 4b, 6b, 5a) induce a K5 minor.

• B8 : (4a, 5a)(3b, 2a)(6b, 1a)(1b, 6a, 5b)(2b, 3a, 4b) induce a K5 minor.

• B9 : (1b)(5b)(4b)[7a][4a, 7b, 5a][2a, 1a, 6b, 3a, 2b] induce a K3,3 minor.

• B10 : (1a, 4a, 5b, 6b)(1a)(2a, 3b)(8b, 7b)(4b, 5a, 6a) induce a K5 minor.

4 Main theorem

Theorem 9. Given G a subdivision of a multipartite complete graph, its product
with K2 is planar if and only if the corresponding 0-1 subdivision has no partial
subgraph switch-equivalent to one of the Bis.

To prove this theorem, we enumerate all the multipartite complete graphs
and their 0-1 subdivisions. To reduce the study, we use some arguments related
to switches (and Proposition 7) to reduce the number of subdivisions we have to
study. Then we represent each of the subdivisions left in a figure with a caption
that tells about the planarity of the product of this subdivision with K2, as well
as its proof. There are three types of captions :

• P(bipartite) : In that case, since the graph is bipartite, its product with
K2 consists of two disjoint copies of the graph. Since the graph is also
planar, its product is planar.

• P(Ai) This means the product is planar. The labels on the vertices give
a mapping from the subdivision to a subgraph of Ai.

• NP(Bi) This caption means the product of this subdivision with K2 is
non planar. The labels on the vertices give an isomorphism from a partial
subgraph of the subdivision to a Bi.

In the two later cases, sometimes the mapping is not from this 0-1 subdivision,
but from another switch-equivalent subdivision. Whenever so, some vertices are
circled with a thin line, they correspond to the vertices we need to switch to get
the switch-equivalent subdivision that maps to Ai or Bi.

Subdivisions with less than 4 principal vertices. We prove that the
product of subdivisions of K4 with K2 are planar. Since every principal vertex
has 3 neighbours, if a principal vertex u has two or more incident edges subdi-
vided, we can decrease the number of subdivided edges by operating a switch
of G around u. Thus, we can restrict our study to subdivisions where every
principal vertex has at most one subdivided incident edge. Any 0-1 subdivision
of K4 can be reduced by a sequence of switches to one of the three graphs in
Figure 8.

Since all the 0-1 subdivisions of K4 are planar when multiplied by K2, it is
also true for every 0-1 subdivision of any graph of order less or equal than 4.

Subdivisions with 5 principal vertices. Subdivisions of K1,4, K2,3 and
K1,1,3 are already proved to have a planar product with K2 in Proposition 5.
We thus have to study the subdivisions of K1,2,2, K1,1,1,2 and K5.
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Figure 9: Study for K1,2,2

Let us start with the subdivisions of K1,2,2. Any subdivision is switch equiv-
alent to some subdivision whose vertex in the stable set of order 1 has at most
two subdivided incident edges and whose other vertices have at most one subdi-
vided incident edge. The corresponding 0-1 subdivisions are listed on Figure 9.
Notice that in case (b) for example, the non edge between 4 and 5 is mapped
to an edge in A5. This is allowed since this a mapping to a partial subgraph of
A5. Recall that circled vertices (e.g. in (f)) need to be switched before applying
the mapping.

Notice also that the subdivision in Figure 9(c) is switch equivalent to the
one in Figure 9(g) (switch for example vertices labeled 3 and 6) and that the
subdivision 9(h) is switch-equivalent to the one in Figure 9(e) (switch vertices
labeled 1 and 3). Thus, we have the following remark.

Remark 10. All the classes of switch-equivalent 0-1 subdivisions of K1,2,2 are
generated by the elements of Figures 9(a),9(b),9(d),9(e),9(f), and 9(g).

To treat the subdivisions of K1,1,1,2 (see Figure 10(a)), we can consider that
the subgraph induced by a, b and c has at most one subdivided edge (otherwise
we can switch the vertex with degree 2). Then we can switch vertices d and
e so that they have at most one subdivided incident edge. Therefore we only
need to check the subdivisions listed in Figure 10. Notice that on case (b) or
(c) for example, there is no edge between 2 and 3 in B1. Since we look for an
isomorphism from a subgraph of the subdivision to B1, the subdivision may
contain an edge or a subdivided edge linking 2 and 3.

We now have to study the subdivisions of K5. The switching argument allows
us to consider only subdivisions with at most two subdivided edges incident to
each edge. We obtain the enumeration represented in Figure 11.

10



a b c d

e

(a) K1,1,1,2

1 2 3 4

5

(b) NP (B1)

2 3 1 4

5

(c) NP (B1)

1 4 6 2

5

(d) P (A5)

6 4 2 7

1

(e) P (A1)

1 2

3

4

5

(f) P (A6)

5 3 1 2

6

(g) P (A6)

7 1 2 3

5

(h) P (A3)

(i) P(bipartite)

5 1 3 6

2

(j) P (A7)

1 2
3

4

5

(k) NP (B1)

7 1
4

3

5

(l) P (A3)

Figure 10: Study of K1,1,1,2

1

2

3

4

5

(a) NP (B1)

1

2

3

4

5

(b) NP (B1)

3

1

2

4

5

(c) P (A6)

4

2

1

3

5

(d) NP (B1)

4

3

7

1

6

(e) P (A3)

4

2

1

3

5

(f) NP (B2)

2

4

1

5

3

(g) NP (B2)

5

1

2

3

4

(h) NP (B1)

4

3

1

5

2

(i) P (A6)

4

2

1

3

5

(j) NP (B3)

1

3

7

4

6

(k) P (A3)

Figure 11: Study of K5

11



1

3

5

2

4

6

(a) NP (B4)

1

3

5

2

4

6

(b) NP (B5)

1

3

5

2

4

6

(c) P (A1)

1

3

5

4

2

6

(d) P (A1)

Figure 12: study of K3,3

a

b

c

d

e

f

(a) K1,2,3

a

b

c

d

e

f

(b)

1

3

5

2

4

6

(c) P (A1)

3

7

1

4

5

2

(d) P (A2)

7

3

5

1

4

6

(e) P (A2)

Figure 13: Study of K1,2,3

Subdivisions with 6 principal vertices. Subdivisions of K1,5, K2,4 and
K1,1,4 are already known to have a planar product with K2 by Proposition
5. Let us study the 0-1 subdivisions of K3,3. By switch-equivalence, we may
consider only subdivisions with at most one subdivided edge incident to each
vertex. They are listed in Figure 12.

Since the subdivision in Figure 12(d) is switch-equivalent to the one in Figure
12(c) (with the same switches represented on the figure), the following remark
holds.

Remark 11. Given a 0-1 subdivision of K3,3, its product with K2 is planar
if and only if the subdivision is switch-equivalent to the subdivision in Figure
12(c).

Consider now the 0-1 subdivisions of K1,2,3. K1,2,3 contains K3,3 as a sub-
graph (see in Figure 13(a), the partition being {a, b, c} and {d, e, f}). By the
previous remark, we know that whenever the 0-1 subdivision of this K3,3 sub-
graph is not switch equivalent to the subdivision of Figure 12(c), the graph
is not planar. We therefore consider only the other situation, drawn on Fig-
ure 13(b), for which we only need to state whether the (dotted) edges ab and ac

are subdivided or not. As proved in Figure 13, these subdivisions are all planar.
We now study the 0-1 subdivisions of K2,2,2 (see Figure 14). Consider the

induced K1,2,2 on the set of vertices {a, b, c, d, e}. If the 0-1 subdivision of this
subgraph has a non planar product with K2 (switch equivalent to Figure 9(a)),
then the corresponding subdivision of K2,2,2 also has a non planar product with
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Figure 15: Study for 9(b)

K2. We therefore study only the cases when this subdivision is planar. By
Remark 10, it is then switch equivalent to one of the subdivision in Figures
9(b),9(d),9(e),9(f),and 9(g). Moreover, we may assume that the remaining ver-
tex f has at most two subdivided incident edges, and if it has two, we can
force it to be adjacent to the vertex d by switching around f . The remaining
subdivision are studied in Figures 15 to 19.

Let us consider 0-1 subdivisions of K1,1,1,3. First remark that K3,3 is a sub-
graph of K1,1,1,3 (in Figure 20, consider the sets {a, b, c} and {d, e, f}). There-
fore, like we did for K2,2,2, Remark 11 allows us to consider only subdivisions
enumerated in Figure 20.

Let us consider the 0-1 subdivisions of K1,1,2,2 that are planar when multi-
plied by K2. As it contains a K3,3 as a partial subgraph, there is a sequence of
switches leading to one of the graphs in Figures 21(a) and 21(b).

We now consider 0-1 subdivisions of K1,1,1,1,2. They are necessarily obtained
from a good subdivision of K1,1,2,2 (Figures 22(c), 23(c),23(d)), by adding an
edge either subdivided or not. So the enumeration in Figure 24 is complete.

Let us continue with 0-1 subdivisions of K6. It contains a subdivision of
K1,1,1,1,2 which must be planar when multiplied by K2. Thus, there exists a
sequence of switches resulting in one of the subgraphs in Figures 24(a) 24(b).
We just need to decide the status of the deleted edge (see Figure 25).

Graphs with 7 principal vertices. Subdivisions of K1,6, K2,5 and K1,1,5

are already known to be planar by Proposition 5. Let us study the 0-1 subdi-
visions of K3,4. We can consider the induced K3,3 in order to enumerate these
graphs. Moreover, the fourth vertex of the 4 -stable can be considered to have
at most one incident subdivided edge (see Figure 26).

Let us study 0-1 subdivision of K1,2,4. The induced subdivision of K3,4 can
be reduced to the graph in Figure 26(a) by a sequence of switches. These graphs
are studied in Figure 27

In order to study subdivisions of K1,3,3 we consider the induced K3,3 and
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Figure 16: Study for 9(d)
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Figure 17: Study for 9(e)
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Figure 18: Study for 9(f)
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Figure 19: Study for 9(g)
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Figure 20: Study of K1,1,1,3
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Figure 21: K1,1,2,2 contains a K3,3
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Figure 22: Study of 21(a)
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Figure 23: Study of 21(b)
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Figure 24: Study of K1,1,1,1,2
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Figure 25: Study of K6
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Figure 26: Study of K3,4
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Figure 27: Study of K1,2,4
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Figure 28: Study of K1,3,3

assume that the remaining vertex has at most 3 incident subdivided edges. The
resulting enumeration is in Figure 28.

To study subdivisions of K2,2,3, we consider the included subdivision of K3,4,
we get the graph drawn in Figure 29(a). it appears that by adding setting 0
or 1 unknown edge to subdivided, we get a B9 as a subgraph, so that it is not
planar. The only way to ensure that the graph does not contain B9 is to set
at least two edges as subdivided. And if there are exactly two of them, they
must be distinct from df and bf (by symmetry) or it would also contain a B9.
Therefore, the enumeration in Figure 29 is complete.

To study K1,1,1,4 we consider the K3,4 contained (see Figure 26).
Let us study subdivisions of K1,1,2,3. based on the only planar configuration

for K2,2,3 which can be placed in two different ways in this graph we get the
enumeration in Figure 31.

For the study of K1,2,2,2 we consider its partial subdivision isomorphic to a
subdivision of K2,2,3. We conclude that there is a sequence of switches leading
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Figure 29: Study of K2,2,3
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Figure 30: Study of K1,1,1,4
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Figure 31: Study of K1,1,2,3
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Figure 32: Study of K1,2,2,2

to configurations in Figures 32(a) or 32(e). Thus the enumeration is complete
and we can conclude that there is no subdivision of K1,2,2,2 resulting in planar
graph when multiplied by K2.

For K1,1,1,1,3, we start from planar configurations of K1,1,2,3 (see Figures
31(b) and 31(c)). So that we only have to study three configurations (see Figure
33).

Any subdivision of K1,1,1,2,2 contains a subdivision of K1,2,2,2 and thus is a
non planar configuration. The same stands for K1,1,1,1,1,2 and K7.

Graphs with 8 principal vertices. Subdivisions of K1,7, K2,6 and K1,1,6

are already known to be planar by Proposition 5. Let us study the 0-1 subdi-
visions of K3,5. We can consider the induced K3,4 in order to enumerate these
graphs. Moreover, the fifth vertex of the 5-stable can be considered to have at
most one incident subdivided edge (Figure 34).

We now check that any subdivisions of K4,4 is non planar when multiplied by
K2. We consider the subdivision of K3,4 included and check that the remaining
vertex can be considered to have at most two incident subdivided edges.

Other multipartite complete graphs with 8 vertices contain either a K3,5
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Figure 33: Study of K1,1,1,1,3
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Figure 34: Study of K3,5
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Figure 35: Study of K4,4
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or a K4,4 and thus can never be planar when multiplied by K2. We observe
that the only multipartite complete graphs with 8 vertices that admit a planar
configuration are K1,7, K2,6 and K1,1,6.

Graphs with n ≥ 9 principal vertices. Subdivisions of K1,n−1, K2,n−2

and K1,1,n−2 are already known to be planar by Proposition 5. Let us consider a
0-1 subdivision of Kn1,n2...nk

(k ≥ 2 since Kn contain K8). We assume that the
ni’s are listed from smallest to biggest. If there exists a subset of S ⊂ {1 . . . n}
such that

∑
i∈S ni = 3 or 4. Then it is clearly non planar since n ≥ 9 and thus

the graph contains a K3,5, or a K4,4.
Therefore, we can consider there is no such subset. The only way is to have

either n1 ≥ 5, or n1 = 2 and n2 ≥ 5, or n1 = n2 = 1 and n3 ≥ 5.
If n1 ≥ 5, then n2 ≥ n1 ≥ 5 and thus the subdivisions contains a K3,5 and

is non planar when multiplied by K2.
If n1 = 2 and n2 ≥ 5, since we suppose it is no K2,n−2, we can assume that

k ≥ 3. Thus, n3 ≥ n2 ≥ 5. We can exhibit a K3,5 and the configuration is non
planar.

Similarly, if n1 = n2 = 1 and n3 ≥ 5, we can assume that k ≥ 4 (K1,1,n−2 al-
ready studied). Thus, n3 ≥ n2 ≥ 5. We can exhibit a K3,5 and the configuration
is non planar.
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