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Abstract. We propose an algorithm for linear programming, which we call the Se-
quential Projection algorithm. This new approach is a primal improvement algorithm
that keeps both a feasible point and an active set, which uniquely define an improving
direction. Like the simplex method, the complexity of this algorithm need not de-
pend explicitly on the size of the numbers of the problem instance. Unlike the simplex
method, however, our approach is not an edge-following algorithm, and the active set
need not form a row basis of the constraint matrix. Moreover, the algorithm has a
number of desirable properties that ensure that it is not susceptible to the simple
pathological examples (e.g., the Klee-Minty problems) that are known to cause the
simplex method to perform an exponential number of iterations.

We also show how to randomize the algorithm so that it runs in an expected time
that is on the order of mn2 log n for most LP instances. This bound is strongly subex-
ponential in the size of the problem instance (i.e., it does not depend on the size
of the data, and it can be bounded by a function that grows more slowly than 2m,
where m is the number of constraints in the problem). Moreover, to the best of our
knowledge, this is the fastest known randomized algorithm for linear programming
whose running time does not depend on the size of the numbers defining the problem
instance.

Many of our results generalize in a straightforward manner to mathematical programs
that maximize a concave quadratic objective function over linear constraints (i.e.,
quadratic programs), and we discuss these extensions as well.
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1 Introduction

We consider a linear program (LP) of the form

max
x∈IR

n
cT x (1)

s.t. Ax ≤ b. (2)

Here that we assume that c ∈ ZZ
n, b ∈ ZZ

m, and A ∈ ZZ
m×ZZ

n. Note that we also assume that
all bounds are incorporated in the constraint matrix. For simplicity, we let N := {1, ..., n}
and M := {1, ..., m}.

Linear programming is one of the fundamental problems encountered in the fields of op-
erations research, mathematics, computer science, and many others. One of the many reason
why LP is so important is because the use of LP models, algorithms, and theory is foun-
dational in the development of so many methodologies and results for integer programming
and combinatorial optimization problems. The contributions made to our understanding of
LP problems and of how to solve them over the years have been myriad, and one cannot
possibly hope to justice to all of the in a full paper, let alone the introduction of an extended
abstract. Nevertheless, we discuss some references to situate our work. The famous simplex
method was first introduced by Dantzig (see e.g. [4, 5]); for many years it was widely be-
lieved to have a worst case complexity that was polynomial. This conjecture was proven false
by [17], where the pivoting rule considered was the largest coefficient rule. Subsequently a
number of other pivoting rules were shown to yield an exponential number of pivots (see
e.g. [1, 3, 11, 22, 28]). The worst case complexity of LP was unresolved until Khachiyan
[16] proposed the ellipsoid algorithm, which is a geometric (rather than combinatorial) algo-
rithm (other references for the ellipsoid algorithm, and for the numerous implications of its
discovery in various areas of optimization, include [2, 10, 12]). While theoretically efficient,
however, the ellipsoid has not proven practical for solving LP problems.

The first family of polynomial time algorithms that also proved practically efficient for
solving LP problems are interior point methods (e.g., [15, 20, 21, 27]). Like the ellipsoid al-
gorithm, these algorithms are weakly polynomial, i.e., the number of operations performed
depends on the amount of space required to encode the problem. Unlike the ellipsoid al-
gorithm, these algorithms have proven to be computationally practical, on many instances
rivalling or even outperforming the simplex method. For other approaches to solving LP,
see (among a host of others) [6, 7, 8, 24].

The similarities between quadratic programs (i.e., problems with linear constraints and
a concave quadratic objective functions) have long been recognized. For example, it has
been known since [26] that the simplex method can be extended to quadratic programming
(QP), and most commercial LP/MIP solvers now have a simplex algorithm implemented
for QPs as well. Such algorithms move from basis to basis, where the Karush-Kuhn-Tucker
conditions form part of the constraint matrix. Numerous interior point algorithms for QP
have also been proposed; see, e.g., [25, 27].

In this paper we propose a new algorithm for LP, which we call the Sequential Projection
algorithm. Like interior point methods, this algorithm does not necessarily follow edges of
the feasible polyhedron to the optimal solution. Unlike them, however, it does seek to move
within faces of the polyhedron towards optimality. Like the simplex algorithm, it solves
systems of linear equations to calculate an improving direction. Unlike the simplex method,
however, the system need not define a basis of the constraint matrix, and the algorithm is
not confined to move only between extreme points.
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In Section 2 we will provide some theoretical background and discuss standard assump-
tions we make. In Section 3 we prove some fundamental results necessary to prove correctness
of the algorithm and define some important properties, including correctness and finiteness
proofs and asymptotic worst-case running times. While we have not yet been able to ob-
tain an interesting general bound for the deterministic algorithm, it is easy to show that a
simple randomization of the algorithm leads to an expected worst-case running time that
is always strongly subexponential. Moreover, to the best of our knowledge, this expected
running time is faster than that known for any randomized simplex method, including those
with known strongly subexponential complexity (see, e.g., [9, 13, 14, 18]). Section 4 contains
this expected worst-case analysis. Finally, in Section 5, we discuss how many of our results
(including the correctness, and perhaps even the complexity, of the randomized algorithm)
generalize easily to QP problems.

2 Background theory and assumptions

Given our formulation, the dual of LP (DLP) is given by

min
µ∈IR

m
bT µ

s.t. AT µ = c; µ ≥ 0.

We define the row vectors

Ai = [ai1 ai2 . . . ain] , i ∈ M,

so that the ith constraint of (2) can be written as Aix ≤ bi. We refer to this constraint as
(Ai, bi), or simply as constraint i. Let P = {x ∈ IR

n : Ax ≤ b}; this is the feasible region,
which is a polyhedron. For each constraint i ∈ M , define Hi = {x ∈ IR

n : Aix = bi}, the
hyperplane defined by constraint i, and Fi = Hi∩P , the face of the polyhedron P defined by

i. For any set of indices i1, ..., ih′ ∈ M , h′ ≤ n, we use Hi1,...,ih′ to denote
⋂h′

h=1 Hih
; we will

likewise let Fi1,...,ih′ :=
⋂h′

h=1 Fih
, and let Pi1,...,ih′ = {x ∈ IR

n : Aih
x ≤ bih

, h = 1, ..., h′}.
We may make a number of fairly general assumptions for the purpose of simplifying the

presentation.

Assumption 1 (Full dimensionality) dim(P ) = n.

Among other things, this assumption implies that the representation of each of the inequal-
ities of (2) is unique (subject to scaling), and that there exists an interior point x̄ in P ; i.e.,
a point x̄ ∈ P such that

∑

j∈N

Aijxj < bi, ∀i ∈ M.

Assumption 2 (Upper bound) We are given an upper bound c0 on the value of cT x, so
that cT x ≤ c0 is valid inequality for LP.

Note that this assumption can be seen essentially as assuming that the dual LP is full
dimensional, and any dual feasible solution can provide the bound assumed.
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Assumption 3 (Primal nondegeneracy) All extreme points of P are defined by only n

linear inequalities of the system (2).

Note that this does not imply that (2) contains no redundant constraints. It does imply
that all of the faces

Fi = {x ∈ P :
∑

j∈N

Aijxj = bi}

are either facets of P (i.e., have dimension n − 1) or are empty (i.e., have dimension -1).

Assumption 4 (Dual nondegeneracy) For all extreme points µ̄ of DP := {µ ∈ IR
m
+ :

AT µ = c}, let I0 := {i ∈ M : µ̄i = 0}. Then |I0| = m − n.

Note that this assumption implies that there are no faces of P that are parallel to H0 :=
{x ∈ IR

n : cT x = c0.

The last two assumptions are not restrictive, as any LP can be made primal and dual
nondegenerate by perturbing the right hand sides and objective coefficients, resp., by small
amounts. The first two assumptions are not restrictive, either; they can be relaxed by ap-
plying the algorithm defined in this extended abstract to a modified version of the primal
(resp., dual) LP in which any feasible solution (if one exists) to the original problem is
optimal to the modified one.

We will use ||x|| to denote the standard Euclidean norm of x ∈ IR
n. If x̂ ∈ IR

n and
Hi1,...,ih′ is the intersection of the hyperplanes defined by the inequalities i1, ..., ih′ , h′ < n,
we define the projection of x̂ onto Hi1,...,ih′

projHi1,...,ih
(x̂) = argminx∈Hi1,...,ih

(||x − x̂||)

=
argmin

x∈IR
n (xj − x̂j)

2

s.t. Aih
x = bih

, h = 1, ..., h′.

We can solve the quadratic problem thus defined by applying the Karush-Kuhn-Tucker
conditions to define the following equality system, which has n + h′ = O(n) variables and
the same number of constraints:

Aih
x = bih

, h = 1, ..., h′; 2(xj − x̂j) +

h′
∑

h=1

Aihjµh = 0, j = 1, ..., n; x ∈ IR
n, µ ∈ IR

h′
.

Since we will need to solve systems of equations like this repeatedly, our results depend on
the definition of what it means to be able to perform the operations needed to do so in
strongly polynomial time. Our definition includes the following assumption.

Assumption 5 (Strong polynomiality of basic arithmetical operations) Given a
system of p linear independent equalities in IR

p Dx = d, where D ∈ ZZ
p×p and d ∈ ZZ

p, the
unique solution x = D−1d can be found in time G(p), which is some polynomial that does
not depend on the size of the entries of D or d.
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3 The Sequential Projection algorithm

3.1 Key theorems

Theorem 1. Let x̂ be a point in P . Let x̄ = projH0
(x̂). If x̄ ∈ P , then it is an optimal

solution to LP. Otherwise, for all inequalities i ∈ M such that Aix̄ > bi, define

λi :=
bi − Aix̂

Aix̄ − Aix̂

(Clearly at least one such inequality must exist if x̄ 6∈ P .) Choose

k = argmini∈M :Aix̄>bi
{λi},

and define

x̂k = λkx̄ + (1 − λk)x̂.

If x̂ is an interior point of P , then x̂k ∈ Fk. If x̂ ∈ Fi1,...,ih′ for some subset of inequalities
i1, ..., ih′ ∈ M , h′ < n, then x̂k ∈ Fi1,...,ih′ ∩ Fk.

For the next two theorems we will need the following definition.

Definition 1. For any i ∈ M such that Fi 6= ∅ and any x̄ ∈ Fi, then d ∈ ZZ
n is an

improving direction for x̄ in Fi if there exists some ǫ > 0 such that, for all α : 0 < α < ǫ,
1) cT d > 0; and 2) x̄ + αd ∈ Fi.

Note that the terms of the definition also imply that if d is an improving direction for x̄ in
Fi, then there exists some β > 0 for which x̄ + βd ∈ H0 ∩ Hi.

Theorem 2. Let A = {i1, ..., ik} ⊂ M be any set of inequalities with 1 ≤ k ≤ n. If
1 ≤ k < n, then H0 ∩ HA 6= ∅.

Proof : This follows from the assumption of dual nondegeneracy. �

Theorem 3. Let A = {i1, ..., in} ⊂ M be any set of n inequalities. HA = x̂ is the unique
solution to BAx = bA, where

B =







Ai1

...
Ain






=







Ai11 Ai12 . . . Ai1n

...
...

. . .
...

Ain1 Ain2 . . . Ainn






and bA =











bi1

bi2

...
bin











.

Moreover, let µ̂ ∈ IR
m be defined by

µ̂i =

{[

BA−T
c
]

i
=

∑n
j=1[B

A−T
]ijcj , if i ∈ A

0, if i 6∈ A.

If x̂ ∈ P , the following statements are true:

1. x̂ is an optimal primal solution and µ̂ is an optimal dual solution if and only if µ̂i ≥
0, ∀i ∈ A.
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2. If x̂ is not optimal, then there exists an improving direction for x̂ in FA+ , where A+ :=
{i ∈ A : µ̂i ≥ 0}.

3. If x̂ is not optimal, then let A− = {i : µi < 0}. If 2 ≤ |A−| ≤ n − 2, then each of the
directions

projHA\i′∩H0
(x̂) − x̂, i′ ∈ A−

is an improving direction for x̂ in each of the faces Fi, i ∈ A \ i′.

Proof : Statement 1 follows from LP complementary slackness. For statement 2, observe
that if there exist any i ∈ A : µ̂i < 0, then

max
x∈P

{cT x : Aix = bi, i ∈ A : µ̂i > 0} > max
x∈P

{cT x : Aix = bi, i ∈ A},

and the result follows. Similarly for 3, under the given conditions let

xi′ = argmaxx∈P {cT x : Aix = bi, i ∈ A \ i′}.

Then we have that cT xi′ = maxx∈P {cT x : Aix = bi, i ∈ A\ i′} > cT x̂, and the result follows
from the fact that x′ ∈ Fi for each i ∈ A \ i′.

3.2 The framework of the algorithm

Algorithm 1 illustrates the overall algorithmic framework.

Algorithm 1 The Sequential Projection Algorithm
.
Given: A system of inequalities (A, b) with A ∈ ZZ

m×n and b ∈ ZZ
m; an objective function c ∈ ZZ

n

and upper bound c0 ∈ IR; and an interior point x̂ ∈ P .
Define x̄ = projH0

(x̂).
If x̄ ∈ P then

Terminate; x̄ is optimal.
Else for all i ∈ M : Aix̄ > bi

Compute

λi :=
bi − Aix̂

Aix̄ − Aix̂
.

Choose i11 = argmini∈M:Aix̄>bi
{λi}.

Define x̂11 = λi1 x̄ + (1 − λi1)x̂.
Initialize h = 1, P(h, 1) = A(h, 1) = {ih1}, and k = 1.
While x̄ 6∈ P do

Process A(h, k), and x̂hk and either 1) find an optimal solution x̄ ∈ FA(h,k) or 2) find a
number k(h + 1) : 1 ≤ k(h + 1) < n, a set of inequalities A(h + 1, k(h + 1)) ⊂ M such that
|A(h + 1, k(h + 1))| = k(h + 1), and a point x̂h+1,k(h+1) ∈ FA(h+1,k(h+1)).

End-do

The algorithm is clearly correct if the following two conditions hold:
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1. The Process and Find (PF) procedure in the While loop, each time it is called,
correctly outputs either 1) an optimal solution x̄ ∈ FA(h,k), or 2) an integer k(h+1) < n,
a set of inequalities A(h + 1, k(h + 1)) ⊆ M such that |A(h + 1, k(h + 1))| = k(h + 1),
and a feasible point x̂h+1,k(h+1) ∈ FA(h+1,k(h+1)).

2. The algorithm terminates (that is, the While loop does not repeat forever).

Determining the complexity of the work done outside the PF step is straightforward.
The total work before the While loop involves solving a system of equations (G(n)) and
a number of simple vector arithmetic operations. Thus, to show that the SP algorithm is
correct, we need to show that the PR procedure 1) it correctly executes the necessary tasks;
2) repeats only a finite number of times before finding the optimal solution. We specify a
procedure that meets these conditions in Algorithm 3.2.

Note that we let k(h+1) denote the size of the active set at the beginning of the h + 1st

execution of the PF procedure. Thus k(h + 1) = |{i ∈ A(h, n) : µk
i ≥ 0}| = |A−(h, n)|, and

ih+1,k(h+1) denotes the first inequality added to the active set during the h + 1st execution
of that procedure.

Algorithm 2 Process and Find Procedure

Given: A set of inequalities A(h, k) = {ih11, ih12, ..., ih1k} ⊆ P such that 1 ≤ k ≤ n − 1, and a
point x̂hk ∈ FA(h,k).
While k < n do

Define x̄kh := projH0∩HA(h,k)
(x̂hk).

If x̄kh ∈ P then

x̄hk is optimal; set x̄ = x̄hk and exit the procedure.
Else for all i ∈ M such that Aix̄ > bi

Compute

λi :=
bi − Aix̂

hk

Aix̄hk − Aix̂hk
.

Choose ih,k+1 = argmini∈M:Aix̄>bi
{λi}.

Define x̂h,k+1 = λih,k+1 x̄hk + (1 − λih,k+1)x̂
hk.

Set A(h, k + 1) = A(h, k) ∩ ih,k+1, and increment k.
end-do

Define B to be the n × n matrix

B =

264 Aih1

...
Aih,n

375 =

264Aih11 Aih12 . . . Aih1n

...
...

. . .
...

Aihn1 Aihn2 . . . Aihnn

375 .

Define µh = B−T c.
If µh

j ≥ 0, j = 1, ..., n, then x̂hn is optimal; set x̄ = x̂hn and exit the procedure;
Else reset k = |A+(h, n)|, set A(h + 1, k) = A+(h, n), and
set ih+1,1, ..., ih+1,...,k to be the inequalities of A(h + 1, k).
Exit the procedure.

Also note that each time we exit the While loop in the PF procedure, at that point
k = n and x̂hn = B−1bh, where
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bh =











bih1

bih2

...
bihn











.

It is not difficult to see that this procedure, and therefore the algorithm, always maintains
a feasible point x̂hk and an active set A(h, k) = {ih1 , ..., ihk

} such that Aix = bi for every
i ∈ A(h, k). Moreover, it is also not difficult to see that the algorithm does not terminate
incorrectly (i.e., without having found an optimal solution). Therefore, to prove correctness
it suffices to show that the SP algorithm terminates.

Lemma 1. During each execution of the PF procedure, the total of times the While loop
is performed is less than n.

The next lemma specifies conditions under which we can be sure that a given inequality will
never again enter the active set. To do so, we consider

PA(h′,k′) = {x ∈ IR
n : Aix ≤ bi, i ∈ A(h′, k′)},

the feasible polyhedron with respect to the set of active constraints during the k′th time
that the inner loop is performed within the h′th call to the PF procedure.

Lemma 2. Let h′ be any iteration of the SP algorithm, and let k′ = k(h′). Consider any
i∗ ∈ M \ A(h′, k′). If PA(h′,k′) ∩ Hi∗ ∩ H0 = ∅, then either

1. PA(h′,k′),i∗ ∩H0 = ∅, in which case k′+1 = n and the point HA(h′,k′),i∗ is either optimal
or infeasible; or

2. i∗ 6∈ A(h, k) will be true for any h ≥ h′ and any k : 1 ≤ k ≤ n.

Proof : Dual nondegeneracy implies that PA(h′,k′) ∩H0 6= ∅. The fact that PA(h′,k′) ∩Hi∗ ∩
H0 = ∅ thus implies one of two things. Either

1. PA(h′,k′) ∩ {x ∈ Ai∗x ≤ bi∗} ∩ H0 = PA(h′,k′),i∗ ∩ H0 = ∅.
In this case PA(h′,k′),i∗ will be a cone pointed at HA(h′,k′),i∗ that does not extend forever
in an improving direction (i.e., toward H0). Therefore k′ + 1 = n must be true, and the
point HA(h′,n−1),i∗ is either the optimal solution or infeasible.
Or

2. Ai∗x ≤ bi∗ is implied by the constraints of A(h′, k′) within H0. In this case, since
Ai∗ x̂hk < bi∗ is also true, x̂hk will never again lie in Fi∗ for any h ≥ h′, 1 ≤ k ≤ n. �

It is not difficult to see that we can extend this Lemma to apply to faces that do not define
facets of P .

Lemma 3. Let h′ and k′ < n be the values of h and k at any point at which the algorithm
executes the first command of the While loop of the PR procedure. Consider any set A∗ =
{i1, ..., ik∗} ∈ M \A(h′, k′) with the property that k∗ = |A∗| ≤ n−k′. If PA(h′,k′)∩HA∗∩H0 =
∅, then either

1. k∗ − k′ = n, PA(h′,k′) ∩ PA∗ ∩ H0 = ∅, and the point HA(h′,n),A∗ is either the optimal
solution or infeasible;
or



8 A.J. Miller

2. |A(h, k) ∩ A∗| ≤ k∗ − 1 will always be true for any h ≥ h′ and any k : 1 ≤ k ≤ n.
Moreover, if for all i ∈ A∗ there exists some number h(i) > h′ such that i ∈ A(h(i), n),
then we must have that |A(h, k) ∩ A(h′, k′)| ≤ k′ − 1 for all h ≥ h∗ and k : 1 ≤ k ≤ n,
where

h∗ = max
i∈A∗

[min{h : i ∈ A(h, n)}] .

In words, the lemma says that if PA(h′,k′)∩A∗ is a cone that has no intersection with H0, then
all of the inequalities of A∗ cannot simultaneously be a part of the active set. Moreover, if all
of the inequalities do enter the active set at some point in the algorithm (not simultaneously
but in any order), the hyperplane HA(h′,k′) will itself itself never again intersect the active
set.

The theorem next will help to prove that the algorithm terminates, and will be useful
in proving complexity bounds later.

Theorem 4. Let h′ and h′ + 1 be any two consecutive calls of the PF procedure. Let
A+(h′) := {i ∈ A(h′, n) : µh

i ≥ 0} and k+ := A+(h′); also let A−(h′, n) := {i ∈ A(h′, n) :
µh

i < 0} be nonempty, and let k− := |A−(h′, n)| > 0. Then

1. |A(h, k)∩A−(h′, n)| ≤ k− − 1 will always be true for any h ≥ h′ and any k : 1 ≤ k ≤ n.
2. If in addition A+(h′) ⊆ A(h, k), then |A(h, k) ∩A−| ≤ k− − 2 will be true.
3. If for all i ∈ A−(h′, n) there exists some number h(i) > h′ such that i ∈ A(h(i), n), then

we must have that |A(h, k) ∩ A+(h′)| ≤ k+ − 1 for all h ≥ h∗ and k : 1 ≤ k ≤ n, where

h∗ = max
i∈A−(h′,n)

[min{h : i ∈ A(h, n)}] .

Proof : Statements 1 and 3 are immediate from Lemma 3. Statement 2 follows from the
fact that PA−(h′,n) ∩ HA+(h′)\ih′n

is a k′
− − 1-dimensional simplex for which the facets all

intersect at the point x̄h′,n−1, which is infeasible only with respect to inequality ih′,n. �

There are 2m
n
2 possible distinct active sets of size n (one for each extreme point, see,

e.g. [19, 23]) that the algorithm can define. Theorem 4 implies that each one will be defined
in the algorithm at most once. We have therefore proven the following theorem.

Theorem 5. The SP algorithm correctly solves LP in finite time.

3.3 Complexity

Lemma 4. There can be at most m calls to the PF procedure in which A−(h, n) = 1.

Proof: Immediate from Theorem 4. �

Using Theorem 4, we can generalize this lemma to obtain a bound on the total number of
iterations in which A−(h, n) ≤ g(m, n), for some nondecreasing function g(m, n).

Lemma 5. The number of calls to the PF procedure in which |A−(h, n)| ≤ g(m, n) is

2

(

m

g(m, n)

)

, where g(m, n) is any nondecreasing function of m and n that satisfies 1 ≤
g(m, n) < n.
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Corollary 1. Let f(m, n) be a function bounding the number of consecutive iterations of the
PF procedure in which A−(h, n) > g(m, n). Then the SP algorithm runs in O

(

f(m, n)mg(m,n)nG(n)
)

time.

Therefore the SP algorithm will run in strongly polynomial time if there exist some functions
f(m, n) and g(m, n) as defined above such that f(m, n) is a polynomial in m and n, and
g(m, n) is bounded by some constant for all m and n.

3.4 Worst-case complexity

In this section we analyze how fast the function f(m, n) defined in Corollary 5 can grow
if g(m, n) = K for any integer K. So let αik, i, k = K, ..., n − K denote the maximum
number of consecutive iterations in which k ≤ A−(h, n) ≤ n − k. Then we can show that,
for i′ = K, ..., n − K,

αn−i′,i′ ≤ ⌈m − n + i

i
⌉ + ⌈m − n + i

i

i − 2

i
⌉ + ⌈m − n + i

i

i − 2

i

i − 4

i
⌉

... + ⌈m − n + i

i

(i − 2)(i − 4)...4

i2i−4
⌉ + ⌈m − n + i

i

(i − 2)(i − 4)...4 · 2
i2i−2

⌉

≤ (⌈m − n

i′
⌉ + 1)(

i′−1
2

∑

i=0

i′2i

22ii′2i
) = (⌈m − n

i′
⌉ + 1)(

i′−1
2

∑

i=0

1

22i
) ≤ 2(⌈m − n

i′
⌉ + 1).

Also, for any i = K, ..., n − K − 1 and k = K, ..., n − i − 1, we can show that

αi,k ≤ αi,k+1 + (m − n + i)αi+1,k.

Since the number of sets of inequalities of size k that leave the active set is bounded by
n−i−k−1

2 , we have that

αi,k = O((m − n)⌊
n−i−k−1

2 ⌋), i = ⌈n

2
⌉, ..., n − 2K − 1, k = K, ..., n − 2i − 1.

Finally, since the total number of active sets in which A+(h, n) = n − k is limited by

(m − n)⌊
m−n−k−1

2 ⌋, we also have

αi,k = O((m − n)⌊
m−n−k−1

2 ⌋), i = ⌈n

2
⌉, ..., n − 2K − 1, k = K, ..., n − 2i − 1.

Theorem 6. For any integer K : 2 ≤ K ≤ ⌊n
2 ⌋, the maximum number of consecutive

iterations of the SP algorithm in which A−(h, n) ≤ K must be less than both (m−n)⌊
n−2K−1

2 ⌋

and (m − n)⌊
m−n−2K−1

2 ⌋.

Note: Figure out how to get this down to m - n - 2K. The value of K that minimizes
K(n − 2K − 1) is K = n−1

2 . Therefore we have

Theorem 7. If 2n ≤ m, the SP algorithm runs in

min
K:2≤K≤⌊n−1

2 ⌋
O

(

mK(m − n)⌊
n−2K−1

2 ⌋nG(n)
)
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time. If 2n > m, the SP algorithm runs in

min
K:2≤K≤min{⌊n−1

2 ⌋,2n−m}
O

(

mK(m − n)⌊
m−n−2K−1

2 ⌋nG(n)
)

time.

Corollary 2. If n ≤ 4
√

m, the SP algorithm runs in

O
(

m
√

m(m − 4
√

m)
√

mG(
√

m)
)

= O
(

(m − 2
√

m)2
√

mG(
√

m)
)

If m − n ≤ 3
√

m, the SP algorithm runs in

O
(

m
3
√

m

2 G(n)
)

time.

Proof: Take K =
√

m. �

This clearly leaves something to be desired; the only cases we have successfully analyzed do
not occur often in practice, and we do not know whether the algorithm has subexponential
complexity when 4

√
m ≤ n ≤ m − 3

√
m. While we have not yet been able to resolve this

issue for the SP algorithm, we discuss below a randomized version of the algorithm that
does solve the problem in subexponential time...or faster.

4 Randomizing the algorithm

In this section we define the Randomized Sequential Projection (RSP) algorithm (Algorithm
4). Except for those steps explicitly described, this algorithm is identical to the SP algorithm
(Algorithm 1). Note that the only difference between the RSP and SP algorithms occurs
when A−(h′, n) = A(h′, n′) \ A(h′ + 1, k(h′ + 1)) is bigger than K during some iteration of
the While loop. Since K > 1 must be true, Theorem 3 guarantees the following:

Lemma 6. If K < n− k(h + 1) at any stage of the RSP algorithm, then every i ∈ A(h, n)
contains an improving direction from x̃hn.

Thus every facet in the active set contains an improving direction from x̃hn which can be
easily found using the proj() operator. Given this, from arguments in Section 3 we have

Theorem 8. The RSP algorithm solves LP in finite time.

4.1 Expected worst-case complexity

We now examine the expected worse case running time of the RSP algorithm, where the
expectation is taken only over the internal choices of the algorithm in the While loop that
calls the PF procedure. For this analysis, first note that, at any iteration h in which a
recursive call is made, we can define the n subproblems

vi = argmax{cT x : x ∈ Fi}, i ∈ A(h, n).

Lemma 6 tells us that cT vi > cT x̃h′+1,k(h′+1), ∀i ∈ A(h′, n). Then the random choice made
before the recursive call to the RSP algorithm can be viewed as the choice of which of these
subproblems to process. Now order these subproblems so that cT v1 > ... > cT vn. Since each
vi is chosen with probability 1

n
, we have
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Algorithm 3 Randomized Sequential Projection Algorithm
.
Given: A system of inequalities (A, b) with A ∈ ZZ

m×n and b ∈ ZZ
m; an objective function c ∈ ZZ

n

and upper bound c0 ∈ IR; and an interior point x̂ ∈ P , and a threshold integer value K ≥ 1.

...
...

...

Initialize h = 1, P(h, 1) = A(h, 1) = {ih1}, and k = 1.
While x̄ 6∈ P do

Process A(h, k), and x̂hk and either
1) find an optimal solution x̄ ∈ FA(h,k) or
2) find a number k(h + 1) : 1 ≤ k(h + 1) < n, a set of inequalities A(h + 1, k(h + 1)) ⊆ M

such that |A(h + 1, k(h + 1))| = k(h + 1), and a point x̃h+1,k(h+1) ∈ FA(h+1,k(h+1)).
If K < n − k(h + 1) then

Choose randomly, with uniform probability, some i′ ∈ A(h, n).
Starting from x̃h+1,k(h+1) and using threshold value K,

solve max{cT x : x ∈ P ∩ Hi′} recursively.
Define x̂h+1,k(h+1) = argmax{cT x : x ∈ P ∩ Hi′}.
Reset k = |{i ∈ M : µi > 0 at argmax{cT x : x ∈ P ∩ Hi′}}|.
Reset A(h + 1, k(h + 1)) = {i ∈ M : µi > 0 at argmax{cT x : x ∈ P ∩ Hi′}}.
Return to the start of the While loop.

Else set x̂h+1,k(h+1) = x̃h+1,k(h+1).
Return to the start of the While loop.

End-do

Proposition 1. After any recursive call to the RSP algorithm:

– for an instance of LP with n variables and m ≥ n + k constraints, the number of
inequalities of A(h′, n) that never again enters the active set will be at least j with
probability 1

n
, for all j = 1, ..., n.

– for an instance of LP with n variables and m < n + k constraints, the number of
inequalities of A(h′, n) that never again enters the active set will be at least j with
probability 1

n
, for all j = 1, ..., m − n − k.

The number of iterations in which A−(h, n) ≤ K at any point of the RSP algorithm is
O(mK). Now let R(m, n, K) be the maximum number of expected total iterations of the
RSP algorithm in which A−(h, n) > K for an LP instance of n variables and m constraints.
We now consider the calculation of R(m, n). It is clear that

R(m, n, K) = 0, if n ≤ K or if m − n ≤ K.

Using Proposition 1, we can show that

R(m, K + 1, K) = 1 +
1

K + 1

K+1
∑

j=1

R(m − j, K + 1, K),

and therefore

R(2K + 2, K + 1, K) = 1

R(m, K + 1, K) ≤ 2(m − K − 1)

K + 2
, ∀m ≥ 2K + 3
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Moreover, we also have that

R(m, m − K − 1, K) = 1 + R(m − 1, m− K − 2, K)

= m − K − 1

The general form of the recursion when K < n < m − K becomes

R(m, n, K) = 1 + R(m − 1, n − 1, K) +
1

n

min{n,m−n−K−1}
∑

j=1

R(m − j, n, K)

Assume for simplicity that m ≥ 2n + K. Then we obtain

R(m, n, K) = 1 + R(m − 1, n − 1, K) +
1

n

n
∑

i=1

R(m − i, n, K).

We can use this to show

R(m, n, K) ≤ R(m − 1, n − 1, K) +
1

2
R(m − 1, n, K) +

1

2
R(m − n, n, K)

≤ R(m − 2, n − 2, K) +
1

2
R(m − 2, n − 1, K) +

1

2
R(m − 1 − n, n − 1, K)

+
1

2
R(m − 2, n − 1, K) +

1

4
R(m − 2, n, K) +

1

4
R(m − 1 − n, n, K)

+
1

2
R(m − n, n, K)

≤ R(m − 2, n − 2, K) + R(m − 2, n − 1, K) +
1

4
R(m − 2, n, K)

+
1

2
R(m − n, n − 1, K) +

3

4
R(m − n, n, K),

where the last inequality follows because R(m′, n′, K) ≤ R(m′, n′ + 1, K) is always true.
Continuing the expansion,

R(m, n, K) ≤ R(m − 3, n − 3, K) +
1

2
R(m − 3, n− 2, K) +

1

2
R(m − 2 − n, n − 2, K)

+R(m − 3, n − 2, K) +
1

2
R(m − 3, n − 1, K) +

1

2
R(m − 2 − n, n − 1, K)

+
1

4
R(m − 3, n − 1, K) +

1

8
R(m − 3, n, K) +

1

8
R(m − 2 − n, n, K)

+
1

2
R(m − n, n − 1, K) +

3

4
R(m − n, n, K)

≤ R(m − 3, n − 3, K) +
3

2
R(m − 3, n− 2, K)

+
3

4
R(m − 3, n − 1, K) +

1

8
R(m − 3, n, K)

+
1

2
R(m − n, n − 2, K) + R(m − n, n − 1, K) +

7

8
R(m − n, n, K),
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and eventually we arrive at

R(m, n, K) ≤
n−K−1

∑

i=0

(

n

i

)

1

2n
max{R(m − n, n − i, K), m − K}

+

K−1
∑

i=0

(

n

i

)

1

2n
(m − n − K − i)

≤ n

(

n

i

)

1

2n
max

{

m − k, max
i=0,...,n−K−1

{R(m − n, n − i, K)}
}

After a lot of headache, we can show that

R(m, n, K) ≤ nlog n max

{

m − k, max
i=0,...,n−K−1

{R(m − n, n − i, K)}
}

≤ (m − K)(nlog n)
m−K

n

Theorem 9. For any fixed K, the expected worst-case running time of the RSP algorithm
is

O
(

(m − K)(nlog n)
m−K

n nG(n)
)

Note that this is subexponential if n ≥
√

m − K, which is one of the goals motivated in the
last section. Moreover, if the expression m−K

n
≤ K, we may be able to say even more. In

particular, it may be reasonable to consider the case in which we fix K = 2, since every LP
problem either has at most twice as many constraints as variables, or has a dual that does.

Theorem 10. If we take K = 2, the expected worst-case running time of the RSP algorithm
is

O
(

m3n2 log nG(n)
)

Thus the dominant term in the expected worst-case complexity of the RSP algorithm grows
only as fast as the log function. To the best of our knowledge, the RSP algorithm is the
fastest known algorithm for LP whose running time does not depend on the data, in terms
of expected worst-case running time.

The idea of choosing a facet randomly from among a set of facets, each of which is guar-
anteed to contain an improving direction, is related to various randomized rules proposed
for the simplex algorithm discussed (e.g., [9, 13, 18]). While the resulting pivot rules yield
subexponential worst-case expected running times for a simplex algorithm, to our knowledge
all of these times are bounded from below by O

(

exp(
√

n logm)
)

, which grows significantly
faster than 2log n log n = nlog n. The primary factor limiting randomized simplex algorithms
from having expected worst case running times closer to that defined for RSH seems to
be the fact that they are constrained to follow edges of the feasible polyhedron while RSH
is not. Indeed, if the Hirsch conjecture (see, e.g., [4, 14]) turns out to be incorrect, then
defining significantly faster randomized simplex algorithms than those already known may
not even be possible.

5 Quadratic programming

Consider a QP problem of the form
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max
x∈IR

n
cT x +

1

2
xT QX (3)

s.t. Ax ≤ b, (4)

where Q ∈ IR
n×n is a negative semi-definite matrix (and thus the objective function is

concave). A remarkable feature of the SP algorithm is that it extends easily to this family of
problems; we will call this extension the Quadratic SP (QSP) algorithm. The only significant
alteration required is defining the analog of the proj(·) operator. Therefore, for any subset
of constraints A ⊂ M and any point x ∈ FA, we define

ΠQ(x̂) :=

{

argmax 1
2xT Qx + cT x

s.t. Aix = bi, i ∈ A

}

From the KKT conditions we have that x̄ = ΠQ(x̂) is defined by the unique solution (x̄, µ̄)
to the n + |A| × n + |A| system of equations

Qx +
∑

i∈A
Aijµi = −c, ∀j ∈ N

Aix = b, ∀i ∈ A.

Thus, the Π() operator finds the the point maximizing the objective function in the hyper-
plane defined by the constraints that are active at x̂. Note that this maximizer may violate
some or all of the constraints not active at x̂.

The QSP algorithm can then be defined to operate identically to the SP algorithm, with
the following two exceptions:

1. Rather than set x̄ = projH0
(x̂), where x̂ is an initial interior point, we initialize x̄ =

argmax
x∈IR

n{ 1
2xT Qx + cT x}.

2. Rather than call the Process and Find procedure at each iteration, we call a slightly
modified version, which we will the QPF procedure.

The QPF procedure, given in Algorithm 5, closely resembles the PF procedure of the
SH heuristic; the main difference is that the QPF procedure defines x̄kh := ΠQ(x̂hk) when-
ever the PF would have defined x̄kh := projH0∩A(h,k)(x̂

hk). Many of the results we have
established for the SP algorithm extend immediately to the QSP algorithm. For example,
the analog of Theorem 4 for the QSP algorithm is

Theorem 11. Let x̄h′k′
= ΠQ(x̂h′k′

). If x̄h′k′ ∈ P , then let µh′
be the dual vector defined

by solving for ΠQ(x̂h′k′
). Then we have that

x̄h′k′
= argmaxx{

1

2
xT Qx + cT x : x ∈ FA−(h′,k′)},

where A−(h′, k′) = {i ∈ A(h′, k′) : µh′
i < 0}. Moreover

1. The solution x̄h′k′
is optimal to QP if and only if A−(h′, k′) = ∅.

2. If A−(h′, k′) 6= ∅, then A−(h′, k′) ∩ A(h, k) ≤ k − 1 for every h ≥ h′ + 1.

Since the number of possible active sets is finite, and since (by the preceding Theorem) none
of them repeat, we have the following analog to Theorem 5:
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Algorithm 4 Process and Find Procedure for QP (QPF procedure)

Given: An instance of QP defined by Q, c, A, b, a set of inequalities A(h, k) = {ih11, ih12, ..., ih1k} ⊆
P such that 1 ≤ k ≤ n − 1, and a point x̂hk ∈ FA(h,k).
While x̄kh 6∈ P do

Define x̄kh := ΠQ(x̂hk).
If x̄kh 6∈ P then

Compute

λi :=
bi − Aix̂

hk

Aix̄hk − Aix̂hk
.

Choose ih,k+1 = argmini∈M:Aix̄>bi
{λi}.

Define x̂h,k+1 = λih,k+1 x̄
hk + (1 − λih,k+1)x̂hk.

Set A(h, k + 1) = A(h, k) ∩ ih,k+1, and increment k.
End-if

End-do

Define µh ∈ IR
k to be the vector such that

Qx̄hk +
P

i∈A(h,k) Aijµ
h
i = −c,∀j ∈ N

Aix̄
hk = bi,∀i ∈ A(h, k).

If µh
i ≥ 0, j ∈ A(h, k), then

x̂hk is optimal; set x̄ = x̂hk and exit the procedure;

Else reset k = |A+(h, k)|, set A(h + 1, k) = A+(h, n), and set

ih+1,1, ..., ih+1,...,k to be the inequalities of A(h + 1, k).

Exit the procedure.

Theorem 12. The QSP algorithm correctly solves QP in finite time.

Moreover, we can define, almost trivially, a randomized version of the QSP algorithm (call
this RQSP) in exactly the same way that we defined the RSP algorithm from SP. That
is, if A−(h′, k′) is ever bigger than some threshold K, we can randomly choose one of the
inequalities in the active set (with uniform probability) and recursively solve the QP defined
by projecting the current problem into the hyperplane defined by that inequality. Since the
cardinality of the active set used to define µh′

need not be n (as it must be in the SP and
RSP algorithms), the complexity analysis of RQSP is more difficult than the analysis of
RSP, and we have not yet been able to complete it. However, it seems likely that RQSP will
have an expected worst case running time is subexponential; to the best of our knowledge,
such a result would be the first known for QP.

6 Conclusion

It seems likely that the SP, RSP, QSP, and RQSP algorithms would perform well in prac-
tice. In particular, if it is possible to use information from the solution of one projec-
tion problem projH0∩HA(h,k)

(x̂hk) to enhance the solution of the next projection problem

projH0∩HA(h,k+1)
(x̂h,k+1) (perhaps, for example, in a way that simplex codes update basis

factorizations from one pivot to the next), our results would seem to suggest that these
algorithms may even rival simplex methods in practical efficiency. We intend to explore this
possibility in the near future.
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