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Consensus under Communication Delays

Alexandre Seuret, Dimos V. Dimarogonas and Karl H. Johansson

Abstract— This paper deals with the consensus problem the assumption that these sampling delays are known is not
under communication network inducing delays. Itis well-known  satisfied in a general case.
that introducing a delay leads in general to a reduction of A gimjlar model to the one treated in the current paper
the performance or to instability due to the fact that time- din 71 181. Th th th L
delay systems are infinite dimensional. For instance, the set of was used in [7], [8]. The author uses' a nonsr_noo VapU”PV
initial conditions of a time-delay system is not a vector but approach and treats the case of time-varying graphs with
a function taken in an interval. Therefore, investigating the time-delays. However, that paper treated the time-delayed
effect of time-delays in the consensus problem is an important model as a simple extension of the non-delayed case, not
issue. In the present paper, we assume that each agent receives,,nqiqering the effect that initial conditions have in the

instantaneously its own state information but receives the state - S - -
information from its neighbors after a constant delay. Two 'esulting consensus equilibrium. In this paper, we provide

stability criteria are provided based on the frequency approach ~a@n analytic expression of the resulting consensus point and
and on Lyapunov-Krasovskii techniques given in terms of LMI.  relate it to the initial conditions of the time-delayed model.

An analytic expression of the consensus equilibrium which \We should also note that the model used in the paper is

depends on the delay and on the initial conditions taken in - gittarent than the one used in [10] that assumes that each
an interval is derived. The efficiency of the method is tested h h delay in i inf - d th
for different network communication schemes. agent ‘,"‘S t e. samg elay in its own in olr.matlon arn the
information of its neighbors. Thus, the stability analysis and

|. INTRODUCTION results of the current paper refer to a different model, and

) ) ) . are thus different than the corresponding ones in [10]. In
Algorithms for consensus of multi-agent systems is a fieldf, icjar, we provide stability conditions using Lyapunov-

that has gained increasing attention in the last few yeargy,qoyskii techniques which are given in terms of LMI. The
due to its applications in multi-robot systems [11], averagzmmunication topology is asymmetric and the symmetric
ing in communication networks [17] and formation control,,qe s treated as a special case of the main theory. Results on
[4]. S_everal results _have_ appeared in recent literature thétrability of discrete-time consensus algorithms with commu-
consider syste.ms with d|fferen.t monop models, Symm?tr}ﬁication delays have already appeared in [16]. The difference
of communication and network interactions. A recent review, the current paper is that continuous-time models of agent
of the vast literature in the field can be found in [11]. dynamics are considered.

In this paper we examine a particular case of the con- rhe rest of the paper is organized as follows: Section I
sensus problem when the information exchange between g, des the necessary background on consensus and time-
communlcat!ng agents has inherit time-delays. _In partlc.ulaa,e|ay systems and presents the problem treated in this paper.
each agent is assumed to have access to the informationgfe ‘stapility analysis of the closed-loop system is given in
its own state with no delays, but can only consider delayeggction |11 which includes both the cases of asymmetric and
information of the states of its neighbors. The purpose of thi§ mmetric communication topologies. Section IV includes
paper is to study the stability of such a system with respect {fy sirating simulation examples while Section V summarizes
the value of the delay and then to determine the equilibriufe regylts of the paper and indicates current research efforts.
point of the consensus problem. The delays of the proposedygiation: Throughout the paper, the superscript stands
controller model various phenomena of networked systems, matrix transpositionR" denote then-dimensional Eu-
such as transmission delays on the transfer of data betwegean spaceR™ ™ is the set ofn x m real matrices. The
each agent and its neighbors, packet losses in wireless COfiationP > 0 for P € R**" means thal is a symmetric

munication networks and inaccurate sensor measurementsy positive definite matrix represents the identity matrix.

Moreover, delays can result from sampling. As shown Rinally, for any matrixA, the notation(M/); denotes the!”
[2], a sampled signal can be seen as a delayed signal With,, ot the matrix M.

a particular delayr(t) = t — tx, which is discontinuous
and whose derivative is equal b almost every time. As [l. PROBLEM STATEMENT
it is not clear that all the agents have synchronized clockg, onsensus Problems

This work was not supported by any organization We first review the original non delayed consensus prob-
Alexandre Seuret, Dimos V. Dimarogonas and Karl H. Johansson are witam for N € N agents with fixed but non necessarily
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Swedenseuret, dinos, kallej @th. se symmetric communication links. The open-loop dynamics

The work was partially supported by European Commission througAr€ given by:
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The consensus control law with no time delays in [10] is e there exist symmetric and positive-definite matri¢es’

given by such that the following matrix is negative-definite:
u;(t) = aii(x;(t) — 2z (t), i€{l,...,N}. (2) My (A + AT)TPA™
ng 7 (AT)TP(AO 4 A7) 8. )
where N; represents the set of agents which_ are connected whereM;; = (A° + A")TP + P(A® + A7) + 75.
to agenti and is called agent's communication set. The Proof: The proof is based on the Lyapunov functional:
gainsa;; are positive scalar. Note that the communication is . M- -
not necessarily symmetric, which means # a;;. V(z) = (a"(t) + [,_, «" (0)doA™)P
The closed-loop system is written in stack vector form as (z(t) + AT ftt_T z(0)do) + fET f_OT z(6)TSz(&)de.
t=—Lzx (3) u

- Remark 1:Lemma 1 isdelay-dependenti.e., the delay
wherex = [z1,...,2n]" is the stack vector of all agents’ -

) ] > o1 7 appears in it and provides sufficient but not necessary
states and. is the Laplacian matrix [3] of the communication .., gition for asymptotic stability. Based on the conditions

graph G of the network, which is defined based on theof Lemma 1, it is possible to maximize the upper bound

communication sets/;. _ _such that the system is still stable.
A brief background on the construction of the Laplacian

matrix is given in the sequel. For the gra@gtwith N vertices C. Problem statement

and edge set given by = {(i,) : j € Ni} theadjacency | this paper the following problem in addressed. From
matrix A = A(G) = (a;;) is the N x N matrix given by the point of view of agent, the value ofz; is provided by

aij = 1,1if (i,j) € E anda;; = 0, otherwise. If there is empedded sensors. Then the staeis available at every
an edge connecting two verticésj, i.e. (i,j) € E, then tme ¢ without any delay. However the data coming from
i,j are calledadjacent If there is a path between any two ine other agents € N are received by agent after
vertices of the graplis, thenG is calledstrongly connected 5 time-delay caused by the various reasons given in the
in the case of directed, and simptgnnectedn the case of jntroduction. Consider further as an approximation that all
undirected graphs. Thaegreed; of vertexi is defined as the he communication delays are constant and equalwdich

number of its neighboring vertices, i€, = #j : (i,j) € E.  can be assimilated as an average delay. We then derive the
Let A be theN x N diagonal matrix ofd;’s. TheLaplacian  control law (6):

of G is the matrixL = A — A. For an undirected graph the

Laplacian matrix is symmetric positive semidefinite. When &i(t) = > en, @ij(zi(t —7) —24(t)) i€ {l,...,N},

the directed graph is strongly connected, the Laplacian has (6)

a single zero eigenvalue and the corresponding eigenvecfdtd moreover assume that there exists a constant and positive

is the vector of ones1 . This result was established in [10]. scalary such that:

For thg case of undirected.graphs., a necessary and suffi_cient Z a; = p, i€ {l,...,N).

condition for zero to be a simple eigenvalue of the Laplacian :

matrix, is that the undirected graph is connected.
The main result of [10] states that a sufficient condition Define now the vector(t) = [z1(t), .., zn(t)]T. Then (6)

for the system (3) to reach consensus is that the underlyitgn be written as:

communication grapld- is strongly connected. #(t) = —pla(t) + Ax(t — 1), %)

JEN;

B. Time-delay systems _ . : L
s whereA is the adjacency matrix of the communication graph.

The tools from time-delay systems used in the sequel aré gemark 2: An extension to the multiple delays case would
reviewed in the next paragraphs. Consider the linear systef§nsider the following system:

with constant delay:
i(t) = A%%(t) + ATzt — 1), &(t) = Zje./\/i aij(zj(t — i) —xi(t)) i€{l,...,N}
{ 2(0) = 6(8), Vo€ |—7, 0] ) | (8
’ B Remark 3:The reader can notice the similarity of (7) and
wherez € R"™ is the state variable and® and A™ are (4). We can thus use results on stability of the time-delay
constant matrices with appropriate dimension. The functiosystem (4) to study the stability of the consensus delay
¢ corresponds to the set of initial conditions considered ovesystem (7).
the interval[—, 0]. Several conditions have been provided Remark 4:In contrast to (8), the following delayed ver-
the stability of the system (4) [4], [9],[12]. In this paper, wesion of the consensus algorithm is considered in [10]
will focuss on the following lemma: )
Lemma 1:([9], Corollary 5.5, pp222) The system (4) is Ti(t) = Xjen; aij (2(t = 7ij) — 24t = 735)),
asymptotically stable for all delays € [0, 7] if: wherei € {1,..., N} andr;; > 0 are constant delays. Thus
o1 +)\k(AT)% #0, forallse C*t andk =1,..,N, the analysis of that paper is different than that of the paper in
and hand. The model used in the current paper is more realistic



for cases such as the one described above, where eaclsystem (12) can now be written as:
agent has access to its own state through embedded sensors, . B ..
and delays are only present in the interagent information A(t) = Bzi(t) = (B +pl) [, Z1(s)ds,

exchange. (t) = —p [} 2a(s)ds,

By the Leibnitz formula, we have:(t — 7) = z(t) —  or in the time delay representation (11). ]
Ji—- #(s)ds, for all differentiable functionsr. System (7)  The consensus problem has now been rewritten in an
can be rewritten as: appropriate form to develop stability criteria.

t Remark 5:Note that the variable, is defined by
(t) = (—pul + A)(t) - A/ i(s)ds.  (9)
t—T1

Zg(t) = UQ.T(IL)
Note that the matrix-p./+ A corresponds to the Laplacian In the case of a symmetric network, the matfi is an
matrix. This representation is a way to understand how th(?rthogonal matrix which means — W’T Then if the last

delay affects the consensus problem. column of W is a1, then Uy = 1/(aN)T, which means

D. Definition of an appropriate model that z, corresponds to the average of the position of all
. — . . agents. This does not hold for an asymmetric communication
Knowing that the vectorl is an eigenvector assomatedn etwork
to the eigenvalu® of the Laplacian matrix, it is possible to '
find a change of coordinates such that Wz and: I1l. STABILITY ANALYSIS
B 0 This section focuses on the stability of the consensus
U(—pl + AW = { G o ] ; (10)  problem (11). We first check the convergence of the sec-

ond subsystem of (11b). An expression of the consensus
Uy — W1 andU, = (U)x. In the case of equilibrium will be given. Then two a_pproaches using a
1L U2 . _ frequency approach, for the symmetric case, and a time
a symmetric matrix4, the rest of the Laplacian eigenvaluesjomain approach for the symmetric and non symmetric cases
are all positive. We denote them lly< A\» < ... < Ay. It  will be provided.

thus means thaB is a diagonal matrix with-\;. o
The following lemma provides an appropriate way to- Consensus equilibrium

whereU =

rewrite (9) based on the properties of the matfix Lemma 3:The system (11b) is stable for any delaynd
Lemma 2:The system (9) can be rewritten in the follow-converges to
ing way:
g way L 29(0) + pe~7# fET 2o(u)e " du 13
231(15) = —/J,I,Zl(t) + (B + ,uI)zl(t — T), (11&) F2eq = SE%S s+ M(l — e—TS) ( )
Zo(t) = —pza(t) + paa(t — 7), (11b)

Proof: Consider the second sub-system (11b). It can
wherez; € RN~!, 2z, € R and the matrixB in given in  easily and more efficiently analyzed using a frequency ap-
(10). proach. The Laplace transform of system (11b) is:

522(s) = 22(0) = —pZa(s) + pe™ 7" Za(s)

Proof: Consider system (9) +u fo 2o(w)e= W+ ds

{ 283 ] - { 6'; g} { Zgg ] - [ i:; ]/tf Z(s)ds, Thus we have:

-7

A Zts) = 2O+ 1Szl rods
where | °) | = UAW and A = (UAW)y. The system S s+ p(l—e79)

2
can be split into two equations where the vecipicontains The stability of (11b) is determined by the roots of the
the N — 1 first components ot and z, is equal to the last equation:
component ofz. Then we have: s+u(l—e ") =0.

4(t) = Bai(t) — A [)_2(s)ds,

Considers = a+j0 with «, § € R. Then the last equation

12 : .

L(t) = A [ 2(s)ds. 12} yields:
The stability of this time delay system has to be examined o+ p— pe 7 cos(B7) =0, (14a)
with respect to the values of the delayHowever this is not B+ pe= 7 sin(Br) = 0, (14b)

an easy task since the integral terms dependsamd not on

z1 and zy in the first and the second equation respectively. Note thats = 0 is a solution of (14). However i satisfies
From (10), simple manipulations leads to: (14b), —( also does. For allj such thatgr = kr with
k € N/{0}, (14b) does not hold. This means that(87) #

Ay —UAW = B T pl 0 1, —1. For all the solutiong3y, k € N/{0}, of (14b), define
A 0T ' e €] — 1,1] such thate, = cos(B7). If & < 0, then



a < —pu. If €, > 0, consider the functiorf., (o) = a+p—  least another eigenvalue equal to zero. Then another equation
expue” 7. As e, > 0, f., is a strictly increasing function. like (11b) will define another equilibrium.

By noting that f., (0) = u(1 — e;) > 0, this means that  From Theorem 1, it can be seen that the initial condition
the solutionsay, of (14a) such thaff., (o) = 0 are strictly has a strong effect on the equilibrium position. The following

negative. corollaries examine two different cases of initial conditions:
Then all the roots of (14) are such that< 0. From [15], Corollary 1: Consider initial conditions of the form:

the systeTm (11b) is stable and the final equilibriumzgfis 2(6) =0, Ve [—70

given by:

ZL’(O) = o # 07
Then the equilibrium is given by :

. o 22(0) 4+ p fET 2o (u)e™ (W) dy
lim z3(t) = lim s .
o = stpu(l—e ) .

Teqg = Uazo/(1 4 pr)l.
It can then be seen that the delay is attenuated in the value
B. Main result of the final equilibrium. Note that in this context, we are not

Theorem 1:Consider the system (7) with a constant de|a§:onsidering discontinuous initial conditions but discontinuity
In the control law (2).

7. If there existst > 7 such that:
o 14+ N(=B—pl)== 0, for all s € C*, and
« there exist symmetric and positive-definite matrices:

Corollary 2: Consider initial conditions of the form:

P, S such that the following LMI holds: z(0) = xy, VO €[-7,0],
B'P+PB+7S B'P(B+pl) Then the equilibrium is
[ (B + puI)TPB —78 <0 (19 q

. = Upzol.
then all elements of converge asymptotically to a common Teq 2%0

valusze, which is given by: Proof: The result is straightforward by noting that:

x(0) + pe=7* fET zr(u)e “du’\ — 0
s+ p(l—e ) ) 1. /

xeq - U2 <illi%5 ZQ(’U,)ei(ujLT)Sdu = ‘LLZ2(O)/5(1 — eiTS).

J—T

. |
Proof: Consider the consensus problem (8) under a I - S )
symmetric or non-symmetric communication network and a Tq% .|n|t|alf;:r<])nd|tlon did mdet()ald no:' change_ tthhg final
constant delay-. There exists a change of coordinates thu” ”.L:.m 0 f tﬁ consglnbsys pr(;).d emt. however N this C(?Ste’
Wz, where W is an orthogonal matrix in the symmetric € position ot the equilibrium did not change compared 1o
gqe non delay case.

case or a non singular matrix in the non symmetric cas 'Note that th w | ivated b ical
such that the system can be rewritten as (11). The first part ote that these two examples are motivated by practica

of the proof is to show that the reduced-order variahlds considerations. Corollary 1 implies that, whatever the posi-

stable. Consider thus the reduced-order system: tion of "’?" the agents, the.cp.ntrql laws (t) W'.” only use
information taken after the initial time= 0. During [0, 7],

21(t) = —pdz1(t) + (B4 pl)z(t — 7). (16) no information from the other agents is used in the control.
. - N On the other hand, Corollary 2 can be interpreted as follows.
If Lemma 1 is satisfied for system (16) withy = —ul, At time t = —7, all agents have to wait until they receive

Ay = B+ pl andr, thenz; converges to;; = 0. Finally d
according to Lemma 3 and the change of coordinates definﬁ

§ta from their neighbors. At time= 0, the control using
by W and U, the equilibrium is given in Theorem 1. m

n zero initial conditions in—r, 0] is implemented.
Finally, the difference between these two protocols has

Note that the stability conditions does not depend oﬁn unexpected influence on the position of the equilibrium

the choice of WW. It is only required thatB belongs to point.

RN-Dx(N-1), C. Precision on the symmetric case

In [10], it was noted that the consensus problem (6) does Provided that the communication graph is connected, the

not preserve the average consensus. In contrast to [7], [8], thaest of the Laplacian eigenvalues are all positive. We denote
effect that initial conditions and delays have in the resultingqem byO < Ay < < Ay. It thus means thaB is a

consensus equilibrium is explicitly shown. diagonal matrix with—\;. The first equation of (11) can

Another issue that ha§ to. be solved concerns the Ca5E further decomposed inty — 1 equations based on the
of disconnected communication networks. In the case of &}agonal form of theB matrix. In particular, denoting; =

disconnected networkl3 has at least oné-eigenvalue [3].
Then the stability conditions given in Lemma 1 will not be
satisfied as well since the matrix is not Hurwitz. The term  21,(¢) = —pz1;(t) + (=X + p)z1i(t —7), i €{2,...,N}.
BTP + PB can not be negative definite and consequently a7

the LMI (15) can not hold. It also means that there exists at In the sequel, we examine the stability of the system (17).

[211, ..., 21,n—1] the first equation of (11) is equivalent to



Theorem 2:The consensus problem (9) is asymptotically
stable for all delays and the consensus equilibrium is given

by: :i\
N (:vz(O) + pe7? fET xi(u)eusdu> T .

I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
time (s)
20 T

e = li
Teq im s P ———

i=1
(18) s
Z10-

Proof: The proof follows the line of the proof of 5
Theorem 1. Consider equation (17) in the frequency domain. o

I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Its stability is equivalent to proving that all the roots of the time (<)
characteristic equation: 2
15
s+pu+ (A —pe ™ =0, (29) T10F
5
lie in the left hand side of the complex plane. Considet 0 ‘ ‘ ‘
o+ j6 with a, 3 € R. Then (19) is equivalent to: cor Rt e ST
a+p+ (A —p)e 7 cos(Br) =0, (20a) iz
B— (N — e “Tsin(fr) =0, (20b) st
It is well known that these equations have an infinite Z A S S N S S S S
number of solutions, and that the solutions are conjugate, ° * * ° * 2o ° = °* ¢ ©
i.e., if 8 is a solution of (20b) ther-( is a solution as well.
For all 3, which are solutions of (20b), defing, = Fig. 1. Simulation results forly and Corollary 1 type withr = 0.1 (a),

cos(Bx7). Since (20b) is verifiede, can not be equal to 7= 06 (b) andr =2 (c) and Corollary 2 withr = 0.6 (d)
1 or —1, except the cas@ = 0. If ¢;(\; — p) < 0, then
a+ p < 0. Thene is strictly negative. Fogg (A; — i) > 0,
consider the functiorf,, = a + p — ex(A; — p)e= 7. Since
ex(Ai—p) >0, fe, is a strictly increasing function. Consider
now f., (0) = p + ex(\; — p). From [5], the eigenvalues of
B lie in the interval]0, 2. This implies thai; — u| < p.

The conditions of Theorem 1 can be verified for all delay
bounds7, which means that consensus is achieved for any
delay .

Sinceey, lies in] — 1, 1, f., is strictly positive. It means Network | Ao | A1 | 4, 1;1(5 As

that the solutionay, such thatf., (o) = 0 is strictly TC T s s s s

negative. Since all the roots of (19) have strictly negative 1_0 1 9.09 | 8.48 | 9.09 | X | 9.09

real part, the solutions asymptotically convergezto = 0, T=>

whatever the delay. Finally according to Lemma 3, the 01—%6 6.25 | 5.83 | 6.25 | X | 6.25

equilibrium is given by (13) and is further simplified using 2‘1_&

Us =1/(aN)T. u Tl 3.33 | 3.11 | 3.33 | X | 3.33
IV. EXAMPLE C2 10 | 9.33 | 10 X 10

Consider a set four agents moving from their initial
positions X, = [0 5 15 20]. We consider different kind of ~ Figures 1, 2 and 3 show the simulation results for the
networks and wether or not consensus is achieved and thegnsensus defined by the adjacency matridgs A; and
provide the consensus value. The communication networks:. It contains three different cases which correspond to

are defined with: = 1 and the following adjacency matrices: the initial conditions of Corollary 1 type withr = 0.1 (a),
7= 0.6 (b) andr = 2 (c) and Corollary 2 type withr = 0.6

0 0.5 0 0.5 0 1 0 0 i 4
Ag= |05 0 05 0 A 05 0 0 05 ] (d). For all of them, consensus is achieved, but the consensus
- 0 0.5 0 0.5 ) - 0 0.5 0 0.5 ’ ilihri i
05 o 05 o o os 05 o equilibria are pllfferent.
0 1 0 0 01 0 0 In all the figures, the plots (a), (b) and (c) show the
Av=110 o o V1A= 000" ] , influence the initial conditions on the solutions. It can be
1 0 0 0 00 1 0 seen that the agents are only driven by the diagonal terms
193 s i;g %g during the interval0, ]. Then since the delayed terms act
As= 1/3 1/3 0 1/3 on the dynamics, the agents achieve a consensus.
1/3 1/3 1/3 0

In the (c) plots, consensus is achieved with the classical
Note thatdy, and A, are a symmetric matricegl; andA,  oscillatory behavior of time-delay systems.

are non-symmetric ands represents a disconnected graph. Another interesting comment concerns the convergence

The following table shows the coordinates of the consensuate. Consider the cases where the initial conditions follow

equilibrium provided that the LMI of Theorem 2 are satisfiedCorollary 1 in Figure 3. It can be seen that the convergence



20 20
15 i 15 b
- m\ i S 10 ,
5" | 5 J
o ; ; ; ; ; ; ; ; ; 0 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10
0 1 2 3 4 d 5 6 7 8 9 10 time (s)
ime (s)
20 . 20 T
15 1 5 1
g 10\\ . e 101 i
5 = 5 )
0 S e T B— % 1 2 s 4 5 & 1 8 9 1
0 1 2 3 4 5 6 7 8 9 10 time (s)
time (s)
20
20
15 b
15 q
S 10 i
2 10 q
5 i
5 J
0 : e — % 1 2 s 4 5 & 1 8 s 10
0 1 2 3 4 5 6 7 8 9 10 time (5)
time (s)
20 20
15 B 15 ]
T 10 4 T 10F
5 1 5 i
0 L L L L L L L L L 0 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
time (s) time (s)
Fig. 2. Simulation results fol; and the same cases as in Figure 1. Fig. 3. Simulation results fod, and different values of the delay.

rate forr = 0.1 andr = 1.2 is less than the one far = 0.6.

Thus, it is not intuitive that the introduction of a delay into

the consensus problem may improve the convergence rate.

The phenomenon does not appear in the simulations wit{v]

Ay

and Ay which means that the behavior depends on the

network. Some recent articles already investigated this issug]
[6],[14]. Further research investigating on the influence of
the delay on the convergence rate would be interesting t&!

explain these phenomena.

V. CONCLUSION

[10]

The influence of time delays in the consensus problem wés!]
studied. The main result shows that consensus is achieved
but the position of equilibrium point strongly depends both12]

on

the value of the delay and on the initial conditions.

This time delay approach allows considering simple syny;s;
metric/asymmetric and connected/disconneted communica-

tion network. Further research involves considering differe

time-varying delays and using results on exponential stabili
of time-delay systems [13] to provide an estimate of the

exponential decay rate.

(1]

(2]

K]
(4]
(5]
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