A. D. Alexandrov, Theory of mixed volumes for convex bodies, Mathem. Sb. USSR, vol.2, pp.947-972, 1937.

G. Bellettini, V. Caselles, and &. M. Novaga, The Total Variation Flow in RN, Journal of Differential Equations, vol.184, issue.2, pp.475-525, 2002.
DOI : 10.1006/jdeq.2001.4150

F. Brock, V. Ferone, and B. , A symmetry problem in the calculus of variations, Calculus of Variations and Partial Differential Equations, vol.173, issue.6, pp.593-599, 1996.
DOI : 10.1007/BF01261764

G. Buttazzo and P. Guasoni, Shape optimization problems over classes of convex domains, J. Convex Anal, vol.4, issue.2, pp.343-351, 1997.

G. Buttazzo, V. Ferone, and &. B. Kawohl, Minimum Problems over Sets of Concave Functions and Related Questions, Mathematische Nachrichten, vol.2, issue.1, pp.71-89, 1993.
DOI : 10.1002/mana.19951730106

G. Carlier, On a theorem of Alexandrov

G. Carlier and &. , Convex bodies of optimal shape, J. Convex Anal, vol.10, pp.265-273, 2003.

G. Carlier and &. , Regularity of solutions for some variational problems subject to a convexity constraint, Communications on Pure and Applied Mathematics, vol.28, issue.5, pp.583-594, 2001.
DOI : 10.1002/cpa.3

G. Carlier, T. Lachand-robert, and &. B. Maury, H1-projection into the set of convex functions : a saddle-point formulation, ESAIM: Proceedings, vol.10, 2001.
DOI : 10.1051/proc:2001017

G. Carlier, T. Lachand-robert, and &. B. Maury, A numerical approach to variational problems subject to convexity constraint, Numerische Mathematik, vol.88, issue.2, pp.299-318, 2001.
DOI : 10.1007/PL00005446

J. Cheeger, A lower bound for the smalles eigenvalue of the Laplacian, in: Problems in Analysis, A Symposium in Honor of Salomon Bochner, pp.195-199, 1970.

P. Choné and &. Rochet, Ironing, Sweeping and Multidimensional screening, Econometrica, vol.66, pp.783-826, 1998.

P. Choné and &. Meur, NON-CONVERGENCE RESULT FOR CONFORMAL APPROXIMATION OF VARIATIONAL PROBLEMS SUBJECT TO A CONVEXITY CONSTRAINT, Numerical Functional Analysis and Optimization, vol.41, issue.5-6, pp.5-6, 2001.
DOI : 10.2307/2999574

V. Fridman and &. B. Kawohl, Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carol, vol.44, pp.659-667, 2003.

J. Holland, Adaptation in natural and artificial systems, 1975.

I. Ionescu and &. , Generalized Cheeger sets related to landslides, Calculus of Variations and Partial Differential Equations, vol.17, issue.2
DOI : 10.1007/s00526-004-0300-y

B. Kawohl and &. , Characterization of Cheeger sets for convex subsets of the plane, Pacific Journal of Mathematics, vol.225, issue.1
DOI : 10.2140/pjm.2006.225.103

T. Lachand-robert and &. M. Peletier, Newton's Problem of the Body of Minimal Resistance in the Class of Convex Developable Functions, Mathematische Nachrichten, vol.173, issue.1, pp.153-176, 2001.
DOI : 10.1002/1522-2616(200106)226:1<153::AID-MANA153>3.0.CO;2-2

P. Lions, Identification du c??ne dual des fonctions convexes et applications, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.326, issue.12, 1998.
DOI : 10.1016/S0764-4442(98)80397-2

H. Minkowski, Allgemeine Lehrsätzë uber die Konvexen Polyeder
DOI : 10.1007/978-3-7091-9536-9_5

R. T. Rockafellar, Convex Analysis, 1970.
DOI : 10.1515/9781400873173