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Optimal Transportation Problems
with Free Dirichlet Regions

Giuseppe Buttazzo, Edouard Oudet, Eugene Stepanov

Abstract. A Dirichlet region for an optimal mass transportation problem is,
roughly speaking, a zone in which the transportation cost is vanishing. We
study the optimal transportation problem with an unknown Dirichlet region
3 which varies in the class of closed connected subsets having prescribed 1-
dimensional Hausdorff measure. We show the existence of an optimal X,p¢
and study some of its geometrical properties. We also present numerical com-
putations which show the shape of ¥,,; in some model examples.
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1. Introduction

Optimal mass transportation problems received a lot of attention in the last years,
among all, also for extensive connections with other fields such as shape opti-
mization, fluid mechanics, partial differential equations, geometric measure theory
(see [5, 4, 12, 13, 14]). Given two nonnegative measures f+ and f~ over RY the
problem consists in the optimization of the cost of transporting f* into f~ by
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means of a transport map T : RN — RY. More precisely, we say that T trans-
ports fT into f~ and call T a transport map, if Ty ft = f~ where Ty is the
push-forward operator, that is

H(T'B) =f (B for every Borel set B ¢ R". (1)

Clearly, in this way, in order to have a nonempty class of admissible transport
maps, we have to require that the two measures fT and f~ have the same mass.
For every transport map T the cost of transporting f* to f~ is defined by

10 = [ ela,7@) dr* (o) (@)

where ¢(z,y) is a given continuous nonnegative function. The problem of optimal
mass transportation is then

min {J(T) : T transports f* into f~}. (3)

Usually the cost density c¢(z,y) is taken as a function of the Euclidean dis-
tance. In particular, one often chooses ¢(z,y) = |z — y|P. The case p = 1 is then
the classical Monge transportation problem and is related to several problems in
shape optimization theory (see [4]). The case p = 2 is also widely studied for its
applications in fluid mechanics, while the case p < 1, or more generally when c is
a concave function, seems to be the most realistic for several applications, and has
been studied in [7]. We quote as general surveys on mass transportation problems
the book [12] as well as the monographs [6, 5, 1, 13, 14], where the reader may
find all the details that here, for the sake of brevity, will be omitted.

When the measures f+ and f~ may concentrate on lower dimensional sets, it
may happen that no admissible transport maps exist. This is for instance the case,
even if N = 1, when fT = 28§y and f~ = d; + d_1. For this reason it is convenient
to consider, the relaxed formulation of the problem due to Kantorovich, which uses
instead of transport maps 7', the so called transport plans, which are nonnegative
Borel measures v on the product space RN x R such that

v =f+, Ty =17,
where 7t and 7~ are the projections of RN x R on the first and second factors
respectively. It is easy to see (cf. [1]) that a transport map T always induces a
transport plan v given by v = (Id x T')x f*. Conversely, every transport plan -y

which is concentrated on a y-measurable graph I is induced by a suitable transport
map 7. The cost of a transport plan + is simply given by

10 = [ el drtay) @)
so that the optimal mass transportation problem becomes
min {J(y) : ~ transport plan of f* into f~}. (5)

Again we notice for the class of admissible transport plans to be nonempty, the
measures ft and f~ must have the same mass.
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Most often one considers the optimal mass transportation problem (5) con-
strained to a set K C R”Y. The latter represents a region to which the transporta-
tion process is confined. This simply means that all the geodesic paths along which
the mass is carried have to remain into K. In what follows we assume that K = )
is the closure of a smooth connected bounded open set Q@ C RY. The function
¢(z,y), which measures the cost to carry the mass from the point  to the point
y, has then to take into account that, unless (2 is convex, the shape of (2 modifies
the length of geodesic paths. In particular, the cost function of the form ¢(|z — y|)
has to be replaced by c(dq(z,y)) where dg is the geodesic distance on Q given by
the formula

do(z,y) == inf{/o o/ (B)]dt : @ € Lip([0, 1), a(0) ==, a() = y).

Furthermore, in applications (see for instance [4] for the relations with shape
optimization problems) one often considers the presence of the so-called Dirichlet
region ¥ C Q (in the sequel assumed to be a closed set), which represents the
zone where the cost of transportation vanishes. Heuristically it means that you
are allowed to transport mass free of charge “along ¥”. More formally, it means
that the presence of ¥ modifies the distance which governs the optimal mass
transportation problem. In fact, setting

doyx (z,y) = inf{da(z,y) A (da(z,&1) +da(y,&2)) @ &,& € X}

we obtain a semi-distance on Q which does not count the paths that both start
and end in ¥. We also generalize the notion of a transport plan for the case of
the presence of a nonempty Dirichlet region ¥ C Q, saying that a Borel measure
v over Q x 1 is a transport plan of f* into f—, if

iy —myzy=ft—f onQ\Z.

Plugging now the above semi-distance instead of dg into the problem (5), we obtain
the new optimal mass transportation problem [4]

min {/(b(dg,z(x,y)) dy(z,y) : v transport plan of f* into f~}.  (6)

Note that for the latter problem, in view of the generalized definition of a transport
plan, it is not necessary to require that f* and f— have the same mass.

In this paper we are studying the optimization problem of finding the “best
possible” Dirichlet region ¥ C  subject to certain constraints. Namely, we will
call MK (X) the minimum of the problem (6) and we will study the minimization
of MK with respect to ¥. In the case ft := LNL_Q and f~ = 0 the functional
M K reduces to the average distance functional

MK(E):/distQ(a:,E)d:c,
Q

where dist o(z, X) := infyex do (2, y).
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The natural constraints for X are as follows: X can vary in the class of closed
subsets of (0 with prescribed length (i.e. Hausdorff H! measure) and with pre-
scribed finite number of connected components. In fact, it is clear that if either of
the constraints is dropped, then the infimum of this optimization problem in X is
trivially zero. When f+:= LN Q, f~ =0 (i.e. MK is just the average distance
functional) and the length constraint on ¥ is zero, the above problem turns out
to be the problem of optimal location of a finite number of points in a set 2. The
latter has a lot of applications in economics and urban planning, but despite being
extensively studied recently, still lacks a complete understanding of the qualitative
properties of solutions. For a recent survey on this problem we refer the reader
to [9]. In this paper we focus our attention on the case of nonzero length constraint,
and, just for the sake of simplicity, the set ¥ is required to be connected (it will be
clear from our results that allowing a finite number of connected components will
not change the qualitative properties of each of the components). We will show
that an optimal X,,; exists and we study some geometrical properties of X,,; in
the simplest situation when MK is reduced to the average distance functional.
We also present some numerical computations which show the shape of ¥, in
some model examples in order to justify some of our conjectures which still lack a
rigorous proof.

2. Existence of optimal sets

Let [ > 0 be fixed and let Q be a bounded connected subset of R_N with a Lipschitz
boundary. We also fix two nonegative measures f* and f~ on Q and consider the
optimization problem

min {MK (2): X C Q closed, connected, H!(X) < 1} (7)

where the functional M K is defined in the introduction as the minimum value of
problem (6). We have the following existence result.

Theorem 2.1. Let the function ¢ appearing in (6) be continuous. Then the prob-
lem (7) admits a solution.

PROOF: Let a sequence {%,}22, of closed connected subsets of 2 be a min-
imizing sequence for the functional MK, satisfying H'(3,) < I for all v € N.
According to the Blaschke theorem (theorem 4.4.6 of [3]) one has ¥, — ¥ in the
sense of Hausdorff convergence up to a subsequence (not relabeled), while ¥ C € is
still closed and connected. Moreover, in view of the Golab theorem (theorem 4.4.7
of [3]) one also has H!(X) < I. Observing now that the Hausdorff convergence
implies dg(z,%,) — do(z,X) for all z € Q, we obtain

das, (z,y) = daox(z,y)

for all (z,y) € Qx ). Moreover, since all dg 5, are Lipschitz-continuous for the Eu-
clidean distance with the same Lipschitz constant, then the convergence is actually
uniform.
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Let now -y, be the respective optimal transport plans, i.e.

MK(Z,) = | ¢ldays,(z,y)) dy(z,y),
QxQ
while
W;'y,, — MYy = ff—f onQ\X,.
The sequence {7, (€2)}°2, can be assumed bounded, and hence up to a subsequence
(again not relabeled) v, — v *weakly in the sense of measures, where -y is some
positive Borel measure over ). Clearly then

Ty =Ty =ft—f" onQ\Z.
In fact, for every ¢ € Co(2\ ¥) one has

[ vy —mpn = tim [ vt —mpn) = [t 1),

since every function with compact support in '\ T has also compact support in
2\ X, for sufficiently large v € N (this follows from the convergence ¥, — ¥ in
the sense of Hausdorff). At last it remains to observe that

MEKX)< | dldox(z,y)dy(z,y) =lim [ (dos,(z,y))dv.(z,y),
QxQ voJaxQ

which shows that ¥ is a minimizer of the problem. O

Remark 2.2. A word-to-word restating of this proof shows even a formally slightly

more general result, namely, that the functional M K attains a minimum even over

a class of closed subsets ¥ C 2 with #!(¥) < I and having fixed prescribed number

of connected components. The latter case includes also the situation I = 0 but the

number of connected components is greater than one. If f+ := LV Q and f~ =0,

the functional M K reduces to the average distance functional, and (7) is just the

problem of optimal location of a finite number of points in Q (see [9]).

3. Qualitative properties of optimal sets

In this section we consider some qualitative properties every optimal solution X,
to the problem (7) has to fulfill. We present here some problems together with some
conjectures which we believe are true. We also present some numerical approxi-
mations of X,y in different particular situations as well as proofs of some results
which, though sometimes weaker than our expectations, still induce to think that
the conjectures we formulate most probably hold true.

When formulating the problems below we assume that @ C R” is a bounded
connected open set with Lipschitz boundary and that the measures f+ and f—
are absolutely continuous with respect to the Lebesgue measure and different from
each other. For simplicity we consider only the case of the cost function ¢(¢t) = t,
though most of the questions below could also be raised for more general cost
functionals.
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Problem 3.1 (Regularity). Study the regularity properties of the solutions Xp;.
We actually expect that ¥,p; are piecewise smooth, i.e. made of a finite number of
smooth curves connected through a finite number of singular points.

Problem 3.2 (Absence of loops). Study the topological properties of the solutions
Yopt- We expect that Xope do not form closed loops in ). When the dimension N
is equal to 2 this can be ezpressed by saying that R? \ Top is connected.

Problem 3.3 (Triple points). Study the nature of the singular points mentioned in
Problem 3.1. We expect that they can only be triple points, that is points where
three curves meet, with angles of 120 degrees.

Problem 3.4 (Distance from the boundary). Study the cases when the optimal so-
lutions X,pt do not touch the boundary 0). We expect that this occurs at least
when ) is convex.

Problem 3.5 (Behavior for small lengths). Study the asymptotic behaviour of Xopt
as I — 0. In particular we expect that for I small enough X, is a smooth curve
without singular points. More in general, it would be interesting to obtain an esti-
mate of the number of singular points in terms of the length of Xopt.

Problem 3.6 (Behavior for large lengths). Study the asymptotic behaviour of Xop
as | = +oo. It is not difficult to see that the value Vi of the optimization prob-
lem (7) vanishes as I — +o00. It would be interesting to evaluate the order of the
vanishing quantity V;. Moreover, once we estimate that V; = O(17P) for some
B >0 asl— +o0o, it is interesting to study the T'-limit as | = +0o0 of the rescaled
functionals

1

Gi(2) = l—gMK(E)

with respect to the convergence

1
i A & Y’HI LY, = X weakly* in the sense of measures.

In particular, if ¥; are optimal configurations of length [, it is interesting to study
the asymptotic behaviour of ¥; as well as their limit X\ in the sense above.

We now start to develop the program introduced above by considering the
simpler situation when Q is convex, fT is the Lebesgue measure on Q, f~ = 0.
Then the functional M K () reduces to the average distance functional and dg to
the Euclidean distance, so that problem (7) becomes

min {/ dist (z, %) dz : & C Q closed, connected, H' (T) < l} . (8)
Q
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3.1. The problem in a unit disk of R?

We start by considering the case when Q is the unit disc in R2. The first guess
for ¥,p in the case [ is suffuciently small could be a circumference centered at
the origin, which is however ruled out by theorem 3.10. A second guess for ¥,p,
always in the case of a sufficiently small I, would be a segment centered at the
origin. This is again excluded by proposition below, the proof of which can be
found in Appendix A.

Proposition 3.7. There exists lo > 0 such that for all | < ly the centered segment
of length | is not optimal for problem (8).

We will now discuss the numerical approximations of the optimal set in a
unit disc of R?. We will limit ourselves to presenting the results and ideas of the
methods rather than the technical aspects of our algorithms. The latter will be
described in details in [10]. Two cases will be subject of our numerical study:

(i) X is a set consisting of finite prescribed number of points (location prob-
lem);
(if) ¥ is a compact connected set with prescribed length.

For each of the above constraints we use a different numerical approach.

3.1.1. OPTIMAL LOCATION OF A FINITE NUMBER OF POINTS Given n € N, we
are looking for an optimal n-point set X,, which minimizes the quantity (8). If
n = 1, it is not difficult to prove that the only minimizer is the center of the disk.
When n > 2 is not too large we could guess that the optimal set 3, is given by
the vertices of a centered regular polygon.

To approximate numerically ¥, for n > 1, we use the classical finite difference
method. As underlined in [8], this is a reasonable way to solve design optimization
problems with few parameters. We present in figure 1 two pictures obtained by
this process. The first one shows that for n = 5 the optimal set X5 seems to be
distributed on a regular centered polygon. The same situation occurs for n = 2, 3,
4. The second image represents the case of n = 6, and one can observe that the
center of the disk is one of the optimal locations.

FI1GURE 1. Optimal locations of 5 and 6 points in a disk.
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3.1.2. OPTIMAL COMPACT CONNECTED SET WITH PRESCRIBED LENGTH We are
now looking for an optimal set ¥,,; among all compact connected sets of the
disk with one-dimensional Hausdorff measure not exceeding [. This situation is
definitely more complex from a numerical point of view than the previous one.
The main problem is to build a process which is able to identify the topology
of ¥;. Moreover, it is intuitively clear that this problem has a great number of
local minima. Last but not least, the length constraint is rather difficult to handle
numerically. Considering these difficulties, it seems natural to use an Evolutionary
Algorithm (EAs) with an adaptive penalty method. We will not present here the
theory of EAs but we refer the interested reader to [11] for an introduction to
Adaptive methods in EAs. Further numerical details like the representation of 3,
the cost function, the adaptive penalty and different test cases will be described
more accurately in [10].

In figure 2 one can see the values V(l) obtained by the chosen numerical
method as a function of length constraint I. They are compared to numerical
evaluations of (8) for some simple sets like a circumference, a regular cross (of two
perpendicular intervals), a regular trisection (i.e. 3 equal intervals joined at one of
their endpoints at the angle of 120 degrees each) and a segment, all centered at
the origin. In this figure

o stands for the cirumference centered at the origin,
+ stands for the centered perpendicular cross,
* stands for the regular trisection,

- - stands for the segment,

— stands for the numerical approximations of optimal sets.

In the same figure we present a graph of IV (l) as a function of ! (in fact, in
theorem 3.16 we will show that the quantity [V (I) for the optimal set is bounded
as | — +00).

Value of the mean distance
Value of the mean distance multiplied by the length
~

Value of the length Value of the length

FIGURE 2
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In figures 3-5 the numerical approximations of optimal sets in a disc for differ-
ent lengths are shown. Perhaps somewhat unexpected is the fact that the number
of singular points does not seem to be an increasing function of the prescribed
length. More numerical computations are presented in Appendix B.

OO

FIGURE 3. Optimal sets of length 0.5 and 1 in a unit disk

O ©

FI1GURE 4. Optimal sets of length 1.25 and 1.5 in a unit disk

O C

FIGURE 5. Optimal sets of length 2 and 3 in a unit disk

3.2. Singular points

From now on we present some simple results on the qualitiative properties of the
optimal set ¥,,; in a generic closed convex set (2. The results we present here do
not completely answer the questions raised at the beginning of this section, but
rather indicate what kind of strong results one can reasonably expect.

We start from a very simple proposition which gives a partial answer to Prob-
lem 3.3, restricting, roughly speaking, the possible singularities of the optimal set
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to only triple points, i.e. points where three curves meet with angles of 120 degrees.
In order not to overburden the paper with technical details we just formulate the
proposition in its simplest way, namely, we assert that a cross can never be an
optimal set in @ C R2. We call a cross the union of two mutually perpendicular
closed intervals intersecting in a point which is internal for both.

Proposition 3.8. Let N = 2. Then a cross is not an optimal set.

PROOF: Assume the contrary, i.e. that 3,,; is a cross, and assume without
loss of generality that its center (i.e. the intersection point of two intervals) is the
origin of coordinate system.

STEP 1. For every sufficiently small ¢ > 0 the set D, := X,,:NIB.(0) consists
of exactly 4 points. Denote by S4(D.) C B.(0) a set of minimum length in the
ball B, (0) which connects the all the four points of D, as in figure 6 (we will call
it a Steiner connection of these points)as in Figure 6. Observe now that

H (Zopt N B:(0)) — H' (S4(D.)) > Ce

for some C' > 0 (here and below the value of the constant C' may vary from line
to line). In fact, to show this estimate, it is enough to prove ist rescaled version

H((1/€)Bopt N B1(0)) — H' (S4(D1)) > C,
which follows from the direct computation

H((1/€)Sops N B1(0)) = 4 and H'(S4(D1)) = V2(V3 +1) < 4.

FIGURE 6. Steiner connection

STEP 2. Let now X, be ¥, outside of B, (0) and Sy (D) inside B.(0). Clearly
then
dist (z,2.) < dist (z, Zopt) + 2¢

for all z € 2. Moreover, let A. be the set of points whose projection on ¥, is
different from the projection on ¥.. It is easy to see that A. is contained inside a
square centered at the origin of size . Therefore

/dist (a:,EE)da:S/dist (z,Topt) dx + Ce? (9)
o Q
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According to Step 1, we have however at least the additional length Ce to use
in order to decrease the functional. This is achieved by using lemma 3.12 below.
Namely, according to this lemma we can attach a segment of this length to 3.
obtaining a set X so that

/dist (z,X0)dx < / dist (z, £.) dz — Ce®/2. (10)
Q Q
Now, in view of (9) and (10), one gets for sufficiently small &€ > 0 the estimate
/dist (z,21)dx < / dist (z, Lopt) dz — Ce®/?,
Q Q

for some C' > 0, which contradicts the optimality of ¥,,,. O

Remark 3.9. Arguments similar to the ones used in the above proof allow to show
that our conjecture stated in Problem 3.3 is true at least if ¥, is piecewise
sufficiently smooth.

3.3. Absence of loops
We present here a result giving a partial answer to Problem 3.2.

Theorem 3.10. Let N = 2. Then for H'-a.e. z € S, and for all sufficiently small
€ > 0 the set Lop \ Be(z) is disconnected.

PROOF: Suppose the contrary, namely that the set
A={z € Xyp : e, }o21,60 N\ 0 such that X,p; \ Be, () is connected}

has positive length, i.e. H!(A) > 0. Further on we omit the reference to the index
v writing always ¢ instead of ¢,. Let A C A stand for the set of density points of
Y ,pt, i.€. such that for every z € A one has

lim H (Zopt N Be(z))
e—0t 2e
Since ¥, is (H',1)-rectifiable, then H'(A) = #'(A) by Besicovitch-Marstrand-
Mattila theorem (theorem 2.63 from [2]).

For every € A and € > 0 let T(z,¢) stand for the union of transport rays
of the Monge-Kantorovich problem of transporting £~ L_Q to its projection over
¥ which end at X,,; N B:(z). Set X.(z) := X,p \ Be(z). Clearly, according to our
assumption, ¥ (z) is still closed and connected, and, of course, satisfies the length
constraint since H'(X.(z)) < H'(Zopt). The following estimate is valid

/dist (2,2c(x))dz =
Q
/ dist (z, X (x)) dz +/ dist (2, X (2)) dz <
O\T'(z,e) T(z,e)

dist (2, Xopt) dz + (dist (2, Xopt) + €)dz =
Q\T(z,e) T(z.e)

/ dist (2, Sopt) dz + LN (T(x, 2)).
Q

=1.
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One also has
LN(T (2,€)) = $(Be()),
where ¢ stands for the projection of £V to Yopt- But
lim sup 7¢ (B (z))

e—0*t €

< 400

for Hl-a.e. z € A, which implies
LN(T (2,e)) < Ce

for some C' = C(z) > 0 depending on z and for sufficiently small ¢ > 0. Summing
up, for H'-a.e. z € A one has

/ dist (z, X (z)) dz < / dist (2, Zopt) dz + Ce? (11)
Q Q

once € > 0 is sufficiently small.
Let now

1(6) = Hl (Eopt) - HI(EE(IE)),

where z € A is such that (11) holds. Since we chose 2 € A, one has I(e) = Ce+o(e)
for e — 0 for some C' = C'(z) > 0. Applying now lemma 3.12 with X.(z) instead of
¥ and I(¢) instead of ¢ to find a closed connected set X' C  satisfying H!(Z') =
HY(Z) +1(e) and

/dist (z,%") dx < / dist (z, S, (z)) dz — Ce®/?
Q Q
for some C > 0 as € — 07. Using (11), one arrives at the estimate

/ dist (, ) dz < / dist (2, Sope) d(z) — Ce3/°
Q Q

for sufficiently small ¢ > 0, which gives a contradiction with the optimality of 3,p;.
O

Remark 3.11. For a piecewise smooth 3,,; the conclusion of theorem 3.10 implies
the absense of loops indicated in Problem 3.2. In fact in this case R? \ X, is
connected.

Lemma 3.12. Let N = 2 and ¥ C Q be a compact connected set such that ¥NQ # 0.
Then there is a constant C > 0 such that for all € > 0 there is a segment S; of
length € such that the following conditions hold:

e the set X, := X U S. is connected;
o the inequality

/ dist (2,%.) dz < / dist (2,%) dz — Ce®/?
Q Q

is true for sufficiently small € > 0.
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PROOF: Let A € XN and O € N\X such that A is a projection of O on X.
Without loss of generality consider the coordinate axes to be positioned so that O
is the origin of the coordinate system and the following conditions are satisfied:

L] Bl(O) C Q,
e XN B;(0) = 0 where B;(0) stands for the unit open disc;
o A:=(0,-1) € XN By (0).

Let Ac := (0,—1+¢), S := [A, A.] stand for the closed interval with end-
points A and A. and X, := ¥ U S.. Consider the set

A :={z=(z,y) € B1(0) : y <0, d(z,A.) —dist (z,0B1(0)) < —e/4}.

If we are able to prove that £V (A.) > Ce'/? for some C' > 0, then the proof will
be finished. Indeed, for z € A, one has

dist (2, 3.) < d(z,A:) < dist (2,0B1(0)) —e/4 < dist (2, %) —e/4,
and hence
/Q dist (2, 5.) dz — /Q dist (z,%) dz < —eLN (A.) /2 < —CE3/?
It remains therefore to estimate £V (A.) from below. Let 0 < k < 1/2 and
I, = {z = (z,y) € B1(0) : |y +1/2| < (1 — 4k?)Y/2/2, |z| < kam} .

For every (x,y) € IIj ., we have

1/2
d(z,Ae) — dist (2,0B1(0)) < (w2 +@y+1- 6)2) —1+ (2% + y2)1/2

1/2 .
(k25+(y+1—5)2) —1+(k26+y2)1/2
—1+ |yl +K%/2ly| + (y+ 1)+
e(R?-2@y+1)/2(y+1)+ac’

e(K*/ (y+1)—2+k/|y|) /2+ a®,

IN

AN

where o = a(k) > 0 is some constant. It is easy to verify that since z € Il ., then
K/ (y+1)—2+k/lyl < -1,
and hence
d(z,A.) —dist (2,0B1(0)) < —¢/4
for sufficiently small € > 0, which means II; . C A, for such €. Thus
LY (Ae) > £N () > Ce'/2,

for sufficiently small € > 0, which concludes the proof. O
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3.4. The optimal set and the boundary

We are able to give now a partial answer to Problem 3.4. It only says that the
intersection of ¥,,; with 9 cannot have a positive H' measure. Moreover, it
is only proven when N = 2 and for  C R? convex, with sufficiently regular
boundary having everywhere positive curvature.

Theorem 3.13. Let Q C R? be a convex set with a C? boundary having everyhere
positive curvature and Xop; be a solution to problem (8). Then H (Z,,; NON) = 0.

PROOF: Suppose the contrary, i.e. H'(Z,,: N ON) =: a > 0. Consider then
for every € > 0 the set

Q. = {z € Q: dist (£,00) > ¢}
and let p. stand for the projection map on the closed convex set ()., namely,
pe(x) =z + (¢ — d(2))* Vd(z),

where d(z) := dist (z,00) and (-)* stands for the positive part function. Let
Ye 1= pe (Zopt). Clearly, X, is still connected and compact.
STEP 1. Let us estimate from below

H (Eopt) -H (Ze).

This difference is nonnegative since p. is Lipschitz continuous with constant one.
To make a more precise estimate, we note that

Vp.(z) :=Id + (¢ — d(2))"V?d(z) — Vd(z) ® Vd(z), for 0 < d(z) < ¢,
where Id stands for the identity matrix. In particular, for z € 9Q one has
Vp:(x) := T +eV2d(x) where T := Id — Vd(z) ® Vd(z).

A simple calculation shows that (T'z,z) = |2|? — |2,|?> < |z|?, where z, stands for
the projection of z on the direction of the normal v := Vd(z) to the boundary 9
at the point z. Since we assumed 9 to be of class C2, then V?2d is continuous over
011, and, moreover, since the curvature of 9 is supposed to be strictly positive,
then the matrix —V?2d(z) is positive definite along the directions tangential to 1.
Namely, there is a K > 0 such that —(V2d(z)z,,2,) > K|z,|? for all z € 09,
where z,; stands for the projection of z on the tangent space to the boundary 02
at the point z. Also, clearly Vp.(z)z, = 0 for every z € RY. Summing up, we
have

|Vpe(2)z] = [Vpe(2) 2| < (1 = Ke)|zr| < (1 - Ke)l2|

for all z € 012.
Without loss of generality we may suppose that 9 is parametrized by a
curve and let «: [0,L] — 0N be the arc-length parametrization of 9. Then,
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setting e := X, N O, we get by the area formula
Hee) = [ ol s
y~1(e

1-Ke) [ |r@la=
7~ 1(e)

(1 - KeYH!(e).
Hence we finally arrive at the estimate
H (Sopt) — H' (Ze) > H'(e) — H' (p-(e)) > Kae.
STEP 2. Clearly,

/dist (z,EE)dzZ/dist (2, Xopt) dz.
Q Q

We now estimate more precisely the difference between the two integrals. For this
purpose consider a point of z €  for which

dist (z,%.) > dist (2, X,p) - (12)

Denote by 2o an arbitrary projection of z to ¥,,;. Then obviously z € 2\ .. We
claim first that z € Q\(2.. In fact, suppose the contrary, and let zo. stand for the
projection fo zy to 9).. Since (. is convex, then z belongs to a half-plane bounded
by a tangent line to €. at zo., and hence also to the half-plane bounded by a line
passing through the center of the segment [20, 20c] perpendicular to the latter (see
figure 7). This implies d(z, z0e) < d(z, 20) and therefore

dist (2, Z¢) < d(z,20c) < d(2,20) = dist (2, Zopt)

which contradicts the assumption (12).
Let now z. stand for a projection of z on 9f).. One has then
dist (2, Xc) — dist (2, Xope) = d(2,2:) — d(z, 20)
< d(z,2:) <e.
With the above estimate we get

/ dist (2, 5.) dz — / dist (2, Do) dz < / (dist (2, 5.) — dist (2, ope)) dz
Q Q Q\Qe

< e (@\0)

= Ce* +o(?) (13)

for some C > 0ase — 0F.
STEP 3. Consider O € Q.\X, and its arbitrary projection O, to ¥.. We define

¥ =3 US;

where S, is a segment of length H' (2,,;)— H'(Z.) starting at p. (O) and pointing
to O. In view of lemma 3.12 one has

/ dist (z,5)) dz < / dist (z, %) dz — Ce3/? (14)
Q Q
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FIGURE 7

for some C > 0. Combining (13) and (14), we have
/ dist (z,%L) dz < / dist (2, Lopt) dz — Ce®/?
Q Q
for some C' > 0 when ¢ — 0%, which contradicts the optimality of ¥,,:. O

Now we prove a result which in a sense is much stronger, namely, that when
the length of the optimal set is sufficiently small, it must stay away from the
boundary 9. The result will be proven for a generic space dimension N.

Theorem 3.14. There exist lg > 0 and dy > 0 which depend only on Q and on
N such that for all I < ly the optimal set X,,: solving the problem (7) satisfies
dist (Xopt, 0Q) > do. In particular, X,y NN = 0.

PROOF: Consider the functionals F; defined over compact connected subsets
3 C 2 according to the formula

o /dist(x,E)dx, it H1(D) <1,
T Q

400, otherwise.

R(S

As I — 0, these functionals I'"-converge to a functional

z — P|dz, if ¥ ={P} consists of one point,
e [P {P} >

400, otherwise.

In fact, if H1(Z,) = 1, \ 0 and £, — ¥ in the sense of Hausdorff, then H!(X) =0
according to the Golab theorem, and hence ¥ consists of a single point, ¥ = {P},
while

Fo(S) = lim F, (5,).

Supposing now that the assertion to be proven is false, we would have a sequence
of optimal sets ¥, C 2 such that H!(Z,) — 0 and dist (%,,092) — 0. Up to
a subsequence we may assume Y., to be converging in Hausdorff sense to some
compact connected set ¥ consisting of a single point, i.e. ¥ = {P}. Moreover,
clearly, P € 09Q). The above I'-convergence implies that P is optimal in the sense
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that it minimizes the distance functional [, |z —Q|dz among all Q € Q. According
to lemma, 3.15 below such a point should belong to 2, which is a contradiction. O

Lemma 3.15. Consider the optimal location problem for a single point in a conver
set QO C RY, i.e. a problem of finding a point P € Q which provides the minimum

of
inf —Q|dz : Qp.
in {/Q|w Qldz : Q€ }
Then P & 09).

PROOF: Let P € 90 be an arbitrary point of Q. We will show that it is
never optimal. In fact, without loss of generality assume that P is the origin of the
coordinate system (1, ... ,zy) and that the first N—1 coordinates (z1,... ,2n_1)
are in the supporting hyperplane of 2 at P. Let the z axis be directed so that
zy > 0 for all z € €. Consider

Then for each ¢ =1,... , N one has

showing the claim. O

3.5. Asymptotic estimates

We claim the following result on the asymptotic behaviour of the minimum value
of the functional M K as the prescribed length tends to infinity, which gives a
partial answer to Problem 3.4. Denote

V() == / dist (z, Sope) dz
Q
when HY(Zopt) = 1.
Theorem 3.16. Let N > 1. Then
c<VMEN-D <o
for some positive constants ¢ and C' which depend only on N and ).

To prove the lower estimate announced in the above theorem, we need the
following lemma.

Lemma 3.17. Let N > 1 and Q C RN be a cube. Suppose that Q is divided by
a uniform grid paraellel to the edges into small subcubes with the side € > 0. Let
Y C RY be a Lipschitz curve of length | and k be the number of subcubes which
have nonempty intersection with X. Then one has

k<clle+ca

for some positive constants ¢1 and ce which do not depend on € and I.
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PROOF: Note that to intersect all the cubes of the union of 2%V + 1 cubes one
needs a curve of length at least €. In fact, in such a union there are two cubes, the
distance between which is at least €. Therefore, since the curve of length [ connects
k cubes, one has

1> [k/(2Y + e,
where [-] stands for the integer part of the number. The above estimate shows the

statement. O

PRrROOF OF THEOREM 3.16: The proof will be achieved in two steps.

STEP 1. Let () C Q be a cube. Divide () by a uniform grid into small subcubes
with the side € > 0 (a dyadic decomposition is a particular example). Without loss
of generality we may consider ¥,,; to be parametrized as a Lipschitz curve of length
at most 2[. Then

/ dist (x, Zopt) dz > / dist (z, Zopt) da.
Q Q

The latter integral is estimated as follows. For each of the subcubes (). C ) which
do not intersect ¥, one has

/ dist (z, Xopt) do 2/ dist (2, Xopt) dz >
£Y(0Q.)(1 - a) = £N(Q.)aN (1 — a)e

for all a € [0,1]. Hence, maximizing the last expression in «, one gets

dist (z, Zopt) dz > CeN 11
QE

for some C' > 0. Let k' be a number of subcubes (). not intersecting ¥,,;. Then
/ dist (z, Zopt) dz > CK'eN T
Q

Using the estimate from the lemma 3.17 and the fact that the total number of
subcubes is Ce™, we arrive therefore at the estimate

/ dist (z, Xopt) dz > / dist (z,X,pt) dz > c16 — 2Nl — czeN L
Q Q

for some positive constants c¢;, ¢ and c3 independent of [ and . Since the latter
estimate is valid for all ¢ > 0, we may plug in € := CI*/0~N) for some positive
constant C, which is at the moment unknown. We see then that with the choice
0 < C < (c1/e2)™=1) the latter estimate becomes the desired lower bound

/ dist (, L opt) daz > cl*/ =N
Q

for some ¢ > 0 and for sufficiently large /.
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STEP 2. The upper estimate will immediately follow from the construction
of a particular ¥ with H!(X) < CI and such that

/ dist (z,X) dz < 1M/ (N, (15)
Q

where C' denotes a positive constant different in different occasions. For this pur-
pose consider a (INV — 1)-dimensional hyperplane 7 intersecting € by some open set
T. Consider a uniform grid in T parallel to the coordinate axes in the hyperplane,
with the size of a cell equal to . Clearly, the total length of this grid is less or
equal than C/e. Let X stand for the union of this grid with all the line segments
perpendicular to 7, passing through the nodes of T" and staying in 2. Since the
total length of all such line segments is bounded from above by C/eV~1, for small
¢ we have H1(X) < C/eN~1. Since now by construction dist (z,%) < Ce for all
z € Q, where C is independent of z, then

/ dist (z,X) dz < Ce.
Q

The estimate (15) follows now by setting [ := 1/e¥N~1. O
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Appendix A. Proof of proposition 3.7

In order to prove proposition 3.7, we consider the deformation of the segment S
described in figure 8. Namely, for all € > 0, we define the polygonal line L. with
vertices

(=1/24+6(2),0),(0,e) and (I/2—6(e),0), where §(e) =1/2 —+/12/4 — 2.

Obviously, H! (L.) = H' (S;) for all € > 0.
We will now prove that for £ small enough,

/dist(z,LE)dz</ dist(z, S;)dz.
D D

Unfortunately, it is clear that the function f : [-n,n] — R defined by

fle):= /Ddist(z,LE)dz,

is an even function with respect to €. So we must expect its first derivative (once
it is established that f is differentiable) in € = 0 to be zero. Therefore, to prove
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FI1GURE 8. The deformation of the segment

our assumption, we will need to compute the asymptotic expansion of f in 0% up
to the order 2. We assume until the end of the proof D is the half-disc.

We consider the partition of the half-disc defined by figure 9.

FIGURE 9. Partition of the half-disk

For each region D; which of course depend of ¢, we will compute the asymp-
totic expansion of va(s) dist(z, L.)dz in € as ¢ — 0OF.
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STEP 1. We calculate the derivatives of first order with respect to € of the
above integrals. For this purpose we first consider the following asymptotic expan-
sion in € = 0% (the points A4, B, C, D are defined in figure 9):

yc (¢)
Furthermore, in each

= 2/l-2*/l+0(e?),

= 1/2+2(1—12/9)"?/le — 3e* /1 + 0 (¢?),
= 1/2-2(0—12/4)"?le - 3¢* [/l + 0 (¢?),
= 1-22/1’+0(e?),

= -1/
= —(1-1/4)"" —e+o0(e).

of the regions D; it is possible to evaluate explicitly the

_E+O(E)7
1/2

distance d(z,y,¢€) from the point (z,y) to the polygonal line L., namely

d(z,y,¢) :=

(@-1/2+5@)*+4?)", @y eDiuD,
(2 +w-2?)"". @y e,

1/2
(zet(y—e)(1/2-6(¢)))*
( (52-‘1‘(1/2—6(5))2) ) 7 (m7y) € DQUD3 UDG

With these notations we can compute the first derivative of the following integrals

d d(z,y,0)dzdy = —2(1- l2/4)3/2 I
* ue) e=0+

i d(z,y,0)dzdy - 92 (1 . l2/4)3/2 n
* P2 =0+

i d(z,y,0) dzdy = —2/1-2(1-12/4)"" /1,
de Ds(e) o

* Da(©) e=0+

: 2 3/2

fhall d(z,y,0)dzdy = 2(1—l /4) /1,
de Jpy(e) o

i d(z,y,0) dzdy = 4/3l.

de Dg(e) o

Analogous calculus gives

d
2 d
7 (z,y,¢)

=0+

(.Z',y) € Dl UD57

0,
= { (_y/\/ z? + 27 ('Z'ay) € D47
2

z —1/2)signy/l, (z,y) € D, UD3U D.
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Then we have

fl = / (z,L¢) dz—Z/()dlstzL )dz

6

= (2,0)dz + ¢ / —d (z,¢) dz +
i=1 ‘/D’ (0) Z D;(0) de e=0+
6. d
Egd—a/i(g)d(z,o)dz +o(e)
= e=0+

= /dist(z,Sl)dz+0(5)-

As expected, f is differentiable in 0T and its first derivative in this point is zero.

STEP 2. We have now to calculate the derivatives of second order. Estimates
similar to those made in Step 1 give

a2
—/ A0, 0) dody = —0@/M4=-1) /1,
de? Jp, 0
e=0+
a2
—2/ d(z,y,0)dzdy = —a(2/a-1) /I,
de Dy (e) o
d2
de?
Ds(e) ot
d? |
] depvan| - - imas
D;(e) —os
a2
_2/ d(z,y,0)dzdy = 4(2/a-1) /L.
de Ds(e) o
and
z—1/2
il (22 — zl + y21)2 + 124)'/* (z,y) € D1 U Ds,
_Qd(ac,y,e) - ’ / by
de =0+ x /(:17 +y ) , (¢,y) € Da,

—4signy/yl?, (z,y) € D2 U D3 U Dg.
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It remains to compute the following terms

i/ id(x,y,e) dxdy = 0,i=1, 2, 3, 5,
de D;(¢) de e=0+ c—o4

S fdwwe|  de| = -

d{f D4(E) dE e=0+ e=04

d/ dd(w Y,€) dxdy = 1/l

de Dg(e) de e=0+ ot

Summing up, we have

fle) = /dlstzL dz—Z/ dist(z, L:)dz

Die)

:2/[)'0 zOdz+62ZdE/(5)%dz5

2,0)d
d62 /1(5)
dz+o(62)

2
Z/ N0 d52 s:o+
2 &
= dist(z, S;)dz + € / —d(z,¢
[ st a2t [ o)

2 &
€ —d(z,¢)
/D3 (0) de?

STEP 3. It remains to estimate the sign of the coefficient of £2. That is, we
have to find the sign of the quantity

~1/2
a9 ::/ 2(z—1/2) 73 dydx — / signy dydx =
D1 (0) I (x2 —xl+l2/4+y) Ds(0) Y12 yl2/4
1— 112 _ 2

/ / 2(x—1/2) o dyda—
12 —vi—e® 1 (22 — zl + 12 /4 + y?) (16)

/1/2/ 1—z2 Slgny d .

viter yl2/4

To conclude the proof, we will show that for [ small enough the above quantity is
always strictly negative. We will compute its asymptotic expansion in I = 0F. On

dz
e=04+

+
e=0+

+
e=0+

dz +
e=0+

dz+o (52) .
e=0+
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one hand
2(z—1/2) B
1(2? — 2l +12/4 4 42)'/?
2 2 3 zy?
= 1/2 - : 3/2 4 4 5/Ql+0(l)a
(@ +9?) @+ A )

and again computing derivatives we have
Vi—gz? _ 2
/ [ (= —1/2) I/Qdydxz
12 -vi—az l(z —xl+l2/4+y)
L L
- ——dydx +0(1).
! vi—az? (z? +y )3/2
And on the other hand,

/2 pv/1—22 2 _
/ / s1g2ny ydngl /4 3.
vicz=z yl2/4 3 1

So we have shown that

—=——dydzx +0(1)
// Vi—a? ( .Z'2+y)3/2

which concludes the proof. O

Appendix B. More numerical results

Here we present some numerical results for optimal sets in a unit square of R? and
in a unit ball in R® obtained with the use of the same evolutionary algorithms
with adaptive penalty method that were employed to get optimal sets in a unit disc
of R2. We see that these results confirm our expectations about the qualitative
properties of optimal sets. In fact, the numerical approximations of optimal sets
obtained are just unions of finite number of injective curves joined by triple points
(i.e. points where three curves meet at an angle of 120 degrees), and they never
touch the boundary of the ambient set. Moreover, it seems that if the length of

the optimal set is suffciently small, then this set contains no triple points.

— -

FI1GURE 10. Optimal sets of length 0.5 and 1 in a unit square
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Je

FIGURE 11. Optimal sets of length 1.5 and 2.5 in a unit square

FIGURE 12. Optimal sets of length 3 and 4 in a unit square

FIGURE 13. Optimal sets of length 1 and 2 in the unit ball of R?
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