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Abstract— System On Chip designs commonly use high per-
formance data processing engines able to execute hardwired

algorithms. While the performance of these engines heavily

relies on the bandwidth of accesses to external memories,

traditional cache architectures and algorithms suffer a lack

of effectiveness for highly structured data like in 2D or 3D

image processing. In a previous work, Mancini and Eveno

proposed the nD-AP Cache (n-Dimensional Adaptive and

Predictive Cache) in order to target multidimensional data

processing. It has been shown that this cache is efficient

for applications where data fetches are performed based

on the history of data values. Although, the performance

depends strongly on the way that the nD-AP Cache running

parameters are tuned, no predefined methodology to set these

parameters has been proposed before. In this paper, we

study the parameters tuning aspect. Then, we compare the

efficiency of the nD-AP Cache to three associative caches.

Numerical results indicate that 100% improvement in run

time performance can be achieved while keeping relatively

low hardware cost.

Keywords: Configurable cache, structured data, nD-AP Cache.

1. Introduction

One of the most challenging problems to design a SoC is
to find an adequacy between computing power and data flow.
This is becoming more and more complex as the density of
digital systems has been increasing faster than the bandwidth
with external memory. As a consequence, a common strategy
to provide a high data bandwidth to data processing engines
(DPE) is to design a hierarchy of embedded memories to
cache external data.
A huge effort has been made to optimize memory hi-
erarchies, design efficient prefetching strategies and tune
memory architectures to applications, which can be made
statically (off-line) and dynamically (on-line). Self-tunable
caches are also a promising technology to free the designer
from cache management.
S. Mancini and N. Gac in [17], [13], [16] propose the use
of the nD-AP Cache (n-Dimensional Adaptive and Predictive
Cache) for different signal processing applications using an
empirical approach that does not take into account the global
analysis of the performance, neither a method to tune the
parameters. In this paper, we propose to study these two
aspects.

The nD-AP Cache is suitable for a large class of applica-
tions that are fetching data from an n-dimensional data struc-
ture. It is targeted to be used in the context of applications
specific hardware (FPGAs or ASICs) where the nature of
the algorithms is clearly identified. The prefetching strategy
of the nD-AP Cache is independent from the applications
and can be tuned with few parameters.
The outline of the paper is organized as follows. In
section 2, we present some of the existing prefetching
techniques in structured data and self-tunable cache mem-
ories. In section 3, we present a model of the targeted
application. The nD-AP Cache architecture is described in
section 4. In section 5, we show the tracking mechanism and
a methodology for the tuning of the nD-AP Cache memory.
Results of hardware complexity and cache performances are
discussed in section 6. Section 7 concludes the paper.

2. Related Work

Cache architectures for general purpose processors have
been optimized to deal with structured data and especially
for multimedia applications [21], [6]. The best performances
are reached when the cache architecture, the data structures
as well as the application match.

2.1 Cache architectures for structured data

management

Performance’s gains may come from a suitable static
parameterization of the cache (number of lines, size of
line, replacement policy), prefetching strategies and dynamic
reconfiguration of the cache’s parameters [19], [15].
The challenge of a prefetching strategy is to estimate the
cache lines to prefetch from an analysis of the past fetches,
without the knowledge of the initial data structure.
The One Block Lookahead (OBL) [20] technique fetches
consecutive cache lines based on the reference causing a
cache miss. Stride Prediction Table (SPT) [12], used in the
Intel-Core processor [9], associates to each load instruction
the previous fetched address to compute the stride with
the new reference address. SPT prefetches the line a stride
ahead the current reference. Although SPT is efficient for
high-end micro-processors, it is too complex for specific
hardware, FPGA targets and embedded systems because it
needs an additional associative memory to store the loaded
instructions and the associated tags.



The dynamic tuning of the cache memory tries to optimize
the efficiency of applications for which memory access
patterns may vary in time.
[1] proposes to reconfigure a tunable cache when a phase
transition is detected at fixed intervals. The reconfiguration
process needs an exhaustive search of the available cache
parameters to reduce the miss rate.
Some knowledge about the pattern access may lead to
efficient prefetching mechanisms. As an example, texture
caching for 3D rendering benefits of some assumptions about
the access pattern [18], [5]. Some information about the
size of an image can also be used to exploit 2D locality
and perform neighbor prefetching [7]. [14] reports satisfying
results of a Markov predictor based prefetching but the
important memory’s need to store the matrix of transition
probability makes it impracticable.
Specific caching hardware can be implemented, more or
less tighten to the application. The most obvious strategy
is to pipeline computations and memory accesses. But it
makes little use of the fetch coherency and parallelization
is difficult. Similar to pipelining, deterministic caching [8]
analyzes a part of the fetch sequence to compute the needed
data. It may be of low overhead but some memory is
necessary to store the fetch sequence and the corresponding
intermediate internal variables. On-line cache accesses with
a prefetch mechanism is the most efficient way to reach a
high throughput with a low pipeline latency.

2.2 Optimization of applications for cache effi-

ciency

Applications have to be transformed in such a way that
they produce fetches in a cache friendly way: the next
iteration of a loop has to produce a fetch at an address
close to the previous one. The main results we can find
in the literature are about the transformation of nested loop
when data indexes are affine functions of loop indexes [4].
Tiling is another popular optimization which decomposes
a loop into a higher level loop to produce tiles and an
inner loop in each tile [10]. Furthermore, the combination
of the transformations of an application together with a re-
mapping of the data structure in the memory can lead to
a high cache efficiency of a direct mapped cache, which is
of low hardware cost [4]. Another way could be using a
software controlled prefetch associated to ScratchPad Mem-
ory (SPM) [2]. These solutions are shown to be efficient
at the expense of a lack of genericity, and long software
development time for the SPM management update.

3. A model of targeted data access appli-

cations

A typical example of application, for which the nD-AP
Cache is intended for, is shown in figure 1. This figure
corresponds to the Jumping snake algorithm which is used

to find a lip border [11]. Figure 1(a) shows the density of
memory references to the 2D image , along the path defined
by the algorithm. Figure 1(b) shows the temporal successions
of the references over the Y axis. As we can notice in this
figure, we can assume that the displacements in that 2D data
structure are the sum of:

- A low speed global displacement.
- A high speed local displacement around the low speed
one.

An ideal cache should be able to contain the data cor-
responding to local displacements and predict the global
displacement in order to update the cached data.
Targetted applications should fit this model or should be
transformed to comply with it.
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Fig. 1: Jumping snake algorithm displacements

4. The nD-AP Cache architecture

The nD-AP cache’s aim is to cache multidimensional
data and prefetch zones of data according to the estimation
of future references made by the prefetching mechanism,
called a tracker hereinafter [17]. It also provides a virtual



interface to the computing unit that issues multidimensional
indexes in the data structure. The cache performs both the
memory mapping between indexes and the external memory
addresses and the internal memory.
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Fig. 2: A nD-AP Cache memory; in a 2D configuration

As illustrated in the figure 2, the cache is made of:

- Trackers X, Y : They estimate the center of the zone
of data to cache and prefetch according to a model of
the fetch sequence.
- A Cache Control : It performs the memory mapping of
the 2D coordinates into memory addresses and, loads
zones of data upon requests of trackers.
- Embedded memory : It contains the cached data. It is
a double port RAM.
- External bus interface (Bridge): It grabs zones of
data from the external memory when requested by the
control unit. It should be noted that it can be replaced
by a bridge to a higher level cache.

The cache updates are performed concurrently with the
cache accesses thanks to a double port memory. Conflicts
are avoided thanks to the update mechanism of the cached
zone. In opposition to traditional cache architectures, the nD-
AP Cache control uses one index per dimension: for a 2D-
AP Cache, the data structure is viewed as a rectangle (2D
object), like depicted in figure 3, and available through two
indexes X and Y. A cached zone is defined by an upper and
a lower bound on each dimension.

For each reference, the trackers X and Y estimate the best
cache center ei (see figure 3) using the values of the previous
and current references. If this estimated cache center is out
of the guard zone, the real cache center Ci is updated to
ei: the cache control unit requests new parts of data to be
cached from the bus interface. A cache miss occurs when
the index is outside of the zone of data in cache (cached
zone).
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Fig. 3: The 2D-AP Cache zones

5. Tuning an nD-AP Cache memory

In this section, we present an off-line algorithm that
computes the running parameters of the Statistical, first
order, Constant speed & size (SC) tracker. This algorithm is a
starting point to understand how trackers can be dynamically
set. The entry of that algorithm is a part of a fetch sequence,
called the reference sequence hereinafter. We first describe
more precisely the SC tracker and the algorithm follows.

5.1 The SC tracker mechanism

Assuming a uniform distribution of the references around
the mean, we can expect that most of the references will
be included in a bounded area around the mean for a short
period of time. A tracking mechanism is used to update the
cache position each time the computed mean is too different
from the current cache center. We define a guard zone
around the current cache center as shown in figure 3. The
cache center is updated when the estimated mean crosses the
border of that zone. The cached zone size can be estimated
from the variations around the mean.
At the ith reference, the state of a SC tracker is described
by:

• s = {si} the fetch sequence,
• ci the actual center of the cached zone,

In order to compute the sequence of estimated centers e

of the cached zone, a low pass IIR filter Fa is used on the
fetch sequence s. Multiplications can be avoided when the
coefficients of such a filter are of a power of 2. The transfer
function of Fa has the form:

Ha(z) =
2−a

1 − (1 − 2−a)z−1
(1)



where a ∈ N is the cut-off frequency parameter of this filter.
Then, e = Fa(s) = {ei}.
The nD-AP Cache is parameterized by (a, T, ∆, Γ) where:

• T is the size of the cached zone,
• ∆ is the tracker speed,
• Γ is the size of the guard zone.

For a short time after the ith fetch, the fetch sequence is
supposed to evolve in a range [ci−

T

2
, ci+

T

2
]. If the estimated

center ei gets out of the guard zone [ci−
Γ

2
, ci +

Γ

2
], then we

make the assumption that the fetch sequence to come will
be in the direction of the crossed border. The actual center
ci+1 then is updated to ci + ∆ or ci − ∆.
Figure 4 shows a part of the SC Tracker behaviour
for the Snake algorithm along the time. It illustrates the
displacements of the cache and shows its zones (Cached
range, Guard zone) around the sequence.

5.2 Tuning the SC tracker

A frequential and temporal analysis is performed to com-
pute the set SC(a, T, ∆, Γ) from a reference sequence.
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From the figure 5, which is the normalized FFT (Fast
Fourier Transform) of the reference sequence of figure 4,
we can see that:

- The lowest frequencies are the one tracked by the SC
tracker (global displacement),
- The intermediate frequencies are the residual oscilla-
tions around the cut-off frequency of filter Fa (sub
optimal filtering),
- The high frequencies are the fetches around the cache
center that need to be inside the cached range (high
speed displacement).

A small set of values of a are of interest because the
normalised cut-off frequency fa of the filter Fa is equal to
fa = 1

2π
arccos(1 − (22a+1 − 2a+1)−1)). Indeed, amax is
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Fig. 5: Normalized spectrum of the reference sequence

the maximum value of a such that famax
N > 1, where N

is the length of the reference sequence.
The optimal value of a should verify a minimum cache
size T and a good selectivity of the tracked component.
For each value of a in the set {0, . . . , amax}:

• Ta = maxi(|si − ei|) is computed,
• a is chosen as the maximum value of a that gives
minimum Ta. This last condition represents a compromise
between the size of the cache and the amplitude of the
residual oscillations after Fa.
• Γ is such that osc, the residual oscillations of the estimated
center ei, are in the guard zone.

osc = {cuta(ei) − ei} (2)

Where cuta is the ideal filter of cut-off frequency fa:

cuta(x) =







0 for x ∈ [− 1

2
,−fa]

FFT(x) for x ∈ [−fa, fa]
0 for x ∈ [−fa,− 1

2
]

(3)

The optimum value of Γ is the maximum allowed oscil-
lation: Γ = maxi |osci|.
• The ∆ parameter represents the average speed of the fetch
sequence and the phase shift of Fa to compensate. This is the
most difficult parameter to estimate and, as a first estimation,
it is set to the mean phase of the Fa filter:

∆ = E(|cuta(s) − e|) (4)

6. Results

In this section, we present measures of the nD-AP Cache
efficiency and complexity. The nD-AP Cache is designed
both in SystemC for high speed simulation and VHDL RTL
for implementation. It has been successfully implemented
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Fig. 6: Measured hit rate (memory latency = 15 cycles)

on a SoPC (System On Programmable Chip) prototype and
validated with a Avnet Virtex II Pro Development board.
Also, it has been synthesized for an ASIC target.

6.1 Cache efficiency

There are several ways to measure a cache efficiency
depending on the target specifications. One can measure the
ratio between the number of total memory references and
the number of clock cycles to get all the data, the hit rate,
the bus occupancy, the power consumption, etc . . . In this
paper, we focus on the timing performance given by:
Efficiency = #references

#cycles
, which takes into account the time to

initialize the cache as well as the memory latency. After this
initialization, the cache can achieve the efficiency of 1 if all
the references are found in the cache.
In a standard cache, the memory latency has no impact
on the hit rate. In the nD-AP Cache, two kind of miss can
occur:

- A miss due to the bad tracking of the global displace-
ment,
- A miss due to the time needed to update the cache.

If we consider only the tracking algorithm, figure 6 shows
that the hit rate of the nD-AP Cache is near perfect. The
efficiency as defined before is therefore a more objective
way of comparing the nD-AP Cache to other architectures.
Performances are measured for several applications such
as:

• Lip tracking; Jumping Snake: This algorithm is used
to find a lip border on an image [11]. The sequence of
fetches depends on the value of the data to optimize a
gradient flow of a piecewise line.

• 2D & 3D Backprojection: These algorithms are used in
medical imaging [3]. The fetch paths are deterministic
but numerous.

• Ray Casting : With this algorithm used for 3D visu-
alization a set of lines propagates in a 3D grid. The
sequence depends on the point of view and the iter-
ative behavior of the algorithm prevents deterministic
caching.

• 2D tile based video rendering : These algorithms per-
form image transformations and compositions. Tiles of
images are loaded in embedded buffers, the 2D-AP
Cache acts as a 2nd level cache.

Figure 7 gives the curves of the cache efficiency depend-
ing on the system bus (32 bit bus) latency, for the aforesaid
applications. These results are given by the cache parameters
computed with the method from section 5. The nD-AP Cache
efficiency is compared with an ideal model of the following
caches:

- Full Associative, 16K, 256 lines of 16 words.
- TM32 cache, 16K, 2 way set-associative, 256 lines of
16 words.
- PowerPC 405 cache , 16K, 8 way set-associative, 512
lines of 8 words.

The results demonstrate that the nD-AP Cache is better in
terms of cache efficiency or cache size than a standard cache
in several cases, or sometimes allows a trade-off. The tool
presented in section 5 gives as good results as the manual
setting while avoiding tedious simulations.
An interesting result is the video rendering that is an IP
that was designed previously prior to the nD-AP Cache by
an other team. The nD-AP Cache acts as a 2nd level cache
and appears to be efficient. The other applications were
transformed to exhibit 2D locality but the video rendering
example shows that such locality is often naturally present.
The reuse of data is relatively low (high speed movement of
the cache center) which makes the cache much more sensi-
tive to memory latency. However, the performance remains
more efficient than a standard cache(100% improvement).
2D Backprojection and Ray Casting provide almost an
ideal performance. For a wide range of memory latencies,
the prefetch realized by the cache corresponds exactly to
the need of the application. Excellent results are achieved,
in part,thanks to the high rates of data reused by these al-
gorithms (automatic parameterization gives easily satisfying
results).
Finally, the case of the Snake shows the limitations of
the proposed tracking. The residual oscillations of the filter
imposes a large guard zone. That limits the prediction’s
performance and makes it more sensitive to memory latency.
This seems to be related to the phase shift of the low pass
filter that prevents the tracker to predict the next references
on time.

6.2 Complexity

Table 1 gives the complexity results of the nD-AP Cache
for a typical applications and an unconstrained logical syn-
thesis. The synthesis tool reports a 170 MHz frequency
for the Virtex 4 FX target and 350 MHz for a 65 nm

IC (Integrated Circuit) process. These performance can be
greatly increased with a suitable pipelining of the trackers
and of the control unit.
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Fig. 7: Cache efficiency of a single 2D-AP Cache, together with the cache size, for manual and automatic setting of the
parameters

The hardware complexity and timing of the cache control
are almost independent of the size of the embedded memory,
contrary to a standard cache. The complexity and the timing
evolve with the number of bits to code a coordinate. At
the opposite, a standard cache complexity evolve with the
number of the cache lines.

Unit Virtex 4 65 nm

Control Unit 853 FG, 280 DFF 7700 µm
2

Tracker 216 FG, 49 DFF 1900 µm
2

RAM 4 KB

Table 1: The 2D cache complexity

7. Conclusion & perspectives

This paper presents the nD-AP Cache architectures and an
associated methodology to compute its running parameters.
The nD-AP Cache is a new trade-off between the hardware

complexity of the control unit, the size of embedded memory
and the cache efficiency. Several prefetching mechanisms
and models of fetch sequence are available and the system
designer can choose the one that fits its application best. The
tracker presented in this paper can be automatically tuned
and shown to be efficient for several applications.

The two major drawbacks of the simple filters already
used are residual oscillations and prediction delay. In our
future research, the introduction of Kalman like filtering
will be investigated in order to enhance the performances
while keeping relatively low hardware complexity. Auto
tunable trackers are also a way of investigating giving
the opportunity to dynamically compute the nD-AP cache
parameters. This preliminary work is still on-going and the
nD-AP cache is gaining new features and is evaluated on
other applications.
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intelÂő coretm microarchitecture. Technology @Intel Magazine, Sept.
2006.

[10] H. Dutta, F. Hannig, and J. Teich. Hierarchical partitioning for
piecewice linear algorithms. In Proceedings of the International
Symposium on PARELEC, pages 153–160, 2006.

[11] N. Eveno, A. Caplier, and P-Y Coulon. Automatic and accurate
lip tracking. Circuits and Systems for Video technology, IEEE

Transactions on, May 2004.
[12] J.W.C. Fu, J.H. Patel, and B.L. Janssens. Stride directed prefetching in

scalar processors. Microarchitecture, 1992. MICRO 25., Proceedings
of the 25th Annual International Symposium on, pages 102–110, Dec
1992.

[13] N. Gac, S. Mancini, and M. Desvignes. Hardware/software 2D-3D
backprojection on a SoPC platform. In ACM Symposium on Applied
Computing. ACM, April 2006.

[14] D. Joseph and D. Grunwald. Prefetching using markov predictors.
IEEE Transactions on Computers, 48(2):121 – 133, 1999.

[15] D. Kim, R. Managuli, and Y. Kim. Data cache and direct memory
access in programming mediaprocessors. Micro, IEEE, 21:33–42,
2001.

[16] S. Mancini and M. Desvignes. Efficient memory management for Ray
Casting. In DASIP’07, 2007.

[17] S. Mancini and N. Eveno. An IIR based 2D adaptive and predictive
cache for image processing. In DCIS 2004, page 85, November 2004.

[18] Se-Jeong Park and al. A reconfigurable multilevel parallel texture
cache memory with 75-gb/s parallel cache replacement bandwidth.
IEEE Journal of Solid-State Circuits, May 2002.

[19] D.A. Patterson and J.L. Hennessy. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann, San Francisco, 2nd ed. edition,
1996.

[20] Alan Jay Smith. Caches memories. Computing Surveys, 14:473–530,
September 1982.

[21] S. Wong, S. Cotofana, and S. Vassiliadis. General-purpose processor
huffman encoding extension. Information Technology: Coding and
Computing, 2000. Proceedings. International Conference on, pages
158–163, 2000.


